The home for Hyperlane core contracts, sdk packages, and other infrastructure
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hyperlane-monorepo/solidity/contracts/isms/multisig/AbstractMerkleRootMultisigI...

71 lines
3.1 KiB

Make merkle proofs optional on multisig ISM (#2173) ### Description Validators currently sign `(root, index)` checkpoints and during verification, a `message` is passed as calldata, an `id()` is derived, and a `proof` of `id()` at `index` in `root` is verified This provides “all or nothing” censorship resistance guarantees because a validator can only sign roots to allow any contained messages to be processed. We have considered alternatives where validators sign `message` directly and we lose censorship resistance in exchange for eliminating merkle proof verification gas costs. However, if validators sign `(root, index, message)` tuples, we can skip merkle proof verification on the destination chain while still maintaining censorship resistance by providing two valid metadata formats: 1. existing validator signatures and merkle proof verification of inclusion 2. including merkle proof verification for pathway where validators are censoring `message` It’s worth noting the validator is required to index event data to produce this new signature format. However, this does not require historical indexing and new validators being spun up can simply begin indexing from tip. See https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2187 for validator changes See https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2248 for relayer and e2e test changes ### Drive-by changes Merkle index also optional ### Related issues - Fixes https://github.com/hyperlane-xyz/hyperlane-monorepo/issues/2192 ### Backward compatibility - new ISM deployment is necessary (we could upgrade implementation in theory) - Validator and relayer upgrades ### Testing Unit (fuzz) Tests, E2E tests
2 years ago
// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;
// ============ Internal Imports ============
import {IInterchainSecurityModule} from "../../interfaces/IInterchainSecurityModule.sol";
import {AbstractMultisigIsm} from "./AbstractMultisigIsm.sol";
import {MerkleRootMultisigIsmMetadata} from "../../libs/isms/MerkleRootMultisigIsmMetadata.sol";
import {Message} from "../../libs/Message.sol";
import {MerkleLib} from "../../libs/Merkle.sol";
import {CheckpointLib} from "../../libs/CheckpointLib.sol";
/**
* @title `AbstractMerkleRootMultisigIsm` multi-sig ISM with the validators-censorship resistance guarantee.
* @notice This ISM allows using a newer signed checkpoint (say #33) to prove existence of an older message (#22) in the validators' MerkleTree.
* This guarantees censorship resistance as validators cannot hide a message
* by refusing to sign its checkpoint but later signing a checkpoint for a newer message.
* If validators decide to censor a message, they are left with only one option to not produce checkpoints at all.
* Otherwise, the very next signed checkpoint (#33) can be used by any relayer to prove the previous message inclusion using this ISM.
* This is censorship resistance is missing in the sibling implementation `AbstractMessageIdMultisigIsm`,
* since it can only verify messages having the corresponding checkpoints.
* @dev Provides the default implementation of verifying signatures over a checkpoint and the message inclusion in that checkpoint.
* This abstract contract can be overridden for customizing the `validatorsAndThreshold()` (static or dynamic).
Make merkle proofs optional on multisig ISM (#2173) ### Description Validators currently sign `(root, index)` checkpoints and during verification, a `message` is passed as calldata, an `id()` is derived, and a `proof` of `id()` at `index` in `root` is verified This provides “all or nothing” censorship resistance guarantees because a validator can only sign roots to allow any contained messages to be processed. We have considered alternatives where validators sign `message` directly and we lose censorship resistance in exchange for eliminating merkle proof verification gas costs. However, if validators sign `(root, index, message)` tuples, we can skip merkle proof verification on the destination chain while still maintaining censorship resistance by providing two valid metadata formats: 1. existing validator signatures and merkle proof verification of inclusion 2. including merkle proof verification for pathway where validators are censoring `message` It’s worth noting the validator is required to index event data to produce this new signature format. However, this does not require historical indexing and new validators being spun up can simply begin indexing from tip. See https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2187 for validator changes See https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2248 for relayer and e2e test changes ### Drive-by changes Merkle index also optional ### Related issues - Fixes https://github.com/hyperlane-xyz/hyperlane-monorepo/issues/2192 ### Backward compatibility - new ISM deployment is necessary (we could upgrade implementation in theory) - Validator and relayer upgrades ### Testing Unit (fuzz) Tests, E2E tests
2 years ago
* @dev May be adapted in future to support batch message verification against a single root.
*/
abstract contract AbstractMerkleRootMultisigIsm is AbstractMultisigIsm {
// ============ Constants ============
// solhint-disable-next-line const-name-snakecase
uint8 public constant moduleType =
uint8(IInterchainSecurityModule.Types.MERKLE_ROOT_MULTISIG);
/**
* @inheritdoc AbstractMultisigIsm
*/
function digest(bytes calldata _metadata, bytes calldata _message)
internal
pure
override
returns (bytes32)
{
// We verify a merkle proof of (messageId, index) I to compute root J
bytes32 _root = MerkleLib.branchRoot(
Message.id(_message),
MerkleRootMultisigIsmMetadata.proof(_metadata),
Message.nonce(_message)
);
// We provide (messageId, index) J in metadata for digest derivation
return
CheckpointLib.digest(
Message.origin(_message),
MerkleRootMultisigIsmMetadata.originMailbox(_metadata),
_root,
MerkleRootMultisigIsmMetadata.index(_metadata),
MerkleRootMultisigIsmMetadata.messageId(_metadata)
);
}
/**
* @inheritdoc AbstractMultisigIsm
*/
function signatureAt(bytes calldata _metadata, uint256 _index)
internal
pure
virtual
override
returns (bytes memory signature)
{
return MerkleRootMultisigIsmMetadata.signatureAt(_metadata, _index);
}
}