|
|
|
#define PUT(x) std::cout << #x "=" << (x) << std::endl;
|
|
|
|
#include <cybozu/test.hpp>
|
|
|
|
#include <cybozu/xorshift.hpp>
|
|
|
|
#include <cybozu/benchmark.hpp>
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
#include <mcl/bn384.hpp>
|
|
|
|
using namespace mcl::bn384;
|
|
|
|
#else
|
|
|
|
#include <mcl/bn256.hpp>
|
|
|
|
using namespace mcl::bn256;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define PUT(x) std::cout << #x "=" << (x) << std::endl;
|
|
|
|
|
|
|
|
/*
|
|
|
|
Skew Frobenius Map and Efficient Scalar Multiplication for Pairing-Based Cryptography
|
|
|
|
Y. Sakemi, Y. Nogami, K. Okeya, H. Kato, Y. Morikawa
|
|
|
|
*/
|
|
|
|
struct oldGLV {
|
|
|
|
Fp w; // (-1 + sqrt(-3)) / 2
|
|
|
|
mpz_class r;
|
|
|
|
mpz_class v; // 6z^2 + 4z + 1 > 0
|
|
|
|
mpz_class c; // 2z + 1
|
|
|
|
void init(const mpz_class& r, const mpz_class& z)
|
|
|
|
{
|
|
|
|
if (!Fp::squareRoot(w, -3)) throw cybozu::Exception("oldGLV:init");
|
|
|
|
w = (w - 1) / 2;
|
|
|
|
this->r = r;
|
|
|
|
v = 1 + z * (4 + z * 6);
|
|
|
|
c = 2 * z + 1;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
(p^2 mod r) (x, y) = (wx, -y)
|
|
|
|
*/
|
|
|
|
void mulP2(G1& Q, const G1& P) const
|
|
|
|
{
|
|
|
|
Fp::mul(Q.x, P.x, w);
|
|
|
|
Fp::neg(Q.y, P.y);
|
|
|
|
Q.z = P.z;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
x = ap^2 + b mod r
|
|
|
|
assume(x < r);
|
|
|
|
*/
|
|
|
|
void split(mpz_class& a, mpz_class& b, const mpz_class& x) const
|
|
|
|
{
|
|
|
|
assert(0 < x && x < r);
|
|
|
|
/*
|
|
|
|
x = s1 * v + s2 // s1 = x / v, s2 = x % v
|
|
|
|
= s1 * c * p^2 + s2 // vP = cp^2 P
|
|
|
|
= (s3 * v + s4) * p^2 + s2 // s3 = (s1 * c) / v, s4 = (s1 * c) % v
|
|
|
|
= (s3 * c * p^2 + s4) * p^2 + s2
|
|
|
|
= (s3 * c) * p^4 + s4 * p^2 + s2 // s5 = s3 * c, p^4 = p^2 - 1
|
|
|
|
= s5 * (p^2 - 1) + s4 * p^2 + s2
|
|
|
|
= (s4 + s5) * p^2 + (s2 - s5)
|
|
|
|
*/
|
|
|
|
mpz_class t;
|
|
|
|
mcl::gmp::divmod(a, t, x, v); // a = t / v, t = t % v
|
|
|
|
a *= c;
|
|
|
|
mcl::gmp::divmod(b, a, a, v); // b = a / v, a = a % v
|
|
|
|
b *= c;
|
|
|
|
a += b;
|
|
|
|
b = t - b;
|
|
|
|
}
|
|
|
|
template<class G1>
|
|
|
|
void mul(G1& Q, const G1& P, const mpz_class& x) const
|
|
|
|
{
|
|
|
|
G1 A, B;
|
|
|
|
mpz_class a, b;
|
|
|
|
split(a, b, x);
|
|
|
|
mulP2(A, P);
|
|
|
|
G1::mul(A, A, a);
|
|
|
|
G1::mul(B, P, b);
|
|
|
|
G1::add(Q, A, B);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<class GLV1, class GLV2>
|
|
|
|
void compareLength(const GLV1& rhs, const GLV2& lhs)
|
|
|
|
{
|
|
|
|
cybozu::XorShift rg;
|
|
|
|
int Rc = 0;
|
|
|
|
int Lc = 0;
|
|
|
|
int eq = 0;
|
|
|
|
mpz_class R0, R1, L0, L1, x;
|
|
|
|
Fr r;
|
|
|
|
for (int i = 1; i < 1000; i++) {
|
|
|
|
r.setRand(rg);
|
|
|
|
x = r.getMpz();
|
|
|
|
rhs.split(R0, R1, x);
|
|
|
|
lhs.split(L0, L1, x);
|
|
|
|
|
|
|
|
size_t R0n = mcl::gmp::getBitSize(R0);
|
|
|
|
size_t R1n = mcl::gmp::getBitSize(R1);
|
|
|
|
size_t L0n = mcl::gmp::getBitSize(L0);
|
|
|
|
size_t L1n = mcl::gmp::getBitSize(L1);
|
|
|
|
size_t Rn = std::max(R0n, R1n);
|
|
|
|
size_t Ln = std::max(L0n, L1n);
|
|
|
|
if (Rn == Ln) {
|
|
|
|
eq++;
|
|
|
|
}
|
|
|
|
if (Rn > Ln) {
|
|
|
|
Rc++;
|
|
|
|
}
|
|
|
|
if (Rn < Ln) {
|
|
|
|
Lc++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
printf("eq=%d small is better rhs=%d, lhs=%d\n", eq, Rc, Lc);
|
|
|
|
}
|
|
|
|
|
|
|
|
void testGLV(const mcl::bn::CurveParam& cp)
|
|
|
|
{
|
|
|
|
bn384init(cp);
|
|
|
|
G1::setCompressedExpression(false);
|
|
|
|
|
|
|
|
G1 P0, P1, P2;
|
|
|
|
BN::mapToG1(P0, 1);
|
|
|
|
cybozu::XorShift rg;
|
|
|
|
|
|
|
|
oldGLV oldGlv;
|
|
|
|
oldGlv.init(BN::param.r, BN::param.z);
|
|
|
|
|
|
|
|
mcl::bn::GLV1<Fp> glv;
|
|
|
|
glv.init(BN::param.r, BN::param.z);
|
|
|
|
compareLength(glv, oldGlv);
|
|
|
|
|
|
|
|
for (int i = 1; i < 100; i++) {
|
|
|
|
BN::mapToG1(P0, i);
|
|
|
|
Fr s;
|
|
|
|
s.setRand(rg);
|
|
|
|
mpz_class ss = s.getMpz();
|
|
|
|
G1::mulBase(P1, P0, ss);
|
|
|
|
glv.mul(P2, P0, ss);
|
|
|
|
CYBOZU_TEST_EQUAL(P1, P2);
|
|
|
|
glv.mul(P2, P0, ss, true);
|
|
|
|
CYBOZU_TEST_EQUAL(P1, P2);
|
|
|
|
oldGlv.mul(P2, P0, ss);
|
|
|
|
CYBOZU_TEST_EQUAL(P1, P2);
|
|
|
|
}
|
|
|
|
for (int i = -100; i < 100; i++) {
|
|
|
|
mpz_class ss = i;
|
|
|
|
G1::mulBase(P1, P0, ss);
|
|
|
|
glv.mul(P2, P0, ss);
|
|
|
|
CYBOZU_TEST_EQUAL(P1, P2);
|
|
|
|
glv.mul(P2, P0, ss, true);
|
|
|
|
CYBOZU_TEST_EQUAL(P1, P2);
|
|
|
|
}
|
|
|
|
Fr s;
|
|
|
|
BN::mapToG1(P0, 123);
|
|
|
|
CYBOZU_BENCH_C("Ec::mul", 100, P1 = P0; s.setRand(rg); G1::mul, P2, P1, s.getMpz());
|
|
|
|
CYBOZU_BENCH_C("Ec::glv", 100, P1 = P0; s.setRand(rg); glv.mul, P2, P1, s.getMpz());
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
lambda = 6 * z * z
|
|
|
|
mul (lambda * 2) = FrobeniusOnTwist * 2
|
|
|
|
*/
|
|
|
|
void testGLV2(const mcl::bn::CurveParam& cp)
|
|
|
|
{
|
|
|
|
bn384init(cp);
|
|
|
|
G2::setCompressedExpression(false);
|
|
|
|
G2 Q0, Q1, Q2;
|
|
|
|
const mpz_class& z = BN::param.z;
|
|
|
|
mpz_class lambda = 6 * z * z;
|
|
|
|
std::cout << std::hex;
|
|
|
|
Fp2 t;
|
|
|
|
for (int i = 1; i < 5; i++) {
|
|
|
|
BN::mapToG2(Q0, i);
|
|
|
|
G2::mul(Q1, Q0, lambda);
|
|
|
|
BN::FrobeniusOnTwist(Q2, Q0);
|
|
|
|
// Q1.normalize();
|
|
|
|
// Q2.normalize();
|
|
|
|
printf("i=%d\n", i);
|
|
|
|
PUT(Q1);
|
|
|
|
PUT(Q2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
CYBOZU_TEST_AUTO(glv)
|
|
|
|
{
|
|
|
|
testGLV2(mcl::bn::CurveFp254BNb);
|
|
|
|
return;
|
|
|
|
testGLV(mcl::bn::CurveFp254BNb);
|
|
|
|
testGLV(mcl::bn::CurveFp382_1);
|
|
|
|
testGLV(mcl::bn::CurveFp382_2);
|
|
|
|
}
|