From e41ef6d6c9a3d84fe532eaa81146951f45254528 Mon Sep 17 00:00:00 2001 From: MITSUNARI Shigeo Date: Sun, 29 Sep 2019 22:51:23 +0900 Subject: [PATCH] add api.md --- api.md | 538 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ readme.md | 192 +------------------ 2 files changed, 542 insertions(+), 188 deletions(-) create mode 100644 api.md diff --git a/api.md b/api.md new file mode 100644 index 0000000..1c0f4ea --- /dev/null +++ b/api.md @@ -0,0 +1,538 @@ +# C API + +## Minimum sample + +[sample/pairing_c.c](sample/pairing_c.c) is a sample of how to use BLS12-381 pairing. + +``` +cd mcl +make -j4 +make bin/pairing_c.exe && bin/pairing_c.exe +``` + +## Header and libraries + +To use BLS12-381, include `mcl/bn_c384_256.h` and link +- libmclbn384_256.{a,so} +- libmcl.{a,so} ; core library + +`384_256` means the max bit size of `Fp` is 384 and that size of `Fr` is 256. + +## Notation + +The elliptic equation of a curve E is `E: y^2 = x^3 + b`. + +- `Fp` ; a finite field of a prime order `p`, where curves is defined over. +- `Fr` ; a finite field of a prime order `r`. +- `Fp2` ; the field extension over Fp with degree 2. Fp[i] / (i^2 + 1). +- `Fp6` ; the field extension over Fp2 with degree 3. Fp2[v] / (v^3 - Xi) where Xi = i + 1. +- `Fp12` ; the field extension over Fp6 with degree 2. Fp6[w] / (w^2 - v). +- `G1` ; the cyclic subgroup of E(Fp). +- `G2` ; the cyclic subgroup of the inverse image of E'(Fp^2) under a twisting isomorphism from E' to E. +- `GT` ; the cyclie subgroup of Fp12. + - `G1`, `G2` and `GT` have the order `r`. + +The pairing e: G1 x G2 -> GT is the optimal ate pairing. + +mcl treats `G1` and `G2` as an additive group and `GT` as a multiplicative group. + +- `mclSize` ; `unsigned int` if WebAssembly else `size_t` + +### Curve Parameter +r = |G1| = |G2| = |GT| + +curveType | b| r and p | +------------|--|------------------| +BN254 | 2|r = 0x2523648240000001ba344d8000000007ff9f800000000010a10000000000000d
p = 0x2523648240000001ba344d80000000086121000000000013a700000000000013 | +BLS12-381 | 4|r = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001
p = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab | +BN381 | 2|r = 0x240026400f3d82b2e42de125b00158405b710818ac000007e0042f008e3e00000000001080046200000000000000000d
p = 0x240026400f3d82b2e42de125b00158405b710818ac00000840046200950400000000001380052e000000000000000013 | + +## Structures + +### `mclBnFp` +This is a struct of `Fp`. The value is stored as Montgomery representation. + +### `mclBnFr` +This is a struct of `Fr`. The value is stored as Montgomery representation. + +### `mclBnFp2` +This is a struct of `Fp2` which has a member `mclBnFp d[2]`. + +An element `x` of `Fp2` is represented as `x = d[0] + d[1] i` where `i^2 = -1`. + +### `mclBnG1` +This is a struct of `G1` which has three members `x`, `y`, `z` of type `mclBnFp`. + +An element `P` of `G1` is represented as `P = [x:y:z]` of a Jacobi coordinate. + +### `mclBnG2` +This is a struct of `G2` which has three members `x`, `y`, `z` of type `mclBnFp2`. + +An element `Q` of `G2` is represented as `Q = [x:y:z]` of a Jacobi coordinate. + +### `mclBnGT` + +This is a struct of `GT` which has a member `mclBnFp d[12]`. + +### sizeof + +library |MCLBN_FR_UNIT_SIZE|MCLBN_FP_UNIT_SIZE|sizeof Fr|sizeof Fp| +------------------|------------------|------------------|---------|---------| +libmclbn256.a | 4 | 4 | 32 | 32 | +libmclbn384_256.a | 4 | 6 | 32 | 48 | +libmclbn384.a | 6 | 6 | 48 | 48 | + +## Thread safety +All functions except for initialization and changing global setting are thread-safe. + +## Initialization + +Initialize mcl library. Call this function at first before calling the other functions. + +``` +int mclBn_init(int curve, int compiledTimeVar); +``` + +- `curve` ; specify the curve type + - MCL_BN254 ; BN254 (a little faster if including `mcl/bn_c256.h` and linking `libmclbn256.{a,so}`) + - MCL_BN_SNARK1 ; the same parameter used in libsnark + - MCL_BLS12_381 ; BLS12-381 + - MCL_BN381_1 ; BN381 (include `mcl/bn_c384.h` and link `libmclbn384.{a,so}`) +- `compiledTimeVar` ; set `MCLBN_COMPILED_TIME_VAR`, which macro is used to make sure that +the values are the same when the library is built and used. +- return 0 if success. +- This is not thread safe. + +## Global setting + +### Control to verify that a point of the elliptic curve has the order `r`. + +This function affects `setStr()` and `deserialize()` for G1/G2. +``` +void mclBn_verifyOrderG1(int doVerify); +void mclBn_verifyOrderG2(int doVerify); +``` +- verify if `doVerify` is 1 or does not. The default parameter is 1. +- The cost of verification is not small, so set `doVerify = 0` carefully if necessary. +- This is not thread safe. + +## Setter / Getter + +### Clear +Set `x` is zero. +``` +void mclBnFr_clear(mclBnFr *x); +void mclBnFp_clear(mclBnFp *x); +void mclBnFp2_clear(mclBnFp2 *x); +void mclBnG1_clear(mclBnG1 *x); +void mclBnG2_clear(mclBnG2 *x); +void mclBnGT_clear(mclBnGT *x); +``` + +### Set `x` to `y`. +``` +void mclBnFp_setInt(mclBnFp *y, mclInt x); +void mclBnFr_setInt(mclBnFr *y, mclInt x); +void mclBnGT_setInt(mclBnGT *y, mclInt x); +``` + +### Set `buf[0..bufSize-1]` to `x` with masking according to the following way. +``` +int mclBnFp_setLittleEndian(mclBnFp *x, const void *buf, mclSize bufSize); +int mclBnFr_setLittleEndian(mclBnFr *x, const void *buf, mclSize bufSize); +``` +1. set x = buf[0..bufSize-1] as little endian +2. x &= (1 << bitLen(r)) - 1 +3. if (x >= r) x &= (1 << (bitLen(r) - 1)) - 1 + +- always return 0 + +### Set (`buf[0..bufSize-1]` mod `p` or `r`) to `x`. +``` +int mclBnFp_setLittleEndianMod(mclBnFp *x, const void *buf, mclSize bufSize); +int mclBnFr_setLittleEndianMod(mclBnFr *x, const void *buf, mclSize bufSize); +``` +- return 0 if bufSize <= (sizeof(*x) * 8 * 2) else -1 + +### Get little endian byte sequence corresponding `buf[0..maxBufSize-1]` to `x` +``` +mclSize mclBnFr_getLittleEndian(void *buf, mclSize maxBufSize, const mclBnFr *x); +mclSize mclBnFp_getLittleEndian(void *buf, mclSize maxBufSize, const mclBnFp *x); +``` +- write `x` to `buf` as little endian +- return the written size if sucess else 0 +- NOTE: `buf[0] = 0` and return 1 if `x` is zero. + +### Serialization +### Serialize +``` +mclSize mclBnFr_serialize(void *buf, mclSize maxBufSize, const mclBnFr *x); +mclSize mclBnG1_serialize(void *buf, mclSize maxBufSize, const mclBnG1 *x); +mclSize mclBnG2_serialize(void *buf, mclSize maxBufSize, const mclBnG2 *x); +mclSize mclBnGT_serialize(void *buf, mclSize maxBufSize, const mclBnGT *x); +mclSize mclBnFp_serialize(void *buf, mclSize maxBufSize, const mclBnFp *x); +mclSize mclBnFp2_serialize(void *buf, mclSize maxBufSize, const mclBnFp2 *x); +``` +- serialize `x` into `buf[0..maxBufSize-1]` +- return written byte size if success else 0 + +### Serialization format +- `Fp`(resp. `Fr`) ; a little endian byte sequence with a fixed size + - the size is the return value of `mclBn_getFpByteSize()` (resp. `mclBn_getFpByteSize()`). +- `G1` ; a compressed fixed size + - the size is equal to `mclBn_getG1ByteSize()` (=`mclBn_getFpByteSize()`). +- `G2` ; a compressed fixed size + - the size is equal to `mclBn_getG1ByteSize() * 2`. + +pseudo-code to serialize of `P` of `G1` (resp. `G2`) +``` +size = mclBn_getG1ByteSize() # resp. mclBn_getG1ByteSize() * 2 +if P is zero: + return [0] * size +else: + P = P.normalize() + s = P.x.serialize() + # x in Fp2 is odd <=> x.a is odd + if P.y is odd: # resp. P.y.d[0] is odd + s[byte-length(s) - 1] |= 0x80 + return s +``` + +### Ethereum serialization mode for BLS12-381 (experimental) +``` +void mclBn_setETHserialization(int ETHserialization); +``` +- serialize according to [ETH2.0 serialization of BLS12-381](https://github.com/ethereum/eth2.0-specs/blob/dev/specs/bls_signature.md#point-representations) if BLS12-381 is used and `ETHserialization = 1` (default 0). + +### Deserialize +``` +mclSize mclBnFr_deserialize(mclBnFr *x, const void *buf, mclSize bufSize); +mclSize mclBnG1_deserialize(mclBnG1 *x, const void *buf, mclSize bufSize); +mclSize mclBnG2_deserialize(mclBnG2 *x, const void *buf, mclSize bufSize); +mclSize mclBnGT_deserialize(mclBnGT *x, const void *buf, mclSize bufSize); +mclSize mclBnFp_deserialize(mclBnFp *x, const void *buf, mclSize bufSize); +mclSize mclBnFp2_deserialize(mclBnFp2 *x, const void *buf, mclSize bufSize); +``` +- deserialize `x` from `buf[0..bufSize-1]` +- return read size if success else 0 + +## String conversion +### Get string +``` +mclSize mclBnFr_getStr(char *buf, mclSize maxBufSize, const mclBnFr *x, int ioMode); +mclSize mclBnG1_getStr(char *buf, mclSize maxBufSize, const mclBnG1 *x, int ioMode); +mclSize mclBnG2_getStr(char *buf, mclSize maxBufSize, const mclBnG2 *x, int ioMode); +mclSize mclBnGT_getStr(char *buf, mclSize maxBufSize, const mclBnGT *x, int ioMode); +mclSize mclBnFp_getStr(char *buf, mclSize maxBufSize, const mclBnFp *x, int ioMode); +``` +- write `x` to `buf` according to `ioMode` +- `ioMode` + - 10 ; decimal number + - 16 ; hexadecimal number + - `MCLBN_IO_EC_PROJ` ; output as Jacobi coordinate +- return `strlen(buf)` if success else 0. + +The meaning of the output of `G1`. +- `0` ; infinity +- `1 ` ; affine coordinate +- `4 ` ; Jacobi coordinate +- the element `` of `G2` outputs `d[0] d[1]`. + +### Set string +``` +int mclBnFr_setStr(mclBnFr *x, const char *buf, mclSize bufSize, int ioMode); +int mclBnG1_setStr(mclBnG1 *x, const char *buf, mclSize bufSize, int ioMode); +int mclBnG2_setStr(mclBnG2 *x, const char *buf, mclSize bufSize, int ioMode); +int mclBnGT_setStr(mclBnGT *x, const char *buf, mclSize bufSize, int ioMode); +int mclBnFp_setStr(mclBnFp *x, const char *buf, mclSize bufSize, int ioMode); +``` +- set `buf[0..bufSize-1]` to `x` accoring to `ioMode` +- return 0 if success else -1 + +If you want to use the same generators of BLS12-381 with [zkcrypto](https://github.com/zkcrypto/pairing/tree/master/src/bls12_381#g2) then, + +``` +mclBnG1 P; +mclBnG1_setStr(&P, "1 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569", 10); + +mclBnG2 Q; +mclBnG2_setStr(&Q, "1 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582"); +``` + + +## Set random value +Set `x` by cryptographically secure pseudo random number generator. +``` +int mclBnFr_setByCSPRNG(mclBnFr *x); +int mclBnFp_setByCSPRNG(mclBnFp *x); +``` + +### Change random generator function +``` +void mclBn_setRandFunc( + void *self, + unsigned int (*readFunc)(void *self, void *buf, unsigned int bufSize) +); +``` +- `self` ; user-defined pointer +- `readFunc` ; user-defined function, which writes random `bufSize` bytes to `buf` and returns `bufSize` if success else returns 0. + - `readFunc` must be thread-safe. +- Set the default random function if `self == 0` and `readFunc == 0`. +- This is not thread safe. + +## Arithmetic operations +### neg / inv / sqr / add / sub / mul / div of `Fr`, `Fp`, `Fp2`, `GT`. +``` +void mclBnFr_neg(mclBnFr *y, const mclBnFr *x); +void mclBnFr_inv(mclBnFr *y, const mclBnFr *x); +void mclBnFr_sqr(mclBnFr *y, const mclBnFr *x); +void mclBnFr_add(mclBnFr *z, const mclBnFr *x, const mclBnFr *y); +void mclBnFr_sub(mclBnFr *z, const mclBnFr *x, const mclBnFr *y); +void mclBnFr_mul(mclBnFr *z, const mclBnFr *x, const mclBnFr *y); +void mclBnFr_div(mclBnFr *z, const mclBnFr *x, const mclBnFr *y); + +void mclBnFp_neg(mclBnFp *y, const mclBnFp *x); +void mclBnFp_inv(mclBnFp *y, const mclBnFp *x); +void mclBnFp_sqr(mclBnFp *y, const mclBnFp *x); +void mclBnFp_add(mclBnFp *z, const mclBnFp *x, const mclBnFp *y); +void mclBnFp_sub(mclBnFp *z, const mclBnFp *x, const mclBnFp *y); +void mclBnFp_mul(mclBnFp *z, const mclBnFp *x, const mclBnFp *y); +void mclBnFp_div(mclBnFp *z, const mclBnFp *x, const mclBnFp *y); + +void mclBnFp2_neg(mclBnFp2 *y, const mclBnFp2 *x); +void mclBnFp2_inv(mclBnFp2 *y, const mclBnFp2 *x); +void mclBnFp2_sqr(mclBnFp2 *y, const mclBnFp2 *x); +void mclBnFp2_add(mclBnFp2 *z, const mclBnFp2 *x, const mclBnFp2 *y); +void mclBnFp2_sub(mclBnFp2 *z, const mclBnFp2 *x, const mclBnFp2 *y); +void mclBnFp2_mul(mclBnFp2 *z, const mclBnFp2 *x, const mclBnFp2 *y); +void mclBnFp2_div(mclBnFp2 *z, const mclBnFp2 *x, const mclBnFp2 *y); + +void mclBnGT_inv(mclBnGT *y, const mclBnGT *x); // y = a - bw for x = a + bw where Fp12 = Fp6[w] +void mclBnGT_sqr(mclBnGT *y, const mclBnGT *x); +void mclBnGT_mul(mclBnGT *z, const mclBnGT *x, const mclBnGT *y); +void mclBnGT_div(mclBnGT *z, const mclBnGT *x, const mclBnGT *y); +``` +- use `mclBnGT_invGeneric` for an element in Fp12 - GT. + +- NOTE: The following functions does NOT return a GT element because GT is multiplicative group. + +``` +void mclBnGT_neg(mclBnGT *y, const mclBnGT *x); +void mclBnGT_add(mclBnGT *z, const mclBnGT *x, const mclBnGT *y); +void mclBnGT_sub(mclBnGT *z, const mclBnGT *x, const mclBnGT *y); +``` + +### Square root of `x`. +``` +int mclBnFr_squareRoot(mclBnFr *y, const mclBnFr *x); +int mclBnFp_squareRoot(mclBnFp *y, const mclBnFp *x); +int mclBnFp2_squareRoot(mclBnFp2 *y, const mclBnFp2 *x); +``` +- `y` is one of square root of `x` if `y` exists. +- return 0 if success else -1 + +### add / sub / dbl / neg for `G1` and `G2`. +``` +void mclBnG1_neg(mclBnG1 *y, const mclBnG1 *x); +void mclBnG1_dbl(mclBnG1 *y, const mclBnG1 *x); +void mclBnG1_add(mclBnG1 *z, const mclBnG1 *x, const mclBnG1 *y); +void mclBnG1_sub(mclBnG1 *z, const mclBnG1 *x, const mclBnG1 *y); + +void mclBnG2_neg(mclBnG2 *y, const mclBnG2 *x); +void mclBnG2_dbl(mclBnG2 *y, const mclBnG2 *x); +void mclBnG2_add(mclBnG2 *z, const mclBnG2 *x, const mclBnG2 *y); +void mclBnG2_sub(mclBnG2 *z, const mclBnG2 *x, const mclBnG2 *y); +``` + +### Convert a point from Jacobi coordinate to affine. +``` +void mclBnG1_normalize(mclBnG1 *y, const mclBnG1 *x); +void mclBnG2_normalize(mclBnG2 *y, const mclBnG2 *x); +``` +- convert `[x:y:z]` to `[x:y:1]` if `z != 0` else `[*:*:0]` + +### scalar multiplication +``` +void mclBnG1_mul(mclBnG1 *z, const mclBnG1 *x, const mclBnFr *y); +void mclBnG2_mul(mclBnG2 *z, const mclBnG2 *x, const mclBnFr *y); +void mclBnGT_pow(mclBnGT *z, const mclBnGT *x, const mclBnFr *y); +``` +- z = x * y for G1 / G2 +- z = pow(x, y) for GT + +- use `mclBnGT_powGeneric` for an element in Fp12 - GT. + +### multi scalar multiplication +``` +void mclBnG1_mulVec(mclBnG1 *z, const mclBnG1 *x, const mclBnFr *y, mclSize n); +void mclBnG2_mulVec(mclBnG2 *z, const mclBnG2 *x, const mclBnFr *y, mclSize n); +void mclBnGT_powVec(mclBnGT *z, const mclBnGT *x, const mclBnFr *y, mclSize n); +``` +- z = sum_{i=0}^{n-1} mul(x[i], y[i]) for G1 / G2. +- z = prod_{i=0}^{n-1} pow(x[i], y[i]) for GT. + +## hash and mapTo functions +### Set hash of `buf[0..bufSize-1]` to `x` +``` +int mclBnFr_setHashOf(mclBnFr *x, const void *buf, mclSize bufSize); +int mclBnFp_setHashOf(mclBnFp *x, const void *buf, mclSize bufSize); +``` +- always return 0 +- use SHA-256 if sizeof(*x) <= 256 else SHA-512 +- set accoring to the same way as `setLittleEndian` + - support the other wasy if you want in the future + +### map `x` to G1 / G2. +``` +int mclBnFp_mapToG1(mclBnG1 *y, const mclBnFp *x); +int mclBnFp2_mapToG2(mclBnG2 *y, const mclBnFp2 *x); +``` +- See `struct MapTo` in `mcl/bn.hpp` for the detail of the algorithm. +- return 0 if success else -1 + +### hash and map to G1 / G2. +``` +int mclBnG1_hashAndMapTo(mclBnG1 *x, const void *buf, mclSize bufSize); +int mclBnG2_hashAndMapTo(mclBnG2 *x, const void *buf, mclSize bufSize); +``` +- Combine `setHashOf` and `mapTo` functions + +## Pairing operations +The pairing function `e(P, Q)` is consist of two parts: + - `MillerLoop(P, Q)` + - `finalExp(x)` + +`finalExp` satisfies the following properties: + - `e(P, Q) = finalExp(MillerLoop(P, Q))` + - `e(P1, Q1) e(P2, Q2) = finalExp(MillerLoop(P1, Q1) MillerLoop(P2, Q2))` + +### pairing +``` +void mclBn_pairing(mclBnGT *z, const mclBnG1 *x, const mclBnG2 *y); +``` +### millerLoop +``` +void mclBn_millerLoop(mclBnGT *z, const mclBnG1 *x, const mclBnG2 *y); +``` +### finalExp +``` +void mclBn_finalExp(mclBnGT *y, const mclBnGT *x); +``` + +## Variants of MillerLoop +### multi pairing +``` +void mclBn_millerLoopVec(mclBnGT *z, const mclBnG1 *x, const mclBnG2 *y, mclSize n); +``` +- This function is for multi-pairing + - computes prod_{i=0}^{n-1} MillerLoop(x[i], y[i]) + - prod_{i=0}^{n-1} e(x[i], y[i]) = finalExp(prod_{i=0}^{n-1} MillerLoop(x[i], y[i])) + +### pairing for a fixed point of G2 +``` +int mclBn_getUint64NumToPrecompute(void); +void mclBn_precomputeG2(uint64_t *Qbuf, const mclBnG2 *Q); +void mclBn_precomputedMillerLoop(mclBnGT *f, const mclBnG1 *P, const uint64_t *Qbuf); +``` +These functions is the same computation of `pairing(P, Q);` as the followings: +``` +uint64_t *Qbuf = (uint64_t*)malloc(mclBn_getUint64NumToPrecompute() * sizeof(uint64_t)); +mclBn_precomputeG2(Qbuf, Q); // precomputing of Q +mclBn_precomputedMillerLoop(f, P, Qbuf); // pairing of any P of G1 and the fixed Q +free(p); +``` + +``` +void mclBn_precomputedMillerLoop2( + mclBnGT *f, + const mclBnG1 *P1, const uint64_t *Q1buf, + const mclBnG1 *P2, const uint64_t *Q2buf +); +``` +- compute `MillerLoop(P1, Q1buf) * MillerLoop(P2, Q2buf)` + + +``` +void mclBn_precomputedMillerLoop2mixed( + mclBnGT *f, + const mclBnG1 *P1, const mclBnG2 *Q1, + const mclBnG1 *P2, const uint64_t *Q2buf +); +``` +- compute `MillerLoop(P1, Q2) * MillerLoop(P2, Q2buf)` + +## Check value +### Check validness +``` +int mclBnFr_isValid(const mclBnFr *x); +int mclBnFp_isValid(const mclBnFp *x); +int mclBnG1_isValid(const mclBnG1 *x); +int mclBnG2_isValid(const mclBnG2 *x); +``` +- return 1 if true else 0 + +### Check the order of a point +``` +int mclBnG1_isValidOrder(const mclBnG1 *x); +int mclBnG2_isValidOrder(const mclBnG2 *x); +``` +- Check whether the order of `x` is valid or not +- return 1 if true else 0 +- This function always cheks according to `mclBn_verifyOrderG1` and `mclBn_verifyOrderG2`. + +### Is equal / zero / one / isOdd +``` +int mclBnFr_isEqual(const mclBnFr *x, const mclBnFr *y); +int mclBnFr_isZero(const mclBnFr *x); +int mclBnFr_isOne(const mclBnFr *x); +int mclBnFr_isOdd(const mclBnFr *x); + +int mclBnFp_isEqual(const mclBnFp *x, const mclBnFp *y); +int mclBnFp_isZero(const mclBnFp *x); +int mclBnFp_isOne(const mclBnFp *x); +int mclBnFp_isOdd(const mclBnFp *x); + +int mclBnFp2_isEqual(const mclBnFp2 *x, const mclBnFp2 *y); +int mclBnFp2_isZero(const mclBnFp2 *x); +int mclBnFp2_isOne(const mclBnFp2 *x); + +int mclBnG1_isEqual(const mclBnG1 *x, const mclBnG1 *y); +int mclBnG1_isZero(const mclBnG1 *x); + +int mclBnG2_isEqual(const mclBnG2 *x, const mclBnG2 *y); +int mclBnG2_isZero(const mclBnG2 *x); + +int mclBnGT_isEqual(const mclBnGT *x, const mclBnGT *y); +int mclBnGT_isZero(const mclBnGT *x); +int mclBnGT_isOne(const mclBnGT *x); +``` +- return 1 if true else 0 + +### isNegative +``` +int mclBnFr_isNegative(const mclBnFr *x); +int mclBnFp_isNegative(const mclBnFr *x); +``` +return 1 if x >= half where half = (r + 1) / 2 (resp. (p + 1) / 2). + +## Lagrange interpolation + +``` +int mclBn_FrLagrangeInterpolation(mclBnFr *out, const mclBnFr *xVec, const mclBnFr *yVec, mclSize k); +int mclBn_G1LagrangeInterpolation(mclBnG1 *out, const mclBnFr *xVec, const mclBnG1 *yVec, mclSize k); +int mclBn_G2LagrangeInterpolation(mclBnG2 *out, const mclBnFr *xVec, const mclBnG2 *yVec, mclSize k); +``` +- Lagrange interpolation +- recover out = y(0) from {(xVec[i], yVec[i])} for {i=0..k-1} +- return 0 if success else -1 + - satisfy that xVec[i] != 0, xVec[i] != xVec[j] for i != j + +``` +int mclBn_FrEvaluatePolynomial(mclBnFr *out, const mclBnFr *cVec, mclSize cSize, const mclBnFr *x); +int mclBn_G1EvaluatePolynomial(mclBnG1 *out, const mclBnG1 *cVec, mclSize cSize, const mclBnFr *x); +int mclBn_G2EvaluatePolynomial(mclBnG2 *out, const mclBnG2 *cVec, mclSize cSize, const mclBnFr *x); +``` +- Evaluate polynomial +- out = f(x) = c[0] + c[1] * x + ... + c[cSize - 1] * x^{cSize - 1} +- return 0 if success else -1 + - satisfy cSize >= 1 diff --git a/readme.md b/readme.md index 1879184..3b43772 100644 --- a/readme.md +++ b/readme.md @@ -9,7 +9,6 @@ A portable and fast pairing-based cryptography library. mcl is a library for pairing-based cryptography, which supports the optimal Ate pairing over BN curves and BLS12-381 curves. - # Support architecture - x86-64 Windows + Visual Studio @@ -30,6 +29,9 @@ which supports the optimal Ate pairing over BN curves and BLS12-381 curves. - BN462 ; a BN curve over the 462-bit prime p(z) where z = 2^114 + 2^101 - 2^14 - 1. - BLS12\_381 ; [a BLS12-381 curve](https://blog.z.cash/new-snark-curve/) +# C-API +see [api.md](api.md) + # How to build on Linux and macOS x86-64/ARM/ARM64 Linux, macOS and mingw64 are supported. @@ -232,193 +234,6 @@ pairing 1.394Mclk finalExp 546.259Kclk ``` -# Libraries - -* G1 and G2 is defined over Fp -* The order of G1 and G2 is r. -* Use `bn256.hpp` if only BN254 is used. - -## C++ library - -* libmcl.a ; static C++ library of mcl -* libmcl.so ; shared C++ library of mcl -* the default parameter of curveType is BN254 - -header |support curveType |sizeof Fr|sizeof Fp| ---------------|-------------------------|---------|---------| -bn256.hpp |BN254, BN_SNARK1 | 32 | 32 | -bls12_381.hpp |the above + BLS12_381 | 32 | 48 | -bn384.hpp |the above + BN381_1 | 48 | 48 | - -## C library - -* Define `MCLBN_FR_UNIT_SIZE` and `MCLBN_FP_UNIT_SIZE` and include bn.h -* set `MCLBN_FR_UNIT_SIZE = MCLBN_FP_UNIT_SIZE` unless `MCLBN_FR_UNIT_SIZE` is defined - - -library |MCLBN_FR_UNIT_SIZE|MCLBN_FP_UNIT_SIZE| -------------------|------------------|------------------| -sizeof | Fr | Fp | -libmclbn256.a | 4 | 4 | -libmclbn384_256.a | 4 | 6 | -libmclbn384.a | 6 | 6 | - - -* libmclbn*.a ; static C library -* libmclbn*.so ; shared C library - -### 2nd argument of `mclBn_init` -Specify `MCLBN_COMPILED_TIME_VAR` to 2nd argument of `mclBn_init`, which -is defined as `MCLBN_FR_UNIT_SIZE * 10 + MCLBN_FP_UNIT_SIZE`. -This parameter is used to make sure that the values are the same when the library is built and used. - -# How to initialize pairing library -Call `mcl::bn256::initPairing` before calling any operations. -``` -#include -mcl::bn::CurveParam cp = mcl::BN254; // or mcl::BN_SNARK1 -mcl::bn256::initPairing(cp); -mcl::bn256::G1 P(...); -mcl::bn256::G2 Q(...); -mcl::bn256::Fp12 e; -mcl::bn256::pairing(e, P, Q); -``` -1. (BN254) a BN curve over the 254-bit prime p = p(z) where z = -(2^62 + 2^55 + 1). -2. (BN_SNARK1) a BN curve over a 254-bit prime p such that n := p + 1 - t has high 2-adicity. -3. BN381_1 with `mcl/bn384.hpp`. -4. BN462 with `mcl/bn512.hpp`. - -See [test/bn_test.cpp](https://github.com/herumi/mcl/blob/master/test/bn_test.cpp). - -## Default constructor of Fp, Ec, etc. -A default constructor does not initialize the instance. -Set a valid value before reffering it. - -## Definition of groups - -The curve equation for a BN curve is: - - E/Fp: y^2 = x^3 + b . - -* the cyclic group G1 is instantiated as E(Fp)[n] where n := p + 1 - t; -* the cyclic group G2 is instantiated as the inverse image of E'(Fp^2)[n] under a twisting isomorphism phi from E' to E; and -* the pairing e: G1 x G2 -> Fp12 is the optimal ate pairing. - -The field Fp12 is constructed via the following tower: - -* Fp2 = Fp[u] / (u^2 + 1) -* Fp6 = Fp2[v] / (v^3 - Xi) where Xi = u + 1 -* Fp12 = Fp6[w] / (w^2 - v) -* GT = { x in Fp12 | x^r = 1 } - -## Curve Parameter -r = |G1| = |G2| = |GT| - -curveType | hexadecimal number| -------------|-------------------| -BN254 r | 2523648240000001ba344d8000000007ff9f800000000010a10000000000000d | -BN254 p | 2523648240000001ba344d80000000086121000000000013a700000000000013 | -BN381 r | 240026400f3d82b2e42de125b00158405b710818ac000007e0042f008e3e00000000001080046200000000000000000d | -BN381 p | 240026400f3d82b2e42de125b00158405b710818ac00000840046200950400000000001380052e000000000000000013 | -BN462 r | 240480360120023ffffffffff6ff0cf6b7d9bfca0000000000d812908ee1c201f7fffffffff6ff66fc7bf717f7c0000000002401b007e010800d | -BN462 r | 240480360120023ffffffffff6ff0cf6b7d9bfca0000000000d812908f41c8020ffffffffff6ff66fc6ff687f640000000002401b00840138013 | -BLS12-381 r | 73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001 | -BLS12-381 r | 1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab | - -## Arithmetic operations - -G1 and G2 is additive group and has the following operations: - -* T::add(T& z, const T& x, const T& y); // z = x + y -* T::sub(T& z, const T& x, const T& y); // z = x - y -* T::neg(T& y, const T& x); // y = -x -* T::mul(T& z, const T& x, const INT& y); // z = y times scalar multiplication of x - -Remark: &z == &x or &y are allowed. INT means integer type such as Fr, int and mpz_class. - -`T::mul` uses GLV method then `G2::mul` returns wrong value if x is not in G2. -Use `T::mulGeneric(T& z, const T& x, const INT& y)` for x in phi^-1(E'(Fp^2)) - G2. - -Fp, Fp2, Fp6 and Fp12 have the following operations: - -* T::add(T& z, const T& x, const T& y); // z = x + y -* T::sub(T& z, const T& x, const T& y); // z = x - y -* T::mul(T& z, const T& x, const T& y); // z = x * y -* T::div(T& z, const T& x, const T& y); // z = x / y -* T::neg(T& y, const T& x); // y = -x -* T::inv(T& y, const T& x); // y = 1/x -* T::pow(T& z, const T& x, const INT& y); // z = x^y -* Fp12::unitaryInv(T& y, const T& x); // y = conjugate of x - -Remark: `Fp12::mul` uses GLV method then returns wrong value if x is not in GT. -Use `Fp12::mulGeneric` for x in Fp12 - GT. - -## Map To points - -Use these functions to make a point of G1 and G2. - -* mapToG1(G1& P, const Fp& x); // assume x != 0 -* mapToG2(G2& P, const Fp2& x); -* hashAndMapToG1(G1& P, const void *buf, size_t bufSize); // set P by the hash value of [buf, bufSize) -* hashAndMapToG2(G2& P, const void *buf, size_t bufSize); - -These functions maps x into Gi according to [\[_Faster hashing to G2_\]]. - -## String format of G1 and G2 -G1 and G2 have three elements of Fp (x, y, z) for Jacobi coordinate. -`normalize()` method normalizes it to affine coordinate (x, y, 1) or (0, 0, 0). - -getStr(mode = 0) method gets - -* `0` ; infinity -* `1 ` ; Affine coordinate with mode = `mcl:IoEcAffine` -* `4 ` ; jacobi/Proj coordinate with mode = `mcl::IoEcProj` -* `2 ` ; compressed format for even y with mode = `mcl::IoEcCompY` -* `3 ` ; compressed format for odd y with mode = `mcl::IoEcCompY` - -## Generator of G1 and G2 - -If you want to use the same generators of BLS12-381 with [zkcrypto](https://github.com/zkcrypto/pairing/tree/master/src/bls12_381#g2) then, - -``` -// G1 P -P.setStr('1 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569') - -// G2 Q -Q.setStr('1 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582') -``` - -## Serialization format of G1 and G2 - -pseudo-code to serialize of p -``` -if bit-length(p) % 8 != 0: - size = Fp::getByteSize() - if p is zero: - return [0] * size - else: - s = x.serialize() - # x in Fp2 is odd <=> x.a is odd - if y is odd: - s[byte-length(s) - 1] |= 0x80 - return s -else: - size = Fp::getByteSize() + 1 - if p is zero: - return [0] * size - else: - s = x.serialize() - if y is odd: - return 2:s - else: - return 3:s -``` - -## Verify an element in G2 -`G2::isValid()` checks that the element is in the curve of G2 and the order of it is r for subgroup attack. -`G2::set()`, `G2::setStr` and `operator<<` also check the order. -If you check it out of the library, then you can stop the verification by calling `G2::verifyOrderG2(false)`. - # How to make asm files (optional) The asm files generated by this way are already put in `src/asm`, then it is not necessary to do this. @@ -478,6 +293,7 @@ If `MCL_USE_OLD_MAPTO_FOR_BLS12` is defined, then the old function is used, but # History +- 2019/Sep/30 v1.00 add some functions to bn.h ; [api.md](api.md). - 2019/Sep/22 v0.99 add mclBnG1_mulVec, etc. - 2019/Sep/08 v0.98 bugfix Ec::add(P, Q, R) when P == R - 2019/Aug/14 v0.97 add some C api functions