# JNI for mcl (experimental) This library provides functionality to compute the optimal ate pairing over Barreto-Naehrig (BN) curves. # Initialization Load the library `mcl_bn256`. ``` import com.herumi.mcl.*; System.loadLibrary("mcl_bn256"); ``` # Classes * `G1` ; The cyclic group instantiated as E(Fp)[r] where where r = p + 1 - t. * `G2` ; The cyclic group instantiated as the inverse image of E'(Fp^2)[r]. * `GT` ; The cyclic group in the image of the optimal ate pairing. * `e : G2 x G1 -> GT` * `Fr` ; The finite field with characteristic r. # Methods and Functions ## Fr * `Fr::setInt(int x)` ; set by x * `Fr::setStr(String str)` ; set by str such as "123", "0xfff", etc. * `Fr::setRand()` ; randomly set * `Bn256.neg(Fr y, Fr x)` ; `y = -x` * `Bn256.add(Fr z, Fr x, Fr y)` ; `z = x + y` * `Bn256.sub(Fr z, Fr x, Fr y)` ; `z = x - y` * `Bn256.mul(Fr z, Fr x, Fr y)` ; `z = x * y` * `Bn256.div(Fr z, Fr x, Fr y)` ; `z = x / y` ## G1 * `G1::set(String x, String y)` ; set by (x, y) * `G1::hashAndMapToG1(String m)` ; take SHA-256 of m and map it to an element of G1 * `G1::setStr(String str)` ; set by the result of `toString()` method * `Bn256.neg(G1 y, G1 x)` ; `y = -x` * `Bn256.dbl(G1 y, G1 x)` ; `y = 2x` * `Bn256.add(G1 z, G1 x, G1 y)` ; `z = x + y` * `Bn256.sub(G1 z, G1 x, G1 y)` ; `z = x - y` * `Bn256.mul(G1 z, G1 x, Fr y)` ; `z = x * y` ## G2 * `G2::set(String xa, String xb, String ya, String yb)` ; set by ((xa, xb), (ya, yb)) * `G2::setStr(String str)` ; set by the result of `toString()` method * `Bn256.neg(G2 y, G2 x)` ; `y = -x` * `Bn256.dbl(G2 y, G2 x)` ; `y = 2x` * `Bn256.add(G2 z, G2 x, G2 y)` ; `z = x + y` * `Bn256.sub(G2 z, G2 x, G2 y)` ; `z = x - y` * `Bn256.mul(G2 z, G2 x, Fr y)` ; `z = x * y` ## GT * `GT::setStr(String str)` ; set by the result of `toString()` method * `Bn256.mul(GT z, GT x, GT y)` ; `z = x * y` * `Bn256.pow(GT z, GT x, Fr y)` ; `z = x ^ y` ## pairing * `Bn256.pairing(GT e, G2 Q, G1 P)` ; e = e(Q, P) # BLS signature sample ``` String xa = "12723517038133731887338407189719511622662176727675373276651903807414909099441"; String xb = "4168783608814932154536427934509895782246573715297911553964171371032945126671"; String ya = "13891744915211034074451795021214165905772212241412891944830863846330766296736"; String yb = "7937318970632701341203597196594272556916396164729705624521405069090520231616"; G2 Q = new G2(xa, xb, ya, yb); // fixed point of G2 Fr s = new Fr(); s.setRand(); // secret key G2 pub = new G2(); Bn256.mul(pub, Q, s); // public key = sQ String m = "signature test"; G1 H = new G1(); H.hashAndMapToG1(m); // H = Hash(m) G1 sign = new G1(); Bn256.mul(sign, H, s); // signature of m = s H GT e1 = new GT(); GT e2 = new GT(); Bn256.pairing(e1, pub, H); // e1 = e(s Q, H) Bn256.pairing(e2, Q, sign); // e2 = e(Q, s H); assertBool("verify signature", e1.equals(e2)); ``` # Make test ``` cd java make test_bn256 ``` # Sample code [Bn256Test.java](https://github.com/herumi/mcl/blob/master/java/Bn256Test.java)