P ; generator x ; secret key xP ; public key Enc(m;r) = (mP + rxP, rP) c = (S, T) dec(c) := S - xT dec(Enc(m;r)) = (mP + rxP) - x(rP) = mP DLP(mP) := m Dec(c) := DLP(dec(c)) ZKP of dec(c) = m z := Enc(m;0) = (mP, 0) c - z = (rxP, rP) ; r is unknown ZKP of dec(c - z) = 0 (P1, P2) := (P, rP) (A1, A2) := (xP, xrP) Prover shows that x(P1, P2) = (A1, A2) without revealing x. b ; rand B = (b P1, b P2) h = Hash(P2, A1, A2, B1, B2) d = b + h a pi = (d, h) Verifier Bi := d Pi - h Ai verify h = Hash(P2, A1, A2, B1, B2) ----------------------------------------------------------------------------- CipherTextGT P ; generator of GT, GT=
x1, x2 ; secrect key (P0, P1, P2, P3) := (P, x1 P, x2 P, x1 x2 P) ; public information CipherText c = (A0, A1, A2, A3) dec(c) = 0 <=> A0 = x2 A1 + x1 A2 - x1 x2 A3 ; (*) F(a1, a2, a3) := a2 A1 + a1 A2 - a3 A3 dec(c) = 0 <=> A0 = F(x1, x2, x1 x2) Sigma-protocol for dec(c) = 0, i.e., show (*) Prover: b1, b2, b3 ; rand Bi := bi P (i = 1, 2, 3) X := F(b1, b2, b3) send (B1, B2, B3, X) to Verfier Verifier: takes h randomly and send to Prover Prover: d1 := b1 + h x1 d2 := b2 + h x2 d3 := b3 + h x1 x2 send (d1, d2, d3) to Verifier Verifier: verify di P = Bi + h Pi (i = 1, 2, 3) X = F(d1, d2, d3) - h A0 and accept it Fiat-Shamir transform: Prover: b1, b2, b3 ; random value Bi := bi P (i = 1, 2, 3) X := F(b1, b2, b3) h := Hash(P0, ..., P3, A0, ..., A3, B1, B2, B3, X) d1 := b1 + h x1 d2 := b2 + h x2 d3 := b3 + h x1 x2 pi := (d1, d2, d3, h) Verifier: (pi, {Pi}, {Ai}) given Bi' := di P - h Pi for i = 1, 2, 3 X' := F(d1, d2, d3) - h A0 verify Hash({Pi}, {Ai}, {Bi'}, X') = h Completeness B1' = d1 P - h P1 = (b1 + h x1) P - h x1 P = b1 P = B1 B2' = d2 P - h P2 = (b2 + h x2) P - h x2 P = b2 P = B2 B3' = d3 P - h P3 = (b3 + h x1 x2) P - h x1 x2 P = B3 X' = F(b1 + h x1, b2 + h x2, b3 + h x1 x2) - h A0 = F(b1, b2, b3) + h F(x1, x2, x1 x2) - h A0 = F(b1, b2, b3) + h (F(x1, x2, x1 x2) - A0) = F(b1, b2, b3) = X OK Soundness {Ai}, pi=(d1, d2, d3, h) ; given compute Bi', X' as above Suppose Hash({Pi}, {Ai}, {Bi'}, X') = h define b1 := d1 - h x1 b2 := d2 - h x2 b3 := d3 - h x1 x2 where x1, x2 are unknown d1, d2, d3 are free parameters, so b1, b2, b3 are also free. B1' = d1 P - h P1 = b1 P B2' = b2 P B3' = b3 P Y := F(x1, x2, x1 x2) - A0; unknown, but it is fixed X' = F(d1, d2, d3) - h A0 = F(b1 + h x1, b2 + h x2, b3 + h x1 x2) - h A0 = F(b1, b2, b3) + h(F(x1, x2, x1 x2) - A0) = F(b1, b2, b3) + h Y Hash({Pi}, {Ai}, b1 P, b2 P, b3 P, F(b1, b2, b3) + h Y) = h To found {b1, b2, b3, h} to hold this equation, Y must be 0.