The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
woop/shard/committee/assignment.go

342 lines
9.7 KiB

package committee
import (
"encoding/json"
"fmt"
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/harmony-one/bls/ffi/go/bls"
"github.com/harmony-one/harmony/block"
common2 "github.com/harmony-one/harmony/internal/common"
shardingconfig "github.com/harmony-one/harmony/internal/configs/sharding"
"github.com/harmony-one/harmony/internal/ctxerror"
"github.com/harmony-one/harmony/internal/params"
"github.com/harmony-one/harmony/shard"
"github.com/harmony-one/harmony/staking/effective"
staking "github.com/harmony-one/harmony/staking/types"
)
// StateID means reading off whole network when using calls that accept
// a shardID parameter
const StateID = -1
// ValidatorListProvider ..
type ValidatorListProvider interface {
Compute(
epoch *big.Int, config params.ChainConfig, reader DataProvider,
) (shard.State, error)
ReadFromDB(epoch *big.Int, reader DataProvider) (shard.State, error)
}
// PublicKeysProvider per epoch
type PublicKeysProvider interface {
// If call shardID with StateID then only superCommittee is non-nil,
// otherwise get back the shardSpecific slice as well.
ComputePublicKeys(
epoch *big.Int, reader DataProvider, shardID int,
) (superCommittee, shardSpecific []*bls.PublicKey)
ReadPublicKeysFromDB(
hash common.Hash, reader DataProvider,
) ([]*bls.PublicKey, error)
}
// Reader is committee.Reader and it is the API that committee membership assignment needs
type Reader interface {
PublicKeysProvider
ValidatorListProvider
}
// StakingCandidatesReader ..
type StakingCandidatesReader interface {
ValidatorInformation(addr common.Address) (*staking.Validator, error)
ValidatorStakingWithDelegation(addr common.Address) *big.Int
ValidatorCandidates() []common.Address
}
// ChainReader is a subset of Engine.ChainReader, just enough to do assignment
type ChainReader interface {
// ReadShardState retrieves sharding state given the epoch number.
// This api reads the shard state cached or saved on the chaindb.
// Thus, only should be used to read the shard state of the current chain.
ReadShardState(epoch *big.Int) (shard.State, error)
// GetHeader retrieves a block header from the database by hash and number.
GetHeaderByHash(common.Hash) *block.Header
// Config retrieves the blockchain's chain configuration.
Config() *params.ChainConfig
}
// DataProvider ..
type DataProvider interface {
StakingCandidatesReader
ChainReader
}
type partialStakingEnabled struct{}
var (
// WithStakingEnabled ..
WithStakingEnabled Reader = partialStakingEnabled{}
)
func preStakingEnabledCommittee(s shardingconfig.Instance) shard.State {
shardNum := int(s.NumShards())
shardHarmonyNodes := s.NumHarmonyOperatedNodesPerShard()
shardSize := s.NumNodesPerShard()
hmyAccounts := s.HmyAccounts()
fnAccounts := s.FnAccounts()
shardState := shard.State{}
for i := 0; i < shardNum; i++ {
com := shard.Committee{ShardID: uint32(i)}
for j := 0; j < shardHarmonyNodes; j++ {
index := i + j*shardNum // The initial account to use for genesis nodes
pub := &bls.PublicKey{}
pub.DeserializeHexStr(hmyAccounts[index].BlsPublicKey)
pubKey := shard.BlsPublicKey{}
pubKey.FromLibBLSPublicKey(pub)
// TODO: directly read address for bls too
curNodeID := shard.NodeID{
common2.ParseAddr(hmyAccounts[index].Address),
pubKey,
nil,
}
com.NodeList = append(com.NodeList, curNodeID)
}
// add FN runner's key
for j := shardHarmonyNodes; j < shardSize; j++ {
index := i + (j-shardHarmonyNodes)*shardNum
pub := &bls.PublicKey{}
pub.DeserializeHexStr(fnAccounts[index].BlsPublicKey)
pubKey := shard.BlsPublicKey{}
pubKey.FromLibBLSPublicKey(pub)
// TODO: directly read address for bls too
curNodeID := shard.NodeID{
common2.ParseAddr(fnAccounts[index].Address),
pubKey,
nil,
}
com.NodeList = append(com.NodeList, curNodeID)
}
shardState = append(shardState, com)
}
return shardState
}
func with400Stakers(
s shardingconfig.Instance, stakerReader DataProvider,
) (shard.State, error) {
// TODO Nervous about this because overtime the list will become quite large
candidates := stakerReader.ValidatorCandidates()
stakers := make([]*staking.Validator, len(candidates))
// TODO benchmark difference if went with data structure that sorts on insert
for i := range candidates {
// TODO Should be using .ValidatorStakingWithDelegation, not implemented yet
validator, err := stakerReader.ValidatorInformation(candidates[i])
if err != nil {
return nil, err
}
essentials[validator.Address] = effective.SlotOrder{
validator.Stake,
validator.SlotPubKeys,
}
}
for i := range stakers {
staker := stakers[i]
stakers[i].Stake = new(big.Int).Div(
staker.Stake, big.NewInt(int64(len(staker.SlotPubKeys))),
)
}
unsortedStakes := make([]int, len(stakers))
eposStakes := make([]*big.Int, len(stakers))
for i, j := range stakers {
unsortedStakes[i] = int(j.Stake.Int64())
eposStakes[i] = j.Stake
}
s3 := effective.Apply(eposStakes)
sort.SliceStable(
stakers,
func(i, j int) bool { return stakers[i].Stake.Cmp(stakers[j].Stake) >= 0 },
)
// for i, j := range stakers {
// sortedStakes[i] = int(j.Stake.Int64())
// }
type t struct {
Stakes []int
}
t2 := t{make([]int, len(eposStakes))}
for i := range s3 {
t2.Stakes[i] = int(s3[i].TruncateInt64())
}
s1, _ := json.Marshal(t{unsortedStakes})
s2, _ := json.Marshal(t2)
fmt.Println("Unsorted")
fmt.Println(string(s1))
fmt.Println("as EPOS")
fmt.Println(string(s2))
// fmt.Println("Sorted stakers %+v\n", stakers)
shardCount := int(s.NumShards())
superComm := make(shard.State, shardCount)
fillCount := make([]int, shardCount)
for i := 0; i < shardCount; i++ {
superComm[i] = shard.Committee{
uint32(i), make(shard.NodeIDList, s.NumNodesPerShard()),
}
}
shardBig := big.NewInt(int64(s.NumShards()))
for i := 0; i < len(s.FnAccounts()); i++ {
bucket := int(new(big.Int).Mod(stakers[i].Address.Big(), shardBig).Int64())
org := stakers[i].Stake
epos := big.NewInt(s3[i].TruncateInt64())
fmt.Println("stakes", org, epos)
superComm[bucket].NodeList[fillCount[bucket]] = shard.NodeID{
stakers[i].Address,
stakers[i].SlotPubKeys[0],
epos,
}
fillCount[bucket]++
}
hAccounts := s.HmyAccounts()
offset := 0
for i := range fillCount {
missing := s.NumNodesPerShard() - fillCount[i]
for j := 0; j < missing; j++ {
pub := &bls.PublicKey{}
pub.DeserializeHexStr(hAccounts[offset].BlsPublicKey)
pubKey := shard.BlsPublicKey{}
pubKey.FromLibBLSPublicKey(pub)
superComm[i].NodeList[fillCount[i]+j] = shard.NodeID{
common2.ParseAddr(hAccounts[offset].Address),
pubKey,
nil,
}
offset++
}
}
fmt.Println("Final", superComm.JSON())
fmt.Println("stakers", fillCount)
return superComm, nil
}
// ComputePublicKeys produces publicKeys of entire supercommittee per epoch, optionally providing a
// shard specific subcommittee
func (def partialStakingEnabled) ComputePublicKeys(
epoch *big.Int, d DataProvider, shardID int,
) ([]*bls.PublicKey, []*bls.PublicKey) {
config := d.Config()
instance := shard.Schedule.InstanceForEpoch(epoch)
superComm := shard.State{}
if config.IsStaking(epoch) {
superComm, _ = with400Stakers(instance, d)
} else {
superComm = preStakingEnabledCommittee(instance)
}
spot := 0
shouldBe := int(instance.NumShards()) * instance.NumNodesPerShard()
total := 0
for i := range superComm {
total += len(superComm[i].NodeList)
}
if shouldBe != total {
fmt.Println("Count mismatch", shouldBe, total)
}
allIdentities := make([]*bls.PublicKey, shouldBe)
for i := range superComm {
for j := range superComm[i].NodeList {
identity := &bls.PublicKey{}
superComm[i].NodeList[j].BlsPublicKey.ToLibBLSPublicKey(identity)
allIdentities[spot] = identity
spot++
}
}
if shardID == StateID {
return allIdentities, nil
}
subCommittee := superComm.FindCommitteeByID(uint32(shardID))
subCommitteeIdentities := make([]*bls.PublicKey, len(subCommittee.NodeList))
spot = 0
for i := range subCommittee.NodeList {
identity := &bls.PublicKey{}
subCommittee.NodeList[i].BlsPublicKey.ToLibBLSPublicKey(identity)
subCommitteeIdentities[spot] = identity
spot++
}
return allIdentities, subCommitteeIdentities
}
func (def partialStakingEnabled) ReadPublicKeysFromDB(
h common.Hash, reader DataProvider,
) ([]*bls.PublicKey, error) {
header := reader.GetHeaderByHash(h)
shardID := header.ShardID()
superCommittee, err := reader.ReadShardState(header.Epoch())
if err != nil {
return nil, err
}
subCommittee := superCommittee.FindCommitteeByID(shardID)
if subCommittee == nil {
return nil, ctxerror.New("cannot find shard in the shard state",
"blockNumber", header.Number(),
"shardID", header.ShardID(),
)
}
committerKeys := []*bls.PublicKey{}
for i := range subCommittee.NodeList {
committerKey := new(bls.PublicKey)
err := subCommittee.NodeList[i].BlsPublicKey.ToLibBLSPublicKey(committerKey)
if err != nil {
return nil, ctxerror.New("cannot convert BLS public key",
"blsPublicKey", subCommittee.NodeList[i].BlsPublicKey).WithCause(err)
}
committerKeys = append(committerKeys, committerKey)
}
return committerKeys, nil
return nil, nil
}
func (def partialStakingEnabled) ReadFromDB(
epoch *big.Int, reader DataProvider,
) (newSuperComm shard.State, err error) {
return reader.ReadShardState(epoch)
}
// ReadFromComputation is single entry point for reading the State of the network
func (def partialStakingEnabled) Compute(
epoch *big.Int, config params.ChainConfig, stakerReader DataProvider,
) (newSuperComm shard.State, err error) {
instance := shard.Schedule.InstanceForEpoch(epoch)
if !config.IsStaking(epoch) {
return preStakingEnabledCommittee(instance), nil
}
fmt.Println("Staking epoch happened", config.String())
return with400Stakers(instance, stakerReader)
}