The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
woop/crypto/vrf/p256/unmarshal.go

82 lines
2.2 KiB

// Copyright 2016 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package p256
// This file implements compressed point unmarshaling. Preferably this
// functionality would be in a standard library. Code borrowed from:
// https://go-review.googlesource.com/#/c/1883/2/src/crypto/elliptic/elliptic.go
import (
"crypto/elliptic"
"math/big"
)
// Unmarshal a compressed point in the form specified in section 4.3.6 of ANSI X9.62.
func Unmarshal(curve elliptic.Curve, data []byte) (x, y *big.Int) {
byteLen := (curve.Params().BitSize + 7) >> 3
if (data[0] &^ 1) != 2 {
return // unrecognized point encoding
}
if len(data) != 1+byteLen {
return
}
// Based on Routine 2.2.4 in NIST Mathematical routines paper
params := curve.Params()
tx := new(big.Int).SetBytes(data[1 : 1+byteLen])
y2 := y2(params, tx)
sqrt := defaultSqrt
ty := sqrt(y2, params.P)
if ty == nil {
return // "y^2" is not a square: invalid point
}
var y2c big.Int
y2c.Mul(ty, ty).Mod(&y2c, params.P)
if y2c.Cmp(y2) != 0 {
return // sqrt(y2)^2 != y2: invalid point
}
if ty.Bit(0) != uint(data[0]&1) {
ty.Sub(params.P, ty)
}
x, y = tx, ty // valid point: return it
return
}
// Use the curve equation to calculate y² given x.
// only applies to curves of the form y² = x³ - 3x + b.
func y2(curve *elliptic.CurveParams, x *big.Int) *big.Int {
// y² = x³ - 3x + b
x3 := new(big.Int).Mul(x, x)
x3.Mul(x3, x)
threeX := new(big.Int).Lsh(x, 1)
threeX.Add(threeX, x)
x3.Sub(x3, threeX)
x3.Add(x3, curve.B)
x3.Mod(x3, curve.P)
return x3
}
func defaultSqrt(x, p *big.Int) *big.Int {
var r big.Int
if nil == r.ModSqrt(x, p) {
return nil // x is not a square
}
return &r
}