|
|
|
package blockchain
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
|
|
|
"crypto/sha256"
|
|
|
|
"encoding/binary"
|
|
|
|
"encoding/gob"
|
|
|
|
"encoding/hex"
|
|
|
|
"fmt"
|
|
|
|
"log"
|
|
|
|
"math"
|
|
|
|
|
|
|
|
"github.com/dedis/kyber"
|
|
|
|
"github.com/dedis/kyber/sign/schnorr"
|
|
|
|
"github.com/harmony-one/harmony/crypto"
|
|
|
|
)
|
|
|
|
|
|
|
|
var (
|
|
|
|
// zeroHash is the zero value for a Hash and is defined as
|
|
|
|
// a package level variable to avoid the need to create a new instance
|
|
|
|
// every time a check is needed.
|
|
|
|
zeroHash TxID
|
|
|
|
)
|
|
|
|
|
|
|
|
const (
|
|
|
|
// DefaultCoinbaseValue is the default value of coinbase transaction.
|
|
|
|
DefaultCoinbaseValue = 1
|
|
|
|
// DefaultNumUtxos is the default value of number Utxos.
|
|
|
|
DefaultNumUtxos = 100
|
|
|
|
)
|
|
|
|
|
|
|
|
// Transaction is the struct of a Transaction.
|
|
|
|
type Transaction struct {
|
|
|
|
ID [32]byte // 32 byte hash
|
|
|
|
TxInput []TXInput
|
|
|
|
TxOutput []TXOutput
|
|
|
|
PublicKey [32]byte
|
|
|
|
Signature [64]byte
|
|
|
|
|
|
|
|
Proofs []CrossShardTxProof // The proofs for crossShard tx unlock-to-commit/abort
|
|
|
|
}
|
|
|
|
|
|
|
|
// TXOutput is the struct of transaction output in a transaction.
|
|
|
|
type TXOutput struct {
|
|
|
|
Amount int // TODO: Switch to big int or uint32
|
|
|
|
Address [20]byte // last 20 bytes of the hash of public key
|
|
|
|
ShardID uint32 // The Id of the shard where this UTXO belongs
|
|
|
|
}
|
|
|
|
|
|
|
|
// TxID structure type.
|
|
|
|
type TxID = [32]byte
|
|
|
|
|
|
|
|
// OutPoint defines a data type that is used to track previous
|
|
|
|
// transaction outputs.
|
|
|
|
// TxID is the transaction id
|
|
|
|
// Index is the index of the transaction ouput in the previous transaction
|
|
|
|
type OutPoint struct {
|
|
|
|
TxID TxID
|
|
|
|
Index uint32
|
|
|
|
}
|
|
|
|
|
|
|
|
// NewOutPoint returns a new transaction outpoint point with the
|
|
|
|
// provided txID and index.
|
|
|
|
func NewOutPoint(txID *TxID, index uint32) *OutPoint {
|
|
|
|
return &OutPoint{
|
|
|
|
TxID: *txID,
|
|
|
|
Index: index,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TXInput is the struct of transaction input (a UTXO) in a transaction.
|
|
|
|
type TXInput struct {
|
|
|
|
PreviousOutPoint OutPoint
|
|
|
|
Address [20]byte // TODO: @minh do we really need this?
|
|
|
|
ShardID uint32 // The Id of the shard where this UTXO belongs
|
|
|
|
}
|
|
|
|
|
|
|
|
// NewTXInput returns a new transaction input with the provided
|
|
|
|
// previous outpoint point, output address and shardID
|
|
|
|
func NewTXInput(prevOut *OutPoint, address [20]byte, shardID uint32) *TXInput {
|
|
|
|
return &TXInput{
|
|
|
|
PreviousOutPoint: *prevOut,
|
|
|
|
Address: address,
|
|
|
|
ShardID: shardID,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// CrossShardTxProof is the proof of accept or reject in the cross shard transaction locking phase.
|
|
|
|
// This is created by the shard leader, filled with proof signatures after consensus, and returned back to the client.
|
|
|
|
// One proof structure is only tied to one shard. Therefore, the utxos in the proof are all with the same shard.
|
|
|
|
type CrossShardTxProof struct {
|
|
|
|
Accept bool // false means proof-of-reject, true means proof-of-accept
|
|
|
|
TxID [32]byte // Id of the transaction which this proof is on
|
|
|
|
TxInput []TXInput // The list of Utxo that this proof is on. They should be in the same shard.
|
|
|
|
BlockHash [32]byte // The hash of the block where the proof is registered
|
|
|
|
// Signatures
|
|
|
|
}
|
|
|
|
|
|
|
|
// CrossShardTxAndProof is the proof of accept or reject in the cross shard transaction locking phase.
|
|
|
|
// This is a internal data structure that doesn't go across network
|
|
|
|
type CrossShardTxAndProof struct {
|
|
|
|
Transaction *Transaction // The cross shard tx
|
|
|
|
Proof *CrossShardTxProof // The proof
|
|
|
|
}
|
|
|
|
|
|
|
|
// SetID sets ID of a transaction (32 byte hash of the whole transaction)
|
|
|
|
func (tx *Transaction) SetID() {
|
|
|
|
var encoded bytes.Buffer
|
|
|
|
var hash [32]byte
|
|
|
|
|
|
|
|
enc := gob.NewEncoder(&encoded)
|
|
|
|
err := enc.Encode(tx)
|
|
|
|
if err != nil {
|
|
|
|
log.Panic(err)
|
|
|
|
}
|
|
|
|
hash = sha256.Sum256(encoded.Bytes())
|
|
|
|
tx.ID = hash
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sign signs the given transaction with a private key.
|
|
|
|
func (tx *Transaction) Sign(priKey kyber.Scalar) error {
|
|
|
|
signature, err := schnorr.Sign(crypto.Ed25519Curve, priKey, tx.GetContentToVerify())
|
|
|
|
if err != nil {
|
|
|
|
log.Panic(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
copy(tx.Signature[:], signature)
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
|
|
|
// IsCrossShard returns if the transaction is a cross transation.
|
|
|
|
func (tx *Transaction) IsCrossShard() bool {
|
|
|
|
shardIDs := make(map[uint32]bool)
|
|
|
|
for _, value := range tx.TxInput {
|
|
|
|
shardIDs[value.ShardID] = true
|
|
|
|
}
|
|
|
|
for _, value := range tx.TxOutput {
|
|
|
|
shardIDs[value.ShardID] = true
|
|
|
|
}
|
|
|
|
return len(shardIDs) > 1
|
|
|
|
}
|
|
|
|
|
|
|
|
// GetContentToVerify gets content to verify.
|
|
|
|
func (tx *Transaction) GetContentToVerify() []byte {
|
|
|
|
tempTx := *tx
|
|
|
|
tempTx.Signature = [64]byte{}
|
|
|
|
tempTx.Proofs = []CrossShardTxProof{}
|
|
|
|
|
|
|
|
return tempTx.Serialize()
|
|
|
|
}
|
|
|
|
|
|
|
|
// NewCoinbaseTX creates a new coinbase transaction
|
|
|
|
func NewCoinbaseTX(toAddress [20]byte, data string, shardID uint32) *Transaction {
|
|
|
|
if data == "" {
|
|
|
|
data = fmt.Sprintf("Reward to '%b'", toAddress)
|
|
|
|
}
|
|
|
|
|
|
|
|
txin := NewTXInput(NewOutPoint(&TxID{}, math.MaxUint32), toAddress, shardID)
|
|
|
|
outputs := []TXOutput{}
|
|
|
|
for i := 0; i < DefaultNumUtxos; i++ {
|
|
|
|
outputs = append(outputs, TXOutput{DefaultCoinbaseValue, toAddress, shardID})
|
|
|
|
}
|
|
|
|
tx := Transaction{ID: [32]byte{}, TxInput: []TXInput{*txin}, TxOutput: outputs, Proofs: nil}
|
|
|
|
// TODO: take care of the signature of coinbase transaction.
|
|
|
|
tx.SetID()
|
|
|
|
return &tx
|
|
|
|
}
|
|
|
|
|
|
|
|
// Used for debuging.
|
|
|
|
func (txInput *TXInput) String() string {
|
|
|
|
res := fmt.Sprintf("TxID: %v, ", hex.EncodeToString(txInput.PreviousOutPoint.TxID[:]))
|
|
|
|
res += fmt.Sprintf("TxOutputIndex: %v, ", txInput.PreviousOutPoint.Index)
|
|
|
|
res += fmt.Sprintf("Address: %v, ", txInput.Address)
|
|
|
|
res += fmt.Sprintf("ShardID: %v", txInput.ShardID)
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
|
|
|
|
// Used for debuging.
|
|
|
|
func (txOutput *TXOutput) String() string {
|
|
|
|
res := fmt.Sprintf("Amount: %v, ", txOutput.Amount)
|
|
|
|
res += fmt.Sprintf("Address: %v", txOutput.Address)
|
|
|
|
res += fmt.Sprintf("ShardID: %v", txOutput.ShardID)
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
|
|
|
|
// Used for debuging.
|
|
|
|
func (proof *CrossShardTxProof) String() string {
|
|
|
|
res := fmt.Sprintf("Accept: %v, ", proof.Accept)
|
|
|
|
res += fmt.Sprintf("TxId: %v, ", hex.EncodeToString(proof.TxID[:]))
|
|
|
|
res += fmt.Sprintf("BlockHash: %v, ", hex.EncodeToString(proof.BlockHash[:]))
|
|
|
|
res += fmt.Sprintf("TxInput:\n")
|
|
|
|
for id, value := range proof.TxInput {
|
|
|
|
res += fmt.Sprintf("%v: %v\n", id, value.String())
|
|
|
|
}
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
|
|
|
|
// Used for debuging.
|
|
|
|
func (tx *Transaction) String() string {
|
|
|
|
res := fmt.Sprintf("ID: %v\n", hex.EncodeToString(tx.ID[:]))
|
|
|
|
res += fmt.Sprintf("TxInput:\n")
|
|
|
|
for id, value := range tx.TxInput {
|
|
|
|
res += fmt.Sprintf("%v: %v\n", id, value.String())
|
|
|
|
}
|
|
|
|
res += fmt.Sprintf("TxOutput:\n")
|
|
|
|
for id, value := range tx.TxOutput {
|
|
|
|
res += fmt.Sprintf("%v: %v\n", id, value.String())
|
|
|
|
}
|
|
|
|
for id, value := range tx.Proofs {
|
|
|
|
res += fmt.Sprintf("Proof:\n")
|
|
|
|
res += fmt.Sprintf("%v: %v\n", id, value.String())
|
|
|
|
}
|
|
|
|
res += fmt.Sprintf("PublicKey: %v\n", hex.EncodeToString(tx.PublicKey[:]))
|
|
|
|
res += fmt.Sprintf("Sig: %v\n", hex.EncodeToString(tx.Signature[:]))
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
|
|
|
|
// Serialize return serialized bytes of the transaction.
|
|
|
|
func (tx *Transaction) Serialize() []byte {
|
|
|
|
buffer := bytes.NewBuffer([]byte{})
|
|
|
|
buffer.Write(tx.ID[:])
|
|
|
|
for _, value := range tx.TxInput {
|
|
|
|
buffer.Write(value.Serialize())
|
|
|
|
}
|
|
|
|
for _, value := range tx.TxOutput {
|
|
|
|
buffer.Write(value.Serialize())
|
|
|
|
}
|
|
|
|
for _, value := range tx.Proofs {
|
|
|
|
buffer.Write(value.Serialize())
|
|
|
|
}
|
|
|
|
buffer.Write(tx.PublicKey[:])
|
|
|
|
buffer.Write(tx.Signature[:])
|
|
|
|
return buffer.Bytes()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Serialize return serialized bytes of the TXInput.
|
|
|
|
func (txInput *TXInput) Serialize() []byte {
|
|
|
|
buffer := bytes.NewBuffer([]byte{})
|
|
|
|
buffer.Write(txInput.Address[:])
|
|
|
|
|
|
|
|
fourBytes := make([]byte, 4)
|
|
|
|
binary.BigEndian.PutUint32(fourBytes, txInput.ShardID)
|
|
|
|
buffer.Write(fourBytes)
|
|
|
|
|
|
|
|
binary.BigEndian.PutUint32(fourBytes, txInput.PreviousOutPoint.Index)
|
|
|
|
buffer.Write(fourBytes)
|
|
|
|
|
|
|
|
buffer.Write(txInput.PreviousOutPoint.TxID[:])
|
|
|
|
return buffer.Bytes()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Serialize return serialized bytes of the TXOutput.
|
|
|
|
func (txOutput *TXOutput) Serialize() []byte {
|
|
|
|
buffer := bytes.NewBuffer([]byte{})
|
|
|
|
buffer.Write(txOutput.Address[:])
|
|
|
|
|
|
|
|
fourBytes := make([]byte, 4)
|
|
|
|
binary.BigEndian.PutUint32(fourBytes, txOutput.ShardID)
|
|
|
|
buffer.Write(fourBytes)
|
|
|
|
|
|
|
|
binary.BigEndian.PutUint32(fourBytes, uint32(txOutput.Amount)) // TODO(RJ): make amount a bigInt
|
|
|
|
buffer.Write(fourBytes)
|
|
|
|
|
|
|
|
return buffer.Bytes()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Serialize returns serialized bytes of the CrossShardTxProof.
|
|
|
|
func (proof *CrossShardTxProof) Serialize() []byte {
|
|
|
|
buffer := bytes.NewBuffer([]byte{})
|
|
|
|
buffer.Write(proof.TxID[:])
|
|
|
|
buffer.Write(proof.BlockHash[:])
|
|
|
|
for _, value := range proof.TxInput {
|
|
|
|
buffer.Write(value.Serialize())
|
|
|
|
}
|
|
|
|
if proof.Accept {
|
|
|
|
buffer.WriteByte(byte(1))
|
|
|
|
} else {
|
|
|
|
buffer.WriteByte(byte(0))
|
|
|
|
}
|
|
|
|
return buffer.Bytes()
|
|
|
|
}
|