|
|
|
package main
|
|
|
|
|
|
|
|
import (
|
|
|
|
"encoding/binary"
|
|
|
|
"encoding/hex"
|
|
|
|
"flag"
|
|
|
|
"fmt"
|
|
|
|
"math/rand"
|
|
|
|
"os"
|
|
|
|
"path"
|
|
|
|
"runtime"
|
|
|
|
"sync"
|
|
|
|
"time"
|
|
|
|
|
|
|
|
"github.com/harmony-one/harmony/blockchain"
|
|
|
|
"github.com/harmony-one/harmony/client"
|
|
|
|
client_config "github.com/harmony-one/harmony/client/config"
|
|
|
|
"github.com/harmony-one/harmony/consensus"
|
|
|
|
"github.com/harmony-one/harmony/crypto/pki"
|
|
|
|
"github.com/harmony-one/harmony/log"
|
|
|
|
"github.com/harmony-one/harmony/node"
|
|
|
|
"github.com/harmony-one/harmony/p2p"
|
|
|
|
proto_node "github.com/harmony-one/harmony/proto/node"
|
|
|
|
)
|
|
|
|
|
|
|
|
var (
|
|
|
|
version string
|
|
|
|
builtBy string
|
|
|
|
builtAt string
|
|
|
|
commit string
|
|
|
|
)
|
|
|
|
|
|
|
|
type txGenSettings struct {
|
|
|
|
numOfAddress int
|
|
|
|
crossShard bool
|
|
|
|
maxNumTxsPerBatch int
|
|
|
|
crossShardRatio int
|
|
|
|
}
|
|
|
|
|
|
|
|
var (
|
|
|
|
utxoPoolMutex sync.Mutex
|
|
|
|
setting txGenSettings
|
|
|
|
)
|
|
|
|
|
|
|
|
type TxInfo struct {
|
|
|
|
// Global Input
|
|
|
|
shardID int
|
|
|
|
dataNodes []*node.Node
|
|
|
|
// Temp Input
|
|
|
|
id [32]byte
|
|
|
|
index uint32
|
|
|
|
value int
|
|
|
|
address [20]byte
|
|
|
|
// Output
|
|
|
|
txs []*blockchain.Transaction
|
|
|
|
crossTxs []*blockchain.Transaction
|
|
|
|
txCount int
|
|
|
|
}
|
|
|
|
|
|
|
|
// Generates at most "maxNumTxs" number of simulated transactions based on the current UtxoPools of all shards.
|
|
|
|
// The transactions are generated by going through the existing utxos and
|
|
|
|
// randomly select a subset of them as the input for each new transaction. The output
|
|
|
|
// address of the new transaction are randomly selected from [0 - N), where N is the total number of fake addresses.
|
|
|
|
//
|
|
|
|
// When crossShard=true, besides the selected utxo input, select another valid utxo as input from the same address in a second shard.
|
|
|
|
// Similarly, generate another utxo output in that second shard.
|
|
|
|
//
|
|
|
|
// NOTE: the genesis block should contain N coinbase transactions which add
|
|
|
|
// token (1000) to each address in [0 - N). See node.AddTestingAddresses()
|
|
|
|
//
|
|
|
|
// Params:
|
|
|
|
// subsetId - the which subset of the utxo to work on (used to select addresses)
|
|
|
|
// shardID - the shardID for current shard
|
|
|
|
// dataNodes - nodes containing utxopools of all shards
|
|
|
|
// Returns:
|
|
|
|
// all single-shard txs
|
|
|
|
// all cross-shard txs
|
|
|
|
func generateSimulatedTransactions(subsetId, numSubset int, shardID int, dataNodes []*node.Node) ([]*blockchain.Transaction, []*blockchain.Transaction) {
|
|
|
|
/*
|
|
|
|
UTXO map structure:
|
|
|
|
address - [
|
|
|
|
txID1 - [
|
|
|
|
outputIndex1 - value1
|
|
|
|
outputIndex2 - value2
|
|
|
|
]
|
|
|
|
txID2 - [
|
|
|
|
outputIndex1 - value1
|
|
|
|
outputIndex2 - value2
|
|
|
|
]
|
|
|
|
]
|
|
|
|
*/
|
|
|
|
|
|
|
|
txInfo := TxInfo{}
|
|
|
|
txInfo.shardID = shardID
|
|
|
|
txInfo.dataNodes = dataNodes
|
|
|
|
txInfo.txCount = 0
|
|
|
|
|
|
|
|
UTXOLOOP:
|
|
|
|
// Loop over all addresses
|
|
|
|
for address, txMap := range dataNodes[shardID].UtxoPool.UtxoMap {
|
|
|
|
if int(binary.BigEndian.Uint32(address[:]))%numSubset == subsetId%numSubset { // Work on one subset of utxo at a time
|
|
|
|
txInfo.address = address
|
|
|
|
// Loop over all txIDs for the address
|
|
|
|
for txIDStr, utxoMap := range txMap {
|
|
|
|
// Parse TxId
|
|
|
|
id, err := hex.DecodeString(txIDStr)
|
|
|
|
if err != nil {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
copy(txInfo.id[:], id[:])
|
|
|
|
|
|
|
|
// Loop over all utxos for the txID
|
|
|
|
utxoSize := len(utxoMap)
|
|
|
|
batchSize := utxoSize / numSubset
|
|
|
|
i := subsetId % numSubset
|
|
|
|
counter := 0
|
|
|
|
for index, value := range utxoMap {
|
|
|
|
counter++
|
|
|
|
if batchSize*i < counter && counter > batchSize*(i+1) {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
txInfo.index = index
|
|
|
|
txInfo.value = value
|
|
|
|
|
|
|
|
randNum := rand.Intn(100)
|
|
|
|
|
|
|
|
subsetRatio := 100 // / numSubset
|
|
|
|
if randNum < subsetRatio { // Sample based on batch size
|
|
|
|
if setting.crossShard && randNum < subsetRatio*setting.crossShardRatio/100 { // 30% cross shard transactions: add another txinput from another shard
|
|
|
|
generateCrossShardTx(&txInfo)
|
|
|
|
} else {
|
|
|
|
generateSingleShardTx(&txInfo)
|
|
|
|
}
|
|
|
|
if txInfo.txCount >= setting.maxNumTxsPerBatch {
|
|
|
|
break UTXOLOOP
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
log.Info("UTXO CLIENT", "numUtxo", dataNodes[shardID].UtxoPool.CountNumOfUtxos(), "shardID", shardID)
|
|
|
|
log.Debug("[Generator] generated transations", "single-shard", len(txInfo.txs), "cross-shard", len(txInfo.crossTxs))
|
|
|
|
return txInfo.txs, txInfo.crossTxs
|
|
|
|
}
|
|
|
|
|
|
|
|
func generateCrossShardTx(txInfo *TxInfo) {
|
|
|
|
nodeShardID := txInfo.dataNodes[txInfo.shardID].Consensus.ShardID
|
|
|
|
crossShardID := nodeShardID
|
|
|
|
// a random shard to spend money to
|
|
|
|
for {
|
|
|
|
crossShardID = uint32(rand.Intn(len(txInfo.dataNodes)))
|
|
|
|
if crossShardID != nodeShardID {
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//crossShardNode := txInfo.dataNodes[crossShardID]
|
|
|
|
//crossShardUtxosMap := crossShardNode.UtxoPool.UtxoMap[txInfo.address]
|
|
|
|
//
|
|
|
|
//// Get the cross shard utxo from another shard
|
|
|
|
//var crossTxin *blockchain.TXInput
|
|
|
|
//crossUtxoValue := 0
|
|
|
|
//// Loop over utxos for the same address from the other shard and use the first utxo as the second cross tx input
|
|
|
|
//for crossTxIdStr, crossShardUtxos := range crossShardUtxosMap {
|
|
|
|
// // Parse TxId
|
|
|
|
// id, err := hex.DecodeString(crossTxIdStr)
|
|
|
|
// if err != nil {
|
|
|
|
// continue
|
|
|
|
// }
|
|
|
|
// crossTxId := [32]byte{}
|
|
|
|
// copy(crossTxId[:], id[:])
|
|
|
|
//
|
|
|
|
// for crossShardIndex, crossShardValue := range crossShardUtxos {
|
|
|
|
// crossUtxoValue = crossShardValue
|
|
|
|
// crossTxin = blockchain.NewTXInput(blockchain.NewOutPoint(&crossTxId, crossShardIndex), txInfo.address, crossShardID)
|
|
|
|
// break
|
|
|
|
// }
|
|
|
|
// if crossTxin != nil {
|
|
|
|
// break
|
|
|
|
// }
|
|
|
|
//}
|
|
|
|
|
|
|
|
// Add the utxo from current shard
|
|
|
|
txIn := blockchain.NewTXInput(blockchain.NewOutPoint(&txInfo.id, txInfo.index), txInfo.address, nodeShardID)
|
|
|
|
txInputs := []blockchain.TXInput{*txIn}
|
|
|
|
|
|
|
|
// Add the utxo from the other shard, if any
|
|
|
|
//if crossTxin != nil { // This means the ratio of cross shard tx could be lower than 1/3
|
|
|
|
// txInputs = append(txInputs, *crossTxin)
|
|
|
|
//}
|
|
|
|
|
|
|
|
// Spend the utxo from the current shard to a random address in [0 - N)
|
|
|
|
txout := blockchain.TXOutput{Amount: txInfo.value, Address: pki.GetAddressFromInt(rand.Intn(setting.numOfAddress) + 1), ShardID: crossShardID}
|
|
|
|
|
|
|
|
txOutputs := []blockchain.TXOutput{txout}
|
|
|
|
|
|
|
|
// Spend the utxo from the other shard, if any, to a random address in [0 - N)
|
|
|
|
//if crossTxin != nil {
|
|
|
|
// crossTxout := blockchain.TXOutput{Amount: crossUtxoValue, Address: pki.GetAddressFromInt(rand.Intn(setting.numOfAddress) + 1), ShardID: crossShardID}
|
|
|
|
// txOutputs = append(txOutputs, crossTxout)
|
|
|
|
//}
|
|
|
|
|
|
|
|
// Construct the new transaction
|
|
|
|
tx := blockchain.Transaction{ID: [32]byte{}, TxInput: txInputs, TxOutput: txOutputs, Proofs: nil}
|
|
|
|
|
|
|
|
priKeyInt, ok := client.LookUpIntPriKey(txInfo.address)
|
|
|
|
if ok {
|
|
|
|
tx.PublicKey = pki.GetBytesFromPublicKey(pki.GetPublicKeyFromScalar(pki.GetPrivateKeyScalarFromInt(priKeyInt)))
|
|
|
|
|
|
|
|
tx.SetID() // TODO(RJ): figure out the correct way to set Tx ID.
|
|
|
|
tx.Sign(pki.GetPrivateKeyScalarFromInt(priKeyInt))
|
|
|
|
} else {
|
|
|
|
log.Error("Failed to look up the corresponding private key from address", "Address", txInfo.address)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
txInfo.crossTxs = append(txInfo.crossTxs, &tx)
|
|
|
|
txInfo.txCount++
|
|
|
|
}
|
|
|
|
|
|
|
|
func generateSingleShardTx(txInfo *TxInfo) {
|
|
|
|
nodeShardID := txInfo.dataNodes[txInfo.shardID].Consensus.ShardID
|
|
|
|
// Add the utxo as new tx input
|
|
|
|
txin := blockchain.NewTXInput(blockchain.NewOutPoint(&txInfo.id, txInfo.index), txInfo.address, nodeShardID)
|
|
|
|
|
|
|
|
// Spend the utxo to a random address in [0 - N)
|
|
|
|
txout := blockchain.TXOutput{Amount: txInfo.value, Address: pki.GetAddressFromInt(rand.Intn(setting.numOfAddress) + 1), ShardID: nodeShardID}
|
|
|
|
tx := blockchain.Transaction{ID: [32]byte{}, TxInput: []blockchain.TXInput{*txin}, TxOutput: []blockchain.TXOutput{txout}, Proofs: nil}
|
|
|
|
|
|
|
|
priKeyInt, ok := client.LookUpIntPriKey(txInfo.address)
|
|
|
|
if ok {
|
|
|
|
tx.PublicKey = pki.GetBytesFromPublicKey(pki.GetPublicKeyFromScalar(pki.GetPrivateKeyScalarFromInt(priKeyInt)))
|
|
|
|
tx.SetID() // TODO(RJ): figure out the correct way to set Tx ID.
|
|
|
|
tx.Sign(pki.GetPrivateKeyScalarFromInt(priKeyInt))
|
|
|
|
} else {
|
|
|
|
log.Error("Failed to look up the corresponding private key from address", "Address", txInfo.address)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
txInfo.txs = append(txInfo.txs, &tx)
|
|
|
|
txInfo.txCount++
|
|
|
|
}
|
|
|
|
|
|
|
|
func printVersion(me string) {
|
|
|
|
fmt.Fprintf(os.Stderr, "Harmony (C) 2018. %v, version %v-%v (%v %v)\n", path.Base(me), version, commit, builtBy, builtAt)
|
|
|
|
os.Exit(0)
|
|
|
|
}
|
|
|
|
|
|
|
|
func main() {
|
|
|
|
configFile := flag.String("config_file", "local_config.txt", "file containing all ip addresses and config")
|
|
|
|
maxNumTxsPerBatch := flag.Int("max_num_txs_per_batch", 20000, "number of transactions to send per message")
|
|
|
|
logFolder := flag.String("log_folder", "latest", "the folder collecting the logs of this execution")
|
|
|
|
numSubset := flag.Int("numSubset", 3, "the number of subsets of utxos to process separately")
|
|
|
|
duration := flag.Int("duration", 10, "duration of the tx generation in second. If it's negative, the experiment runs forever.")
|
|
|
|
versionFlag := flag.Bool("version", false, "Output version info")
|
|
|
|
crossShardRatio := flag.Int("cross_shard_ratio", 30, "The percentage of cross shard transactions.")
|
|
|
|
flag.Parse()
|
|
|
|
|
|
|
|
if *versionFlag {
|
|
|
|
printVersion(os.Args[0])
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add GOMAXPROCS to achieve max performance.
|
|
|
|
runtime.GOMAXPROCS(1024)
|
|
|
|
|
|
|
|
// Read the configs
|
|
|
|
config := client_config.NewConfig()
|
|
|
|
config.ReadConfigFile(*configFile)
|
|
|
|
shardIDLeaderMap := config.GetShardIDToLeaderMap()
|
|
|
|
|
|
|
|
setting.numOfAddress = 10000
|
|
|
|
// Do cross shard tx if there are more than one shard
|
|
|
|
setting.crossShard = len(shardIDLeaderMap) > 1
|
|
|
|
setting.maxNumTxsPerBatch = *maxNumTxsPerBatch
|
|
|
|
setting.crossShardRatio = *crossShardRatio
|
|
|
|
|
|
|
|
// TODO(Richard): refactor this chuck to a single method
|
|
|
|
// Setup a logger to stdout and log file.
|
|
|
|
logFileName := fmt.Sprintf("./%v/txgen.log", *logFolder)
|
|
|
|
h := log.MultiHandler(
|
|
|
|
log.StdoutHandler,
|
|
|
|
log.Must.FileHandler(logFileName, log.LogfmtFormat()), // Log to file
|
|
|
|
)
|
|
|
|
log.Root().SetHandler(h)
|
|
|
|
|
|
|
|
// Nodes containing utxopools to mirror the shards' data in the network
|
|
|
|
nodes := []*node.Node{}
|
|
|
|
for shardID := range shardIDLeaderMap {
|
|
|
|
node := node.New(&consensus.Consensus{ShardID: shardID}, nil)
|
|
|
|
// Assign many fake addresses so we have enough address to play with at first
|
|
|
|
node.AddTestingAddresses(setting.numOfAddress)
|
|
|
|
nodes = append(nodes, node)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Client/txgenerator server node setup
|
|
|
|
clientPort := config.GetClientPort()
|
|
|
|
consensusObj := consensus.NewConsensus("0", clientPort, "0", nil, p2p.Peer{})
|
|
|
|
clientNode := node.New(consensusObj, nil)
|
|
|
|
|
|
|
|
if clientPort != "" {
|
|
|
|
clientNode.Client = client.NewClient(&shardIDLeaderMap)
|
|
|
|
|
|
|
|
// This func is used to update the client's utxopool when new blocks are received from the leaders
|
|
|
|
updateBlocksFunc := func(blocks []*blockchain.Block) {
|
|
|
|
log.Debug("Received new block from leader", "len", len(blocks))
|
|
|
|
for _, block := range blocks {
|
|
|
|
for _, node := range nodes {
|
|
|
|
if node.Consensus.ShardID == block.ShardID {
|
|
|
|
log.Debug("Adding block from leader", "shardID", block.ShardID)
|
|
|
|
// Add it to blockchain
|
|
|
|
node.AddNewBlock(block)
|
|
|
|
utxoPoolMutex.Lock()
|
|
|
|
node.UpdateUtxoAndState(block)
|
|
|
|
utxoPoolMutex.Unlock()
|
|
|
|
} else {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
clientNode.Client.UpdateBlocks = updateBlocksFunc
|
|
|
|
|
|
|
|
// Start the client server to listen to leader's message
|
|
|
|
go func() {
|
|
|
|
clientNode.StartServer(clientPort)
|
|
|
|
}()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Transaction generation process
|
|
|
|
time.Sleep(10 * time.Second) // wait for nodes to be ready
|
|
|
|
start := time.Now()
|
|
|
|
totalTime := float64(*duration)
|
|
|
|
|
|
|
|
client.InitLookUpIntPriKeyMap()
|
|
|
|
subsetCounter := 0
|
|
|
|
|
|
|
|
for {
|
|
|
|
t := time.Now()
|
|
|
|
if totalTime > 0 && t.Sub(start).Seconds() >= totalTime {
|
|
|
|
log.Debug("Generator timer ended.", "duration", (int(t.Sub(start))), "startTime", start, "totalTime", totalTime)
|
|
|
|
break
|
|
|
|
}
|
|
|
|
shardIDTxsMap := make(map[uint32][]*blockchain.Transaction)
|
|
|
|
lock := sync.Mutex{}
|
|
|
|
var wg sync.WaitGroup
|
|
|
|
wg.Add(len(shardIDLeaderMap))
|
|
|
|
|
|
|
|
utxoPoolMutex.Lock()
|
|
|
|
log.Warn("STARTING TX GEN", "gomaxprocs", runtime.GOMAXPROCS(0))
|
|
|
|
for shardID, _ := range shardIDLeaderMap { // Generate simulated transactions
|
|
|
|
go func(shardID uint32) {
|
|
|
|
txs, crossTxs := generateSimulatedTransactions(subsetCounter, *numSubset, int(shardID), nodes)
|
|
|
|
|
|
|
|
// Put cross shard tx into a pending list waiting for proofs from leaders
|
|
|
|
if clientPort != "" {
|
|
|
|
clientNode.Client.PendingCrossTxsMutex.Lock()
|
|
|
|
for _, tx := range crossTxs {
|
|
|
|
clientNode.Client.PendingCrossTxs[tx.ID] = tx
|
|
|
|
}
|
|
|
|
clientNode.Client.PendingCrossTxsMutex.Unlock()
|
|
|
|
}
|
|
|
|
|
|
|
|
lock.Lock()
|
|
|
|
// Put txs into corresponding shards
|
|
|
|
shardIDTxsMap[shardID] = append(shardIDTxsMap[shardID], txs...)
|
|
|
|
for _, crossTx := range crossTxs {
|
|
|
|
for curShardID, _ := range client.GetInputShardIDsOfCrossShardTx(crossTx) {
|
|
|
|
shardIDTxsMap[curShardID] = append(shardIDTxsMap[curShardID], crossTx)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
lock.Unlock()
|
|
|
|
wg.Done()
|
|
|
|
}(shardID)
|
|
|
|
}
|
|
|
|
wg.Wait()
|
|
|
|
utxoPoolMutex.Unlock()
|
|
|
|
|
|
|
|
lock.Lock()
|
|
|
|
for shardID, txs := range shardIDTxsMap { // Send the txs to corresponding shards
|
|
|
|
go func(shardID uint32, txs []*blockchain.Transaction) {
|
|
|
|
SendTxsToLeader(shardIDLeaderMap[shardID], txs)
|
|
|
|
}(shardID, txs)
|
|
|
|
}
|
|
|
|
lock.Unlock()
|
|
|
|
|
|
|
|
subsetCounter++
|
|
|
|
time.Sleep(10000 * time.Millisecond)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Send a stop message to stop the nodes at the end
|
|
|
|
msg := proto_node.ConstructStopMessage()
|
|
|
|
peers := append(config.GetValidators(), clientNode.Client.GetLeaders()...)
|
|
|
|
p2p.BroadcastMessage(peers, msg)
|
|
|
|
time.Sleep(3000 * time.Millisecond)
|
|
|
|
}
|
|
|
|
|
|
|
|
func SendTxsToLeader(leader p2p.Peer, txs []*blockchain.Transaction) {
|
|
|
|
log.Debug("[Generator] Sending txs to...", "leader", leader, "numTxs", len(txs))
|
|
|
|
msg := proto_node.ConstructTransactionListMessage(txs)
|
|
|
|
p2p.SendMessage(leader, msg)
|
|
|
|
}
|