// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package core implements the Ethereum consensus protocol.
package core
import (
"errors"
"fmt"
"io"
"math/big"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
"github.com/harmony-one/harmony/block"
consensus_engine "github.com/harmony-one/harmony/consensus/engine"
"github.com/harmony-one/harmony/core/rawdb"
"github.com/harmony-one/harmony/core/state"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/core/vm"
"github.com/harmony-one/harmony/internal/ctxerror"
"github.com/harmony-one/harmony/internal/params"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/shard"
staking "github.com/harmony-one/harmony/staking/types"
lru "github.com/hashicorp/golang-lru"
)
var (
// blockInsertTimer
blockInsertTimer = metrics . NewRegisteredTimer ( "chain/inserts" , nil )
// ErrNoGenesis is the error when there is no genesis.
ErrNoGenesis = errors . New ( "Genesis not found in chain" )
)
const (
bodyCacheLimit = 256
blockCacheLimit = 256
receiptsCacheLimit = 32
maxFutureBlocks = 256
maxTimeFutureBlocks = 30
badBlockLimit = 10
triesInMemory = 128
shardCacheLimit = 2
commitsCacheLimit = 10
epochCacheLimit = 10
randomnessCacheLimit = 10
stakingCacheLimit = 256
validatorMapCacheLimit = 2
// BlockChainVersion ensures that an incompatible database forces a resync from scratch.
BlockChainVersion = 3
)
// CacheConfig contains the configuration values for the trie caching/pruning
// that's resident in a blockchain.
type CacheConfig struct {
Disabled bool // Whether to disable trie write caching (archive node)
TrieNodeLimit int // Memory limit (MB) at which to flush the current in-memory trie to disk
TrieTimeLimit time . Duration // Time limit after which to flush the current in-memory trie to disk
}
// BlockChain represents the canonical chain given a database with a genesis
// block. The Blockchain manages chain imports, reverts, chain reorganisations.
//
// Importing blocks in to the block chain happens according to the set of rules
// defined by the two stage Validator. Processing of blocks is done using the
// Processor which processes the included transaction. The validation of the state
// is done in the second part of the Validator. Failing results in aborting of
// the import.
//
// The BlockChain also helps in returning blocks from **any** chain included
// in the database as well as blocks that represents the canonical chain. It's
// important to note that GetBlock can return any block and does not need to be
// included in the canonical one where as GetBlockByNumber always represents the
// canonical chain.
type BlockChain struct {
chainConfig * params . ChainConfig // Chain & network configuration
cacheConfig * CacheConfig // Cache configuration for pruning
db ethdb . Database // Low level persistent database to store final content in
triegc * prque . Prque // Priority queue mapping block numbers to tries to gc
gcproc time . Duration // Accumulates canonical block processing for trie dumping
hc * HeaderChain
rmLogsFeed event . Feed
chainFeed event . Feed
chainSideFeed event . Feed
chainHeadFeed event . Feed
logsFeed event . Feed
scope event . SubscriptionScope
genesisBlock * types . Block
mu sync . RWMutex // global mutex for locking chain operations
chainmu sync . RWMutex // blockchain insertion lock
procmu sync . RWMutex // block processor lock
checkpoint int // checkpoint counts towards the new checkpoint
currentBlock atomic . Value // Current head of the block chain
currentFastBlock atomic . Value // Current head of the fast-sync chain (may be above the block chain!)
stateCache state . Database // State database to reuse between imports (contains state cache)
bodyCache * lru . Cache // Cache for the most recent block bodies
bodyRLPCache * lru . Cache // Cache for the most recent block bodies in RLP encoded format
receiptsCache * lru . Cache // Cache for the most recent receipts per block
blockCache * lru . Cache // Cache for the most recent entire blocks
futureBlocks * lru . Cache // future blocks are blocks added for later processing
shardStateCache * lru . Cache
lastCommitsCache * lru . Cache
epochCache * lru . Cache // Cache epoch number → first block number
randomnessCache * lru . Cache // Cache for vrf/vdf
stakingCache * lru . Cache // Cache for staking validator
validatorMapCache * lru . Cache // Cache of validator list
quit chan struct { } // blockchain quit channel
running int32 // running must be called atomically
// procInterrupt must be atomically called
procInterrupt int32 // interrupt signaler for block processing
wg sync . WaitGroup // chain processing wait group for shutting down
engine consensus_engine . Engine
processor Processor // block processor interface
validator Validator // block and state validator interface
vmConfig vm . Config
badBlocks * lru . Cache // Bad block cache
shouldPreserve func ( * types . Block ) bool // Function used to determine whether should preserve the given block.
}
// NewBlockChain returns a fully initialised block chain using information
// available in the database. It initialises the default Ethereum Validator and
// Processor.
func NewBlockChain ( db ethdb . Database , cacheConfig * CacheConfig , chainConfig * params . ChainConfig , engine consensus_engine . Engine , vmConfig vm . Config , shouldPreserve func ( block * types . Block ) bool ) ( * BlockChain , error ) {
if cacheConfig == nil {
cacheConfig = & CacheConfig {
TrieNodeLimit : 256 * 1024 * 1024 ,
TrieTimeLimit : 5 * time . Minute ,
}
}
bodyCache , _ := lru . New ( bodyCacheLimit )
bodyRLPCache , _ := lru . New ( bodyCacheLimit )
receiptsCache , _ := lru . New ( receiptsCacheLimit )
blockCache , _ := lru . New ( blockCacheLimit )
futureBlocks , _ := lru . New ( maxFutureBlocks )
badBlocks , _ := lru . New ( badBlockLimit )
shardCache , _ := lru . New ( shardCacheLimit )
commitsCache , _ := lru . New ( commitsCacheLimit )
epochCache , _ := lru . New ( epochCacheLimit )
randomnessCache , _ := lru . New ( randomnessCacheLimit )
stakingCache , _ := lru . New ( stakingCacheLimit )
validatorMapCache , _ := lru . New ( validatorMapCacheLimit )
bc := & BlockChain {
chainConfig : chainConfig ,
cacheConfig : cacheConfig ,
db : db ,
triegc : prque . New ( nil ) ,
stateCache : state . NewDatabase ( db ) ,
quit : make ( chan struct { } ) ,
shouldPreserve : shouldPreserve ,
bodyCache : bodyCache ,
bodyRLPCache : bodyRLPCache ,
receiptsCache : receiptsCache ,
blockCache : blockCache ,
futureBlocks : futureBlocks ,
shardStateCache : shardCache ,
lastCommitsCache : commitsCache ,
epochCache : epochCache ,
randomnessCache : randomnessCache ,
stakingCache : stakingCache ,
validatorMapCache : validatorMapCache ,
engine : engine ,
vmConfig : vmConfig ,
badBlocks : badBlocks ,
}
bc . SetValidator ( NewBlockValidator ( chainConfig , bc , engine ) )
bc . SetProcessor ( NewStateProcessor ( chainConfig , bc , engine ) )
var err error
bc . hc , err = NewHeaderChain ( db , chainConfig , engine , bc . getProcInterrupt )
if err != nil {
return nil , err
}
bc . genesisBlock = bc . GetBlockByNumber ( 0 )
if bc . genesisBlock == nil {
return nil , ErrNoGenesis
}
if err := bc . loadLastState ( ) ; err != nil {
return nil , err
}
// Take ownership of this particular state
go bc . update ( )
return bc , nil
}
// ValidateNewBlock validates new block.
func ( bc * BlockChain ) ValidateNewBlock ( block * types . Block ) error {
state , err := state . New ( bc . CurrentBlock ( ) . Root ( ) , bc . stateCache )
if err != nil {
return err
}
// Process block using the parent state as reference point.
receipts , cxReceipts , _ , usedGas , err := bc . processor . Process ( block , state , bc . vmConfig )
if err != nil {
bc . reportBlock ( block , receipts , err )
return err
}
err = bc . Validator ( ) . ValidateState ( block , bc . CurrentBlock ( ) , state , receipts , cxReceipts , usedGas )
if err != nil {
bc . reportBlock ( block , receipts , err )
return err
}
return nil
}
// IsEpochBlock returns whether this block is the first block of an epoch.
// by checking if the previous block is the last block of the previous epoch
func IsEpochBlock ( block * types . Block ) bool {
if block . NumberU64 ( ) == 0 {
// genesis block is the first epoch block
return true
}
return ShardingSchedule . IsLastBlock ( block . NumberU64 ( ) - 1 )
}
// EpochFirstBlock returns the block number of the first block of an epoch.
// TODO: instead of using fixed epoch schedules, determine the first block by epoch changes.
func EpochFirstBlock ( epoch * big . Int ) * big . Int {
if epoch . Cmp ( big . NewInt ( 0 ) ) == 0 {
return big . NewInt ( 0 )
}
return big . NewInt ( int64 ( ShardingSchedule . EpochLastBlock ( epoch . Uint64 ( ) - 1 ) + 1 ) )
}
// IsEpochLastBlock returns whether this block is the last block of an epoch.
func IsEpochLastBlock ( block * types . Block ) bool {
return ShardingSchedule . IsLastBlock ( block . NumberU64 ( ) )
}
// IsEpochLastBlockByHeader returns whether this block is the last block of an epoch
// given block header
func IsEpochLastBlockByHeader ( header * block . Header ) bool {
return ShardingSchedule . IsLastBlock ( header . Number ( ) . Uint64 ( ) )
}
func ( bc * BlockChain ) getProcInterrupt ( ) bool {
return atomic . LoadInt32 ( & bc . procInterrupt ) == 1
}
// loadLastState loads the last known chain state from the database. This method
// assumes that the chain manager mutex is held.
func ( bc * BlockChain ) loadLastState ( ) error {
// Restore the last known head block
head := rawdb . ReadHeadBlockHash ( bc . db )
if head == ( common . Hash { } ) {
// Corrupt or empty database, init from scratch
utils . Logger ( ) . Warn ( ) . Msg ( "Empty database, resetting chain" )
return bc . Reset ( )
}
// Make sure the entire head block is available
currentBlock := bc . GetBlockByHash ( head )
if currentBlock == nil {
// Corrupt or empty database, init from scratch
utils . Logger ( ) . Warn ( ) . Str ( "hash" , head . Hex ( ) ) . Msg ( "Head block missing, resetting chain" )
return bc . Reset ( )
}
// Make sure the state associated with the block is available
if _ , err := state . New ( currentBlock . Root ( ) , bc . stateCache ) ; err != nil {
// Dangling block without a state associated, init from scratch
utils . Logger ( ) . Warn ( ) .
Str ( "number" , currentBlock . Number ( ) . String ( ) ) .
Str ( "hash" , currentBlock . Hash ( ) . Hex ( ) ) .
Msg ( "Head state missing, repairing chain" )
if err := bc . repair ( & currentBlock ) ; err != nil {
return err
}
}
// Everything seems to be fine, set as the head block
bc . currentBlock . Store ( currentBlock )
// Restore the last known head header
currentHeader := currentBlock . Header ( )
if head := rawdb . ReadHeadHeaderHash ( bc . db ) ; head != ( common . Hash { } ) {
if header := bc . GetHeaderByHash ( head ) ; header != nil {
currentHeader = header
}
}
bc . hc . SetCurrentHeader ( currentHeader )
// Restore the last known head fast block
bc . currentFastBlock . Store ( currentBlock )
if head := rawdb . ReadHeadFastBlockHash ( bc . db ) ; head != ( common . Hash { } ) {
if block := bc . GetBlockByHash ( head ) ; block != nil {
bc . currentFastBlock . Store ( block )
}
}
// Issue a status log for the user
currentFastBlock := bc . CurrentFastBlock ( )
headerTd := bc . GetTd ( currentHeader . Hash ( ) , currentHeader . Number ( ) . Uint64 ( ) )
blockTd := bc . GetTd ( currentBlock . Hash ( ) , currentBlock . NumberU64 ( ) )
fastTd := bc . GetTd ( currentFastBlock . Hash ( ) , currentFastBlock . NumberU64 ( ) )
utils . Logger ( ) . Info ( ) .
Str ( "number" , currentHeader . Number ( ) . String ( ) ) .
Str ( "hash" , currentHeader . Hash ( ) . Hex ( ) ) .
Str ( "td" , headerTd . String ( ) ) .
Str ( "age" , common . PrettyAge ( time . Unix ( currentHeader . Time ( ) . Int64 ( ) , 0 ) ) . String ( ) ) .
Msg ( "Loaded most recent local header" )
utils . Logger ( ) . Info ( ) .
Str ( "number" , currentBlock . Number ( ) . String ( ) ) .
Str ( "hash" , currentBlock . Hash ( ) . Hex ( ) ) .
Str ( "td" , blockTd . String ( ) ) .
Str ( "age" , common . PrettyAge ( time . Unix ( currentBlock . Time ( ) . Int64 ( ) , 0 ) ) . String ( ) ) .
Msg ( "Loaded most recent local full block" )
utils . Logger ( ) . Info ( ) .
Str ( "number" , currentFastBlock . Number ( ) . String ( ) ) .
Str ( "hash" , currentFastBlock . Hash ( ) . Hex ( ) ) .
Str ( "td" , fastTd . String ( ) ) .
Str ( "age" , common . PrettyAge ( time . Unix ( currentFastBlock . Time ( ) . Int64 ( ) , 0 ) ) . String ( ) ) .
Msg ( "Loaded most recent local fast block" )
return nil
}
// SetHead rewinds the local chain to a new head. In the case of headers, everything
// above the new head will be deleted and the new one set. In the case of blocks
// though, the head may be further rewound if block bodies are missing (non-archive
// nodes after a fast sync).
func ( bc * BlockChain ) SetHead ( head uint64 ) error {
utils . Logger ( ) . Warn ( ) . Uint64 ( "target" , head ) . Msg ( "Rewinding blockchain" )
bc . mu . Lock ( )
defer bc . mu . Unlock ( )
// Rewind the header chain, deleting all block bodies until then
delFn := func ( db rawdb . DatabaseDeleter , hash common . Hash , num uint64 ) {
rawdb . DeleteBody ( db , hash , num )
}
bc . hc . SetHead ( head , delFn )
currentHeader := bc . hc . CurrentHeader ( )
// Clear out any stale content from the caches
bc . bodyCache . Purge ( )
bc . bodyRLPCache . Purge ( )
bc . receiptsCache . Purge ( )
bc . blockCache . Purge ( )
bc . futureBlocks . Purge ( )
bc . shardStateCache . Purge ( )
// Rewind the block chain, ensuring we don't end up with a stateless head block
if currentBlock := bc . CurrentBlock ( ) ; currentBlock != nil && currentHeader . Number ( ) . Uint64 ( ) < currentBlock . NumberU64 ( ) {
bc . currentBlock . Store ( bc . GetBlock ( currentHeader . Hash ( ) , currentHeader . Number ( ) . Uint64 ( ) ) )
}
if currentBlock := bc . CurrentBlock ( ) ; currentBlock != nil {
if _ , err := state . New ( currentBlock . Root ( ) , bc . stateCache ) ; err != nil {
// Rewound state missing, rolled back to before pivot, reset to genesis
bc . currentBlock . Store ( bc . genesisBlock )
}
}
// Rewind the fast block in a simpleton way to the target head
if currentFastBlock := bc . CurrentFastBlock ( ) ; currentFastBlock != nil && currentHeader . Number ( ) . Uint64 ( ) < currentFastBlock . NumberU64 ( ) {
bc . currentFastBlock . Store ( bc . GetBlock ( currentHeader . Hash ( ) , currentHeader . Number ( ) . Uint64 ( ) ) )
}
// If either blocks reached nil, reset to the genesis state
if currentBlock := bc . CurrentBlock ( ) ; currentBlock == nil {
bc . currentBlock . Store ( bc . genesisBlock )
}
if currentFastBlock := bc . CurrentFastBlock ( ) ; currentFastBlock == nil {
bc . currentFastBlock . Store ( bc . genesisBlock )
}
currentBlock := bc . CurrentBlock ( )
currentFastBlock := bc . CurrentFastBlock ( )
rawdb . WriteHeadBlockHash ( bc . db , currentBlock . Hash ( ) )
rawdb . WriteHeadFastBlockHash ( bc . db , currentFastBlock . Hash ( ) )
return bc . loadLastState ( )
}
// FastSyncCommitHead sets the current head block to the one defined by the hash
// irrelevant what the chain contents were prior.
func ( bc * BlockChain ) FastSyncCommitHead ( hash common . Hash ) error {
// Make sure that both the block as well at its state trie exists
block := bc . GetBlockByHash ( hash )
if block == nil {
return fmt . Errorf ( "non existent block [%x…]" , hash [ : 4 ] )
}
if _ , err := trie . NewSecure ( block . Root ( ) , bc . stateCache . TrieDB ( ) , 0 ) ; err != nil {
return err
}
// If all checks out, manually set the head block
bc . mu . Lock ( )
bc . currentBlock . Store ( block )
bc . mu . Unlock ( )
utils . Logger ( ) . Info ( ) .
Str ( "number" , block . Number ( ) . String ( ) ) .
Str ( "hash" , hash . Hex ( ) ) .
Msg ( "Committed new head block" )
return nil
}
// ShardID returns the shard Id of the blockchain.
// TODO: use a better solution before resharding shuffle nodes to different shards
func ( bc * BlockChain ) ShardID ( ) uint32 {
return bc . CurrentBlock ( ) . ShardID ( )
}
// GasLimit returns the gas limit of the current HEAD block.
func ( bc * BlockChain ) GasLimit ( ) uint64 {
return bc . CurrentBlock ( ) . GasLimit ( )
}
// CurrentBlock retrieves the current head block of the canonical chain. The
// block is retrieved from the blockchain's internal cache.
func ( bc * BlockChain ) CurrentBlock ( ) * types . Block {
return bc . currentBlock . Load ( ) . ( * types . Block )
}
// CurrentFastBlock retrieves the current fast-sync head block of the canonical
// chain. The block is retrieved from the blockchain's internal cache.
func ( bc * BlockChain ) CurrentFastBlock ( ) * types . Block {
return bc . currentFastBlock . Load ( ) . ( * types . Block )
}
// SetProcessor sets the processor required for making state modifications.
func ( bc * BlockChain ) SetProcessor ( processor Processor ) {
bc . procmu . Lock ( )
defer bc . procmu . Unlock ( )
bc . processor = processor
}
// SetValidator sets the validator which is used to validate incoming blocks.
func ( bc * BlockChain ) SetValidator ( validator Validator ) {
bc . procmu . Lock ( )
defer bc . procmu . Unlock ( )
bc . validator = validator
}
// Validator returns the current validator.
func ( bc * BlockChain ) Validator ( ) Validator {
bc . procmu . RLock ( )
defer bc . procmu . RUnlock ( )
return bc . validator
}
// Processor returns the current processor.
func ( bc * BlockChain ) Processor ( ) Processor {
bc . procmu . RLock ( )
defer bc . procmu . RUnlock ( )
return bc . processor
}
// State returns a new mutable state based on the current HEAD block.
func ( bc * BlockChain ) State ( ) ( * state . DB , error ) {
return bc . StateAt ( bc . CurrentBlock ( ) . Root ( ) )
}
// StateAt returns a new mutable state based on a particular point in time.
func ( bc * BlockChain ) StateAt ( root common . Hash ) ( * state . DB , error ) {
return state . New ( root , bc . stateCache )
}
// Reset purges the entire blockchain, restoring it to its genesis state.
func ( bc * BlockChain ) Reset ( ) error {
return bc . ResetWithGenesisBlock ( bc . genesisBlock )
}
// ResetWithGenesisBlock purges the entire blockchain, restoring it to the
// specified genesis state.
func ( bc * BlockChain ) ResetWithGenesisBlock ( genesis * types . Block ) error {
// Dump the entire block chain and purge the caches
if err := bc . SetHead ( 0 ) ; err != nil {
return err
}
bc . mu . Lock ( )
defer bc . mu . Unlock ( )
// Prepare the genesis block and reinitialise the chain
rawdb . WriteBlock ( bc . db , genesis )
bc . genesisBlock = genesis
bc . insert ( bc . genesisBlock )
bc . currentBlock . Store ( bc . genesisBlock )
bc . hc . SetGenesis ( bc . genesisBlock . Header ( ) )
bc . hc . SetCurrentHeader ( bc . genesisBlock . Header ( ) )
bc . currentFastBlock . Store ( bc . genesisBlock )
return nil
}
// repair tries to repair the current blockchain by rolling back the current block
// until one with associated state is found. This is needed to fix incomplete db
// writes caused either by crashes/power outages, or simply non-committed tries.
//
// This method only rolls back the current block. The current header and current
// fast block are left intact.
func ( bc * BlockChain ) repair ( head * * types . Block ) error {
for {
// Abort if we've rewound to a head block that does have associated state
if _ , err := state . New ( ( * head ) . Root ( ) , bc . stateCache ) ; err == nil {
utils . Logger ( ) . Info ( ) .
Str ( "number" , ( * head ) . Number ( ) . String ( ) ) .
Str ( "hash" , ( * head ) . Hash ( ) . Hex ( ) ) .
Msg ( "Rewound blockchain to past state" )
return nil
}
// Otherwise rewind one block and recheck state availability there
( * head ) = bc . GetBlock ( ( * head ) . ParentHash ( ) , ( * head ) . NumberU64 ( ) - 1 )
}
}
// Export writes the active chain to the given writer.
func ( bc * BlockChain ) Export ( w io . Writer ) error {
return bc . ExportN ( w , uint64 ( 0 ) , bc . CurrentBlock ( ) . NumberU64 ( ) )
}
// ExportN writes a subset of the active chain to the given writer.
func ( bc * BlockChain ) ExportN ( w io . Writer , first uint64 , last uint64 ) error {
bc . mu . RLock ( )
defer bc . mu . RUnlock ( )
if first > last {
return fmt . Errorf ( "export failed: first (%d) is greater than last (%d)" , first , last )
}
utils . Logger ( ) . Info ( ) . Uint64 ( "count" , last - first + 1 ) . Msg ( "Exporting batch of blocks" )
start , reported := time . Now ( ) , time . Now ( )
for nr := first ; nr <= last ; nr ++ {
block := bc . GetBlockByNumber ( nr )
if block == nil {
return fmt . Errorf ( "export failed on #%d: not found" , nr )
}
if err := block . EncodeRLP ( w ) ; err != nil {
return err
}
if time . Since ( reported ) >= statsReportLimit {
utils . Logger ( ) . Info ( ) .
Uint64 ( "exported" , block . NumberU64 ( ) - first ) .
Str ( "elapsed" , common . PrettyDuration ( time . Since ( start ) ) . String ( ) ) .
Msg ( "Exporting blocks" )
reported = time . Now ( )
}
}
return nil
}
// insert injects a new head block into the current block chain. This method
// assumes that the block is indeed a true head. It will also reset the head
// header and the head fast sync block to this very same block if they are older
// or if they are on a different side chain.
//
// Note, this function assumes that the `mu` mutex is held!
func ( bc * BlockChain ) insert ( block * types . Block ) {
// If the block is on a side chain or an unknown one, force other heads onto it too
updateHeads := rawdb . ReadCanonicalHash ( bc . db , block . NumberU64 ( ) ) != block . Hash ( )
// Add the block to the canonical chain number scheme and mark as the head
rawdb . WriteCanonicalHash ( bc . db , block . Hash ( ) , block . NumberU64 ( ) )
rawdb . WriteHeadBlockHash ( bc . db , block . Hash ( ) )
bc . currentBlock . Store ( block )
// If the block is better than our head or is on a different chain, force update heads
if updateHeads {
bc . hc . SetCurrentHeader ( block . Header ( ) )
rawdb . WriteHeadFastBlockHash ( bc . db , block . Hash ( ) )
bc . currentFastBlock . Store ( block )
}
}
// Genesis retrieves the chain's genesis block.
func ( bc * BlockChain ) Genesis ( ) * types . Block {
return bc . genesisBlock
}
// GetBody retrieves a block body (transactions and uncles) from the database by
// hash, caching it if found.
func ( bc * BlockChain ) GetBody ( hash common . Hash ) * types . Body {
// Short circuit if the body's already in the cache, retrieve otherwise
if cached , ok := bc . bodyCache . Get ( hash ) ; ok {
body := cached . ( * types . Body )
return body
}
number := bc . hc . GetBlockNumber ( hash )
if number == nil {
return nil
}
body := rawdb . ReadBody ( bc . db , hash , * number )
if body == nil {
return nil
}
// Cache the found body for next time and return
bc . bodyCache . Add ( hash , body )
return body
}
// GetBodyRLP retrieves a block body in RLP encoding from the database by hash,
// caching it if found.
func ( bc * BlockChain ) GetBodyRLP ( hash common . Hash ) rlp . RawValue {
// Short circuit if the body's already in the cache, retrieve otherwise
if cached , ok := bc . bodyRLPCache . Get ( hash ) ; ok {
return cached . ( rlp . RawValue )
}
number := bc . hc . GetBlockNumber ( hash )
if number == nil {
return nil
}
body := rawdb . ReadBodyRLP ( bc . db , hash , * number )
if len ( body ) == 0 {
return nil
}
// Cache the found body for next time and return
bc . bodyRLPCache . Add ( hash , body )
return body
}
// HasBlock checks if a block is fully present in the database or not.
func ( bc * BlockChain ) HasBlock ( hash common . Hash , number uint64 ) bool {
if bc . blockCache . Contains ( hash ) {
return true
}
return rawdb . HasBody ( bc . db , hash , number )
}
// HasState checks if state trie is fully present in the database or not.
func ( bc * BlockChain ) HasState ( hash common . Hash ) bool {
_ , err := bc . stateCache . OpenTrie ( hash )
return err == nil
}
// HasBlockAndState checks if a block and associated state trie is fully present
// in the database or not, caching it if present.
func ( bc * BlockChain ) HasBlockAndState ( hash common . Hash , number uint64 ) bool {
// Check first that the block itself is known
block := bc . GetBlock ( hash , number )
if block == nil {
return false
}
return bc . HasState ( block . Root ( ) )
}
// GetBlock retrieves a block from the database by hash and number,
// caching it if found.
func ( bc * BlockChain ) GetBlock ( hash common . Hash , number uint64 ) * types . Block {
// Short circuit if the block's already in the cache, retrieve otherwise
if block , ok := bc . blockCache . Get ( hash ) ; ok {
return block . ( * types . Block )
}
block := rawdb . ReadBlock ( bc . db , hash , number )
if block == nil {
return nil
}
// Cache the found block for next time and return
bc . blockCache . Add ( block . Hash ( ) , block )
return block
}
// GetBlockByHash retrieves a block from the database by hash, caching it if found.
func ( bc * BlockChain ) GetBlockByHash ( hash common . Hash ) * types . Block {
number := bc . hc . GetBlockNumber ( hash )
if number == nil {
return nil
}
return bc . GetBlock ( hash , * number )
}
// GetBlockByNumber retrieves a block from the database by number, caching it
// (associated with its hash) if found.
func ( bc * BlockChain ) GetBlockByNumber ( number uint64 ) * types . Block {
hash := rawdb . ReadCanonicalHash ( bc . db , number )
if hash == ( common . Hash { } ) {
return nil
}
return bc . GetBlock ( hash , number )
}
// GetReceiptsByHash retrieves the receipts for all transactions in a given block.
func ( bc * BlockChain ) GetReceiptsByHash ( hash common . Hash ) types . Receipts {
if receipts , ok := bc . receiptsCache . Get ( hash ) ; ok {
return receipts . ( types . Receipts )
}
number := rawdb . ReadHeaderNumber ( bc . db , hash )
if number == nil {
return nil
}
receipts := rawdb . ReadReceipts ( bc . db , hash , * number )
bc . receiptsCache . Add ( hash , receipts )
return receipts
}
// GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors.
// [deprecated by eth/62]
func ( bc * BlockChain ) GetBlocksFromHash ( hash common . Hash , n int ) ( blocks [ ] * types . Block ) {
number := bc . hc . GetBlockNumber ( hash )
if number == nil {
return nil
}
for i := 0 ; i < n ; i ++ {
block := bc . GetBlock ( hash , * number )
if block == nil {
break
}
blocks = append ( blocks , block )
hash = block . ParentHash ( )
* number --
}
return
}
// GetUnclesInChain retrieves all the uncles from a given block backwards until
// a specific distance is reached.
func ( bc * BlockChain ) GetUnclesInChain ( b * types . Block , length int ) [ ] * block . Header {
uncles := [ ] * block . Header { }
for i := 0 ; b != nil && i < length ; i ++ {
uncles = append ( uncles , b . Uncles ( ) ... )
b = bc . GetBlock ( b . ParentHash ( ) , b . NumberU64 ( ) - 1 )
}
return uncles
}
// TrieNode retrieves a blob of data associated with a trie node (or code hash)
// either from ephemeral in-memory cache, or from persistent storage.
func ( bc * BlockChain ) TrieNode ( hash common . Hash ) ( [ ] byte , error ) {
return bc . stateCache . TrieDB ( ) . Node ( hash )
}
// Stop stops the blockchain service. If any imports are currently in progress
// it will abort them using the procInterrupt.
func ( bc * BlockChain ) Stop ( ) {
if ! atomic . CompareAndSwapInt32 ( & bc . running , 0 , 1 ) {
return
}
// Unsubscribe all subscriptions registered from blockchain
bc . scope . Close ( )
close ( bc . quit )
atomic . StoreInt32 ( & bc . procInterrupt , 1 )
bc . wg . Wait ( )
// Ensure the state of a recent block is also stored to disk before exiting.
// We're writing three different states to catch different restart scenarios:
// - HEAD: So we don't need to reprocess any blocks in the general case
// - HEAD-1: So we don't do large reorgs if our HEAD becomes an uncle
// - HEAD-127: So we have a hard limit on the number of blocks reexecuted
if ! bc . cacheConfig . Disabled {
triedb := bc . stateCache . TrieDB ( )
for _ , offset := range [ ] uint64 { 0 , 1 , triesInMemory - 1 } {
if number := bc . CurrentBlock ( ) . NumberU64 ( ) ; number > offset {
recent := bc . GetHeaderByNumber ( number - offset )
utils . Logger ( ) . Info ( ) .
Str ( "block" , recent . Number ( ) . String ( ) ) .
Str ( "hash" , recent . Hash ( ) . Hex ( ) ) .
Str ( "root" , recent . Root ( ) . Hex ( ) ) .
Msg ( "Writing cached state to disk" )
if err := triedb . Commit ( recent . Root ( ) , true ) ; err != nil {
utils . Logger ( ) . Error ( ) . Err ( err ) . Msg ( "Failed to commit recent state trie" )
}
}
}
for ! bc . triegc . Empty ( ) {
triedb . Dereference ( bc . triegc . PopItem ( ) . ( common . Hash ) )
}
if size , _ := triedb . Size ( ) ; size != 0 {
utils . Logger ( ) . Error ( ) . Msg ( "Dangling trie nodes after full cleanup" )
}
}
utils . Logger ( ) . Info ( ) . Msg ( "Blockchain manager stopped" )
}
func ( bc * BlockChain ) procFutureBlocks ( ) {
blocks := make ( [ ] * types . Block , 0 , bc . futureBlocks . Len ( ) )
for _ , hash := range bc . futureBlocks . Keys ( ) {
if block , exist := bc . futureBlocks . Peek ( hash ) ; exist {
blocks = append ( blocks , block . ( * types . Block ) )
}
}
if len ( blocks ) > 0 {
types . BlockBy ( types . Number ) . Sort ( blocks )
// Insert one by one as chain insertion needs contiguous ancestry between blocks
for i := range blocks {
bc . InsertChain ( blocks [ i : i + 1 ] )
}
}
}
// WriteStatus status of write
type WriteStatus byte
// Constants for WriteStatus
const (
NonStatTy WriteStatus = iota
CanonStatTy
SideStatTy
)
// Rollback is designed to remove a chain of links from the database that aren't
// certain enough to be valid.
func ( bc * BlockChain ) Rollback ( chain [ ] common . Hash ) {
bc . mu . Lock ( )
defer bc . mu . Unlock ( )
for i := len ( chain ) - 1 ; i >= 0 ; i -- {
hash := chain [ i ]
currentHeader := bc . hc . CurrentHeader ( )
if currentHeader != nil && currentHeader . Hash ( ) == hash {
bc . hc . SetCurrentHeader ( bc . GetHeader ( currentHeader . ParentHash ( ) , currentHeader . Number ( ) . Uint64 ( ) - 1 ) )
}
if currentFastBlock := bc . CurrentFastBlock ( ) ; currentFastBlock != nil && currentFastBlock . Hash ( ) == hash {
newFastBlock := bc . GetBlock ( currentFastBlock . ParentHash ( ) , currentFastBlock . NumberU64 ( ) - 1 )
if newFastBlock != nil {
bc . currentFastBlock . Store ( newFastBlock )
rawdb . WriteHeadFastBlockHash ( bc . db , newFastBlock . Hash ( ) )
}
}
if currentBlock := bc . CurrentBlock ( ) ; currentBlock != nil && currentBlock . Hash ( ) == hash {
newBlock := bc . GetBlock ( currentBlock . ParentHash ( ) , currentBlock . NumberU64 ( ) - 1 )
if newBlock != nil {
bc . currentBlock . Store ( newBlock )
rawdb . WriteHeadBlockHash ( bc . db , newBlock . Hash ( ) )
}
}
}
}
// SetReceiptsData computes all the non-consensus fields of the receipts
func SetReceiptsData ( config * params . ChainConfig , block * types . Block , receipts types . Receipts ) error {
signer := types . MakeSigner ( config , block . Epoch ( ) )
transactions , logIndex := block . Transactions ( ) , uint ( 0 )
if len ( transactions ) != len ( receipts ) {
return errors . New ( "transaction and receipt count mismatch" )
}
for j := 0 ; j < len ( receipts ) ; j ++ {
// The transaction hash can be retrieved from the transaction itself
receipts [ j ] . TxHash = transactions [ j ] . Hash ( )
// The contract address can be derived from the transaction itself
if transactions [ j ] . To ( ) == nil {
// Deriving the signer is expensive, only do if it's actually needed
from , _ := types . Sender ( signer , transactions [ j ] )
receipts [ j ] . ContractAddress = crypto . CreateAddress ( from , transactions [ j ] . Nonce ( ) )
}
// The used gas can be calculated based on previous receipts
if j == 0 {
receipts [ j ] . GasUsed = receipts [ j ] . CumulativeGasUsed
} else {
receipts [ j ] . GasUsed = receipts [ j ] . CumulativeGasUsed - receipts [ j - 1 ] . CumulativeGasUsed
}
// The derived log fields can simply be set from the block and transaction
for k := 0 ; k < len ( receipts [ j ] . Logs ) ; k ++ {
receipts [ j ] . Logs [ k ] . BlockNumber = block . NumberU64 ( )
receipts [ j ] . Logs [ k ] . BlockHash = block . Hash ( )
receipts [ j ] . Logs [ k ] . TxHash = receipts [ j ] . TxHash
receipts [ j ] . Logs [ k ] . TxIndex = uint ( j )
receipts [ j ] . Logs [ k ] . Index = logIndex
logIndex ++
}
}
return nil
}
// InsertReceiptChain attempts to complete an already existing header chain with
// transaction and receipt data.
func ( bc * BlockChain ) InsertReceiptChain ( blockChain types . Blocks , receiptChain [ ] types . Receipts ) ( int , error ) {
bc . wg . Add ( 1 )
defer bc . wg . Done ( )
// Do a sanity check that the provided chain is actually ordered and linked
for i := 1 ; i < len ( blockChain ) ; i ++ {
if blockChain [ i ] . NumberU64 ( ) != blockChain [ i - 1 ] . NumberU64 ( ) + 1 || blockChain [ i ] . ParentHash ( ) != blockChain [ i - 1 ] . Hash ( ) {
utils . Logger ( ) . Error ( ) .
Str ( "number" , blockChain [ i ] . Number ( ) . String ( ) ) .
Str ( "hash" , blockChain [ i ] . Hash ( ) . Hex ( ) ) .
Str ( "parent" , blockChain [ i ] . ParentHash ( ) . Hex ( ) ) .
Str ( "prevnumber" , blockChain [ i - 1 ] . Number ( ) . String ( ) ) .
Str ( "prevhash" , blockChain [ i - 1 ] . Hash ( ) . Hex ( ) ) .
Msg ( "Non contiguous receipt insert" )
return 0 , fmt . Errorf ( "non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])" , i - 1 , blockChain [ i - 1 ] . NumberU64 ( ) ,
blockChain [ i - 1 ] . Hash ( ) . Bytes ( ) [ : 4 ] , i , blockChain [ i ] . NumberU64 ( ) , blockChain [ i ] . Hash ( ) . Bytes ( ) [ : 4 ] , blockChain [ i ] . ParentHash ( ) . Bytes ( ) [ : 4 ] )
}
}
var (
stats = struct { processed , ignored int32 } { }
start = time . Now ( )
bytes = 0
batch = bc . db . NewBatch ( )
)
for i , block := range blockChain {
receipts := receiptChain [ i ]
// Short circuit insertion if shutting down or processing failed
if atomic . LoadInt32 ( & bc . procInterrupt ) == 1 {
return 0 , nil
}
// Short circuit if the owner header is unknown
if ! bc . HasHeader ( block . Hash ( ) , block . NumberU64 ( ) ) {
return i , fmt . Errorf ( "containing header #%d [%x…] unknown" , block . Number ( ) , block . Hash ( ) . Bytes ( ) [ : 4 ] )
}
// Skip if the entire data is already known
if bc . HasBlock ( block . Hash ( ) , block . NumberU64 ( ) ) {
stats . ignored ++
continue
}
// Compute all the non-consensus fields of the receipts
if err := SetReceiptsData ( bc . chainConfig , block , receipts ) ; err != nil {
return i , fmt . Errorf ( "failed to set receipts data: %v" , err )
}
// Write all the data out into the database
rawdb . WriteBody ( batch , block . Hash ( ) , block . NumberU64 ( ) , block . Body ( ) )
rawdb . WriteReceipts ( batch , block . Hash ( ) , block . NumberU64 ( ) , receipts )
rawdb . WriteTxLookupEntries ( batch , block )
stats . processed ++
if batch . ValueSize ( ) >= ethdb . IdealBatchSize {
if err := batch . Write ( ) ; err != nil {
return 0 , err
}
bytes += batch . ValueSize ( )
batch . Reset ( )
}
}
if batch . ValueSize ( ) > 0 {
bytes += batch . ValueSize ( )
if err := batch . Write ( ) ; err != nil {
return 0 , err
}
}
// Update the head fast sync block if better
bc . mu . Lock ( )
head := blockChain [ len ( blockChain ) - 1 ]
if td := bc . GetTd ( head . Hash ( ) , head . NumberU64 ( ) ) ; td != nil { // Rewind may have occurred, skip in that case
currentFastBlock := bc . CurrentFastBlock ( )
if bc . GetTd ( currentFastBlock . Hash ( ) , currentFastBlock . NumberU64 ( ) ) . Cmp ( td ) < 0 {
rawdb . WriteHeadFastBlockHash ( bc . db , head . Hash ( ) )
bc . currentFastBlock . Store ( head )
}
}
bc . mu . Unlock ( )
utils . Logger ( ) . Info ( ) .
Int32 ( "count" , stats . processed ) .
Str ( "elapsed" , common . PrettyDuration ( time . Since ( start ) ) . String ( ) ) .
Str ( "age" , common . PrettyAge ( time . Unix ( head . Time ( ) . Int64 ( ) , 0 ) ) . String ( ) ) .
Str ( "head" , head . Number ( ) . String ( ) ) .
Str ( "hash" , head . Hash ( ) . Hex ( ) ) .
Str ( "size" , common . StorageSize ( bytes ) . String ( ) ) .
Int32 ( "ignored" , stats . ignored ) .
Msg ( "Imported new block receipts" )
return 0 , nil
}
var lastWrite uint64
// WriteBlockWithoutState writes only the block and its metadata to the database,
// but does not write any state. This is used to construct competing side forks
// up to the point where they exceed the canonical total difficulty.
func ( bc * BlockChain ) WriteBlockWithoutState ( block * types . Block , td * big . Int ) ( err error ) {
bc . wg . Add ( 1 )
defer bc . wg . Done ( )
if err := bc . hc . WriteTd ( block . Hash ( ) , block . NumberU64 ( ) , td ) ; err != nil {
return err
}
rawdb . WriteBlock ( bc . db , block )
return nil
}
// WriteBlockWithState writes the block and all associated state to the database.
func ( bc * BlockChain ) WriteBlockWithState ( block * types . Block , receipts [ ] * types . Receipt , cxReceipts [ ] * types . CXReceipt , state * state . DB ) ( status WriteStatus , err error ) {
bc . wg . Add ( 1 )
defer bc . wg . Done ( )
// Make sure no inconsistent state is leaked during insertion
bc . mu . Lock ( )
defer bc . mu . Unlock ( )
currentBlock := bc . CurrentBlock ( )
rawdb . WriteBlock ( bc . db , block )
root , err := state . Commit ( bc . chainConfig . IsS3 ( block . Epoch ( ) ) )
if err != nil {
return NonStatTy , err
}
triedb := bc . stateCache . TrieDB ( )
// If we're running an archive node, always flush
if bc . cacheConfig . Disabled {
if err := triedb . Commit ( root , false ) ; err != nil {
return NonStatTy , err
}
} else {
// Full but not archive node, do proper garbage collection
triedb . Reference ( root , common . Hash { } ) // metadata reference to keep trie alive
bc . triegc . Push ( root , - int64 ( block . NumberU64 ( ) ) )
if current := block . NumberU64 ( ) ; current > triesInMemory {
// If we exceeded our memory allowance, flush matured singleton nodes to disk
var (
nodes , imgs = triedb . Size ( )
limit = common . StorageSize ( bc . cacheConfig . TrieNodeLimit ) * 1024 * 1024
)
if nodes > limit || imgs > 4 * 1024 * 1024 {
triedb . Cap ( limit - ethdb . IdealBatchSize )
}
// Find the next state trie we need to commit
header := bc . GetHeaderByNumber ( current - triesInMemory )
chosen := header . Number ( ) . Uint64 ( )
// If we exceeded out time allowance, flush an entire trie to disk
if bc . gcproc > bc . cacheConfig . TrieTimeLimit {
// If we're exceeding limits but haven't reached a large enough memory gap,
// warn the user that the system is becoming unstable.
if chosen < lastWrite + triesInMemory && bc . gcproc >= 2 * bc . cacheConfig . TrieTimeLimit {
utils . Logger ( ) . Info ( ) .
Dur ( "time" , bc . gcproc ) .
Dur ( "allowance" , bc . cacheConfig . TrieTimeLimit ) .
Float64 ( "optimum" , float64 ( chosen - lastWrite ) / triesInMemory ) .
Msg ( "State in memory for too long, committing" )
}
// Flush an entire trie and restart the counters
triedb . Commit ( header . Root ( ) , true )
lastWrite = chosen
bc . gcproc = 0
}
// Garbage collect anything below our required write retention
for ! bc . triegc . Empty ( ) {
root , number := bc . triegc . Pop ( )
if uint64 ( - number ) > chosen {
bc . triegc . Push ( root , number )
break
}
triedb . Dereference ( root . ( common . Hash ) )
}
}
}
// Write other block data using a batch.
batch := bc . db . NewBatch ( )
rawdb . WriteReceipts ( batch , block . Hash ( ) , block . NumberU64 ( ) , receipts )
epoch := block . Header ( ) . Epoch ( )
if bc . chainConfig . IsCrossTx ( block . Epoch ( ) ) {
shardingConfig := ShardingSchedule . InstanceForEpoch ( epoch )
shardNum := int ( shardingConfig . NumShards ( ) )
for i := 0 ; i < shardNum ; i ++ {
if i == int ( block . ShardID ( ) ) {
continue
}
shardReceipts := GetToShardReceipts ( cxReceipts , uint32 ( i ) )
err := rawdb . WriteCXReceipts ( batch , uint32 ( i ) , block . NumberU64 ( ) , block . Hash ( ) , shardReceipts , false )
if err != nil {
utils . Logger ( ) . Debug ( ) . Err ( err ) . Interface ( "shardReceipts" , shardReceipts ) . Int ( "toShardID" , i ) . Msg ( "WriteCXReceipts cannot write into database" )
}
}
// Mark incomingReceipts in the block as spent
bc . WriteCXReceiptsProofSpent ( block . IncomingReceipts ( ) )
}
// If the total difficulty is higher than our known, add it to the canonical chain
// Second clause in the if statement reduces the vulnerability to selfish mining.
// Please refer to http://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf
// TODO: Remove reorg code, it's not used in our code
reorg := true
if reorg {
// Reorganise the chain if the parent is not the head block
if block . ParentHash ( ) != currentBlock . Hash ( ) {
if err := bc . reorg ( currentBlock , block ) ; err != nil {
return NonStatTy , err
}
}
// Write the positional metadata for transaction/receipt lookups and preimages
rawdb . WriteTxLookupEntries ( batch , block )
rawdb . WritePreimages ( batch , block . NumberU64 ( ) , state . Preimages ( ) )
// write the positional metadata for CXReceipts lookups
rawdb . WriteCxLookupEntries ( batch , block )
status = CanonStatTy
} else {
status = SideStatTy
}
if err := batch . Write ( ) ; err != nil {
return NonStatTy , err
}
// Set new head.
if status == CanonStatTy {
bc . insert ( block )
}
bc . futureBlocks . Remove ( block . Hash ( ) )
return status , nil
}
// InsertChain attempts to insert the given batch of blocks in to the canonical
// chain or, otherwise, create a fork. If an error is returned it will return
// the index number of the failing block as well an error describing what went
// wrong.
//
// After insertion is done, all accumulated events will be fired.
func ( bc * BlockChain ) InsertChain ( chain types . Blocks ) ( int , error ) {
n , events , logs , err := bc . insertChain ( chain )
bc . PostChainEvents ( events , logs )
if err == nil {
for idx , block := range chain {
header := block . Header ( )
header . Logger ( utils . Logger ( ) ) . Info ( ) .
Int ( "segmentIndex" , idx ) .
Str ( "parentHash" , header . ParentHash ( ) . Hex ( ) ) .
Msg ( "added block to chain" )
// TODO: move into WriteBlockWithState
if header . ShardStateHash ( ) != ( common . Hash { } ) {
epoch := new ( big . Int ) . Add ( header . Epoch ( ) , common . Big1 )
err = bc . WriteShardStateBytes ( epoch , header . ShardState ( ) )
if err != nil {
header . Logger ( utils . Logger ( ) ) . Warn ( ) . Err ( err ) . Msg ( "cannot store shard state" )
return n , err
}
}
// TODO: move into WriteBlockWithState
if len ( header . CrossLinks ( ) ) > 0 {
crossLinks := & types . CrossLinks { }
err = rlp . DecodeBytes ( header . CrossLinks ( ) , crossLinks )
if err != nil {
header . Logger ( utils . Logger ( ) ) . Warn ( ) . Err ( err ) . Msg ( "[insertChain] cannot parse cross links" )
return n , err
}
if ! crossLinks . IsSorted ( ) {
header . Logger ( utils . Logger ( ) ) . Warn ( ) . Err ( err ) . Msg ( "[insertChain] cross links are not sorted" )
return n , errors . New ( "proposed cross links are not sorted" )
}
for _ , crossLink := range * crossLinks {
if err := bc . WriteCrossLinks ( types . CrossLinks { crossLink } , false ) ; err == nil {
utils . Logger ( ) . Info ( ) . Uint64 ( "blockNum" , crossLink . BlockNum ( ) . Uint64 ( ) ) . Uint32 ( "shardID" , crossLink . ShardID ( ) ) . Msg ( "[InsertChain] Cross Link Added to Beaconchain" )
}
bc . DeleteCrossLinks ( types . CrossLinks { crossLink } , true )
bc . WriteShardLastCrossLink ( crossLink . ShardID ( ) , crossLink )
}
}
}
}
return n , err
}
// insertChain will execute the actual chain insertion and event aggregation. The
// only reason this method exists as a separate one is to make locking cleaner
// with deferred statements.
func ( bc * BlockChain ) insertChain ( chain types . Blocks ) ( int , [ ] interface { } , [ ] * types . Log , error ) {
// Sanity check that we have something meaningful to import
if len ( chain ) == 0 {
return 0 , nil , nil , nil
}
// Do a sanity check that the provided chain is actually ordered and linked
for i := 1 ; i < len ( chain ) ; i ++ {
if chain [ i ] . NumberU64 ( ) != chain [ i - 1 ] . NumberU64 ( ) + 1 || chain [ i ] . ParentHash ( ) != chain [ i - 1 ] . Hash ( ) {
// Chain broke ancestry, log a message (programming error) and skip insertion
utils . Logger ( ) . Error ( ) .
Str ( "number" , chain [ i ] . Number ( ) . String ( ) ) .
Str ( "hash" , chain [ i ] . Hash ( ) . Hex ( ) ) .
Str ( "parent" , chain [ i ] . ParentHash ( ) . Hex ( ) ) .
Str ( "prevnumber" , chain [ i - 1 ] . Number ( ) . String ( ) ) .
Str ( "prevhash" , chain [ i - 1 ] . Hash ( ) . Hex ( ) ) .
Msg ( "Non contiguous block insert" )
return 0 , nil , nil , fmt . Errorf ( "non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])" , i - 1 , chain [ i - 1 ] . NumberU64 ( ) ,
chain [ i - 1 ] . Hash ( ) . Bytes ( ) [ : 4 ] , i , chain [ i ] . NumberU64 ( ) , chain [ i ] . Hash ( ) . Bytes ( ) [ : 4 ] , chain [ i ] . ParentHash ( ) . Bytes ( ) [ : 4 ] )
}
}
// Pre-checks passed, start the full block imports
bc . wg . Add ( 1 )
defer bc . wg . Done ( )
bc . chainmu . Lock ( )
defer bc . chainmu . Unlock ( )
// A queued approach to delivering events. This is generally
// faster than direct delivery and requires much less mutex
// acquiring.
var (
stats = insertStats { startTime : mclock . Now ( ) }
events = make ( [ ] interface { } , 0 , len ( chain ) )
lastCanon * types . Block
coalescedLogs [ ] * types . Log
)
// Start the parallel header verifier
headers := make ( [ ] * block . Header , len ( chain ) )
seals := make ( [ ] bool , len ( chain ) )
for i , block := range chain {
headers [ i ] = block . Header ( )
seals [ i ] = true
}
abort , results := bc . Engine ( ) . VerifyHeaders ( bc , headers , seals )
defer close ( abort )
// Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss)
//senderCacher.recoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain)
// Iterate over the blocks and insert when the verifier permits
for i , block := range chain {
// If the chain is terminating, stop processing blocks
if atomic . LoadInt32 ( & bc . procInterrupt ) == 1 {
utils . Logger ( ) . Debug ( ) . Msg ( "Premature abort during blocks processing" )
break
}
// Wait for the block's verification to complete
bstart := time . Now ( )
err := <- results
if err == nil {
err = bc . Validator ( ) . ValidateBody ( block )
}
switch {
case err == ErrKnownBlock :
// Block and state both already known. However if the current block is below
// this number we did a rollback and we should reimport it nonetheless.
if bc . CurrentBlock ( ) . NumberU64 ( ) >= block . NumberU64 ( ) {
stats . ignored ++
continue
}
case err == consensus_engine . ErrFutureBlock :
// Allow up to MaxFuture second in the future blocks. If this limit is exceeded
// the chain is discarded and processed at a later time if given.
max := big . NewInt ( time . Now ( ) . Unix ( ) + maxTimeFutureBlocks )
if block . Time ( ) . Cmp ( max ) > 0 {
return i , events , coalescedLogs , fmt . Errorf ( "future block: %v > %v" , block . Time ( ) , max )
}
bc . futureBlocks . Add ( block . Hash ( ) , block )
stats . queued ++
continue
case err == consensus_engine . ErrUnknownAncestor && bc . futureBlocks . Contains ( block . ParentHash ( ) ) :
bc . futureBlocks . Add ( block . Hash ( ) , block )
stats . queued ++
continue
case err == consensus_engine . ErrPrunedAncestor :
// TODO: add fork choice mechanism
// Block competing with the canonical chain, store in the db, but don't process
// until the competitor TD goes above the canonical TD
//currentBlock := bc.CurrentBlock()
//localTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
//externTd := new(big.Int).Add(bc.GetTd(block.ParentHash(), block.NumberU64()-1), block.Difficulty())
//if localTd.Cmp(externTd) > 0 {
// if err = bc.WriteBlockWithoutState(block, externTd); err != nil {
// return i, events, coalescedLogs, err
// }
// continue
//}
// Competitor chain beat canonical, gather all blocks from the common ancestor
var winner [ ] * types . Block
parent := bc . GetBlock ( block . ParentHash ( ) , block . NumberU64 ( ) - 1 )
for parent != nil && ! bc . HasState ( parent . Root ( ) ) {
winner = append ( winner , parent )
parent = bc . GetBlock ( parent . ParentHash ( ) , parent . NumberU64 ( ) - 1 )
}
for j := 0 ; j < len ( winner ) / 2 ; j ++ {
winner [ j ] , winner [ len ( winner ) - 1 - j ] = winner [ len ( winner ) - 1 - j ] , winner [ j ]
}
// Prune in case non-empty winner chain
if len ( winner ) > 0 {
// Import all the pruned blocks to make the state available
bc . chainmu . Unlock ( )
_ , evs , logs , err := bc . insertChain ( winner )
bc . chainmu . Lock ( )
events , coalescedLogs = evs , logs
if err != nil {
return i , events , coalescedLogs , err
}
}
case err != nil :
bc . reportBlock ( block , nil , err )
return i , events , coalescedLogs , err
}
// Create a new statedb using the parent block and report an
// error if it fails.
var parent * types . Block
if i == 0 {
parent = bc . GetBlock ( block . ParentHash ( ) , block . NumberU64 ( ) - 1 )
} else {
parent = chain [ i - 1 ]
}
state , err := state . New ( parent . Root ( ) , bc . stateCache )
if err != nil {
return i , events , coalescedLogs , err
}
// Process block using the parent state as reference point.
receipts , cxReceipts , logs , usedGas , err := bc . processor . Process ( block , state , bc . vmConfig )
if err != nil {
bc . reportBlock ( block , receipts , err )
return i , events , coalescedLogs , err
}
// Validate the state using the default validator
err = bc . Validator ( ) . ValidateState ( block , parent , state , receipts , cxReceipts , usedGas )
if err != nil {
bc . reportBlock ( block , receipts , err )
return i , events , coalescedLogs , err
}
proctime := time . Since ( bstart )
// Write the block to the chain and get the status.
status , err := bc . WriteBlockWithState ( block , receipts , cxReceipts , state )
if err != nil {
return i , events , coalescedLogs , err
}
logger := utils . Logger ( ) . With ( ) .
Str ( "number" , block . Number ( ) . String ( ) ) .
Str ( "hash" , block . Hash ( ) . Hex ( ) ) .
Int ( "uncles" , len ( block . Uncles ( ) ) ) .
Int ( "txs" , len ( block . Transactions ( ) ) ) .
Uint64 ( "gas" , block . GasUsed ( ) ) .
Str ( "elapsed" , common . PrettyDuration ( time . Since ( bstart ) ) . String ( ) ) .
Logger ( )
switch status {
case CanonStatTy :
logger . Info ( ) . Msg ( "Inserted new block" )
coalescedLogs = append ( coalescedLogs , logs ... )
blockInsertTimer . UpdateSince ( bstart )
events = append ( events , ChainEvent { block , block . Hash ( ) , logs } )
lastCanon = block
// Only count canonical blocks for GC processing time
bc . gcproc += proctime
case SideStatTy :
logger . Debug ( ) . Msg ( "Inserted forked block" )
blockInsertTimer . UpdateSince ( bstart )
events = append ( events , ChainSideEvent { block } )
}
stats . processed ++
stats . usedGas += usedGas
cache , _ := bc . stateCache . TrieDB ( ) . Size ( )
stats . report ( chain , i , cache )
//check non zero VRF field in header and add to local db
if len ( block . Vrf ( ) ) > 0 {
vrfBlockNumbers , _ := bc . ReadEpochVrfBlockNums ( block . Header ( ) . Epoch ( ) )
if ( len ( vrfBlockNumbers ) > 0 ) && ( vrfBlockNumbers [ len ( vrfBlockNumbers ) - 1 ] == block . NumberU64 ( ) ) {
utils . Logger ( ) . Error ( ) .
Str ( "number" , chain [ i ] . Number ( ) . String ( ) ) .
Str ( "epoch" , block . Header ( ) . Epoch ( ) . String ( ) ) .
Msg ( "VRF block number is already in local db" )
} else {
vrfBlockNumbers = append ( vrfBlockNumbers , block . NumberU64 ( ) )
err = bc . WriteEpochVrfBlockNums ( block . Header ( ) . Epoch ( ) , vrfBlockNumbers )
if err != nil {
utils . Logger ( ) . Error ( ) .
Str ( "number" , chain [ i ] . Number ( ) . String ( ) ) .
Str ( "epoch" , block . Header ( ) . Epoch ( ) . String ( ) ) .
Msg ( "failed to write VRF block number to local db" )
}
}
}
//check non zero Vdf in header and add to local db
if len ( block . Vdf ( ) ) > 0 {
err = bc . WriteEpochVdfBlockNum ( block . Header ( ) . Epoch ( ) , block . Number ( ) )
if err != nil {
utils . Logger ( ) . Error ( ) .
Str ( "number" , chain [ i ] . Number ( ) . String ( ) ) .
Str ( "epoch" , block . Header ( ) . Epoch ( ) . String ( ) ) .
Msg ( "failed to write VDF block number to local db" )
}
}
}
// Append a single chain head event if we've progressed the chain
if lastCanon != nil && bc . CurrentBlock ( ) . Hash ( ) == lastCanon . Hash ( ) {
events = append ( events , ChainHeadEvent { lastCanon } )
}
return 0 , events , coalescedLogs , nil
}
// insertStats tracks and reports on block insertion.
type insertStats struct {
queued , processed , ignored int
usedGas uint64
lastIndex int
startTime mclock . AbsTime
}
// statsReportLimit is the time limit during import and export after which we
// always print out progress. This avoids the user wondering what's going on.
const statsReportLimit = 8 * time . Second
// report prints statistics if some number of blocks have been processed
// or more than a few seconds have passed since the last message.
func ( st * insertStats ) report ( chain [ ] * types . Block , index int , cache common . StorageSize ) {
// Fetch the timings for the batch
var (
now = mclock . Now ( )
elapsed = time . Duration ( now ) - time . Duration ( st . startTime )
)
// If we're at the last block of the batch or report period reached, log
if index == len ( chain ) - 1 || elapsed >= statsReportLimit {
var (
end = chain [ index ]
txs = countTransactions ( chain [ st . lastIndex : index + 1 ] )
)
context := utils . Logger ( ) . With ( ) .
Int ( "blocks" , st . processed ) .
Int ( "txs" , txs ) .
Float64 ( "mgas" , float64 ( st . usedGas ) / 1000000 ) .
Str ( "elapsed" , common . PrettyDuration ( elapsed ) . String ( ) ) .
Float64 ( "mgasps" , float64 ( st . usedGas ) * 1000 / float64 ( elapsed ) ) .
Str ( "number" , end . Number ( ) . String ( ) ) .
Str ( "hash" , end . Hash ( ) . Hex ( ) ) .
Str ( "cache" , cache . String ( ) )
if timestamp := time . Unix ( end . Time ( ) . Int64 ( ) , 0 ) ; time . Since ( timestamp ) > time . Minute {
context = context . Str ( "age" , common . PrettyAge ( timestamp ) . String ( ) )
}
if st . queued > 0 {
context = context . Int ( "queued" , st . queued )
}
if st . ignored > 0 {
context = context . Int ( "ignored" , st . ignored )
}
logger := context . Logger ( )
logger . Info ( ) . Msg ( "Imported new chain segment" )
* st = insertStats { startTime : now , lastIndex : index + 1 }
}
}
func countTransactions ( chain [ ] * types . Block ) ( c int ) {
for _ , b := range chain {
c += len ( b . Transactions ( ) )
}
return c
}
// reorgs takes two blocks, an old chain and a new chain and will reconstruct the blocks and inserts them
// to be part of the new canonical chain and accumulates potential missing transactions and post an
// event about them
func ( bc * BlockChain ) reorg ( oldBlock , newBlock * types . Block ) error {
var (
newChain types . Blocks
oldChain types . Blocks
commonBlock * types . Block
deletedTxs types . Transactions
deletedLogs [ ] * types . Log
// collectLogs collects the logs that were generated during the
// processing of the block that corresponds with the given hash.
// These logs are later announced as deleted.
collectLogs = func ( hash common . Hash ) {
// Coalesce logs and set 'Removed'.
number := bc . hc . GetBlockNumber ( hash )
if number == nil {
return
}
receipts := rawdb . ReadReceipts ( bc . db , hash , * number )
for _ , receipt := range receipts {
for _ , log := range receipt . Logs {
del := * log
del . Removed = true
deletedLogs = append ( deletedLogs , & del )
}
}
}
)
// first reduce whoever is higher bound
if oldBlock . NumberU64 ( ) > newBlock . NumberU64 ( ) {
// reduce old chain
for ; oldBlock != nil && oldBlock . NumberU64 ( ) != newBlock . NumberU64 ( ) ; oldBlock = bc . GetBlock ( oldBlock . ParentHash ( ) , oldBlock . NumberU64 ( ) - 1 ) {
oldChain = append ( oldChain , oldBlock )
deletedTxs = append ( deletedTxs , oldBlock . Transactions ( ) ... )
collectLogs ( oldBlock . Hash ( ) )
}
} else {
// reduce new chain and append new chain blocks for inserting later on
for ; newBlock != nil && newBlock . NumberU64 ( ) != oldBlock . NumberU64 ( ) ; newBlock = bc . GetBlock ( newBlock . ParentHash ( ) , newBlock . NumberU64 ( ) - 1 ) {
newChain = append ( newChain , newBlock )
}
}
if oldBlock == nil {
return fmt . Errorf ( "Invalid old chain" )
}
if newBlock == nil {
return fmt . Errorf ( "Invalid new chain" )
}
for {
if oldBlock . Hash ( ) == newBlock . Hash ( ) {
commonBlock = oldBlock
break
}
oldChain = append ( oldChain , oldBlock )
newChain = append ( newChain , newBlock )
deletedTxs = append ( deletedTxs , oldBlock . Transactions ( ) ... )
collectLogs ( oldBlock . Hash ( ) )
oldBlock , newBlock = bc . GetBlock ( oldBlock . ParentHash ( ) , oldBlock . NumberU64 ( ) - 1 ) , bc . GetBlock ( newBlock . ParentHash ( ) , newBlock . NumberU64 ( ) - 1 )
if oldBlock == nil {
return fmt . Errorf ( "Invalid old chain" )
}
if newBlock == nil {
return fmt . Errorf ( "Invalid new chain" )
}
}
// Ensure the user sees large reorgs
if len ( oldChain ) > 0 && len ( newChain ) > 0 {
logEvent := utils . Logger ( ) . Debug ( )
if len ( oldChain ) > 63 {
logEvent = utils . Logger ( ) . Warn ( )
}
logEvent .
Str ( "number" , commonBlock . Number ( ) . String ( ) ) .
Str ( "hash" , commonBlock . Hash ( ) . Hex ( ) ) .
Int ( "drop" , len ( oldChain ) ) .
Str ( "dropfrom" , oldChain [ 0 ] . Hash ( ) . Hex ( ) ) .
Int ( "add" , len ( newChain ) ) .
Str ( "addfrom" , newChain [ 0 ] . Hash ( ) . Hex ( ) ) .
Msg ( "Chain split detected" )
} else {
utils . Logger ( ) . Error ( ) .
Str ( "oldnum" , oldBlock . Number ( ) . String ( ) ) .
Str ( "oldhash" , oldBlock . Hash ( ) . Hex ( ) ) .
Str ( "newnum" , newBlock . Number ( ) . String ( ) ) .
Str ( "newhash" , newBlock . Hash ( ) . Hex ( ) ) .
Msg ( "Impossible reorg, please file an issue" )
}
// Insert the new chain, taking care of the proper incremental order
var addedTxs types . Transactions
for i := len ( newChain ) - 1 ; i >= 0 ; i -- {
// insert the block in the canonical way, re-writing history
bc . insert ( newChain [ i ] )
// write lookup entries for hash based transaction/receipt searches
rawdb . WriteTxLookupEntries ( bc . db , newChain [ i ] )
addedTxs = append ( addedTxs , newChain [ i ] . Transactions ( ) ... )
}
// calculate the difference between deleted and added transactions
diff := types . TxDifference ( deletedTxs , addedTxs )
// When transactions get deleted from the database that means the
// receipts that were created in the fork must also be deleted
batch := bc . db . NewBatch ( )
for _ , tx := range diff {
rawdb . DeleteTxLookupEntry ( batch , tx . Hash ( ) )
}
batch . Write ( )
if len ( deletedLogs ) > 0 {
go bc . rmLogsFeed . Send ( RemovedLogsEvent { deletedLogs } )
}
if len ( oldChain ) > 0 {
go func ( ) {
for _ , block := range oldChain {
bc . chainSideFeed . Send ( ChainSideEvent { Block : block } )
}
} ( )
}
return nil
}
// PostChainEvents iterates over the events generated by a chain insertion and
// posts them into the event feed.
// TODO: Should not expose PostChainEvents. The chain events should be posted in WriteBlock.
func ( bc * BlockChain ) PostChainEvents ( events [ ] interface { } , logs [ ] * types . Log ) {
// post event logs for further processing
if logs != nil {
bc . logsFeed . Send ( logs )
}
for _ , event := range events {
switch ev := event . ( type ) {
case ChainEvent :
bc . chainFeed . Send ( ev )
case ChainHeadEvent :
bc . chainHeadFeed . Send ( ev )
case ChainSideEvent :
bc . chainSideFeed . Send ( ev )
}
}
}
func ( bc * BlockChain ) update ( ) {
futureTimer := time . NewTicker ( 5 * time . Second )
defer futureTimer . Stop ( )
for {
select {
case <- futureTimer . C :
bc . procFutureBlocks ( )
case <- bc . quit :
return
}
}
}
// BadBlocks returns a list of the last 'bad blocks' that the client has seen on the network
func ( bc * BlockChain ) BadBlocks ( ) [ ] * types . Block {
blocks := make ( [ ] * types . Block , 0 , bc . badBlocks . Len ( ) )
for _ , hash := range bc . badBlocks . Keys ( ) {
if blk , exist := bc . badBlocks . Peek ( hash ) ; exist {
block := blk . ( * types . Block )
blocks = append ( blocks , block )
}
}
return blocks
}
// addBadBlock adds a bad block to the bad-block LRU cache
func ( bc * BlockChain ) addBadBlock ( block * types . Block ) {
bc . badBlocks . Add ( block . Hash ( ) , block )
}
// reportBlock logs a bad block error.
func ( bc * BlockChain ) reportBlock ( block * types . Block , receipts types . Receipts , err error ) {
bc . addBadBlock ( block )
var receiptString string
for _ , receipt := range receipts {
receiptString += fmt . Sprintf ( "\t%v\n" , receipt )
}
utils . Logger ( ) . Error ( ) . Msgf ( `
# # # # # # # # # # BAD BLOCK # # # # # # # # #
Chain config : % v
Number : % v
Hash : 0 x % x
% v
Error : % v
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
` , bc . chainConfig , block . Number ( ) , block . Hash ( ) , receiptString , err )
}
// InsertHeaderChain attempts to insert the given header chain in to the local
// chain, possibly creating a reorg. If an error is returned, it will return the
// index number of the failing header as well an error describing what went wrong.
//
// The verify parameter can be used to fine tune whether nonce verification
// should be done or not. The reason behind the optional check is because some
// of the header retrieval mechanisms already need to verify nonces, as well as
// because nonces can be verified sparsely, not needing to check each.
func ( bc * BlockChain ) InsertHeaderChain ( chain [ ] * block . Header , checkFreq int ) ( int , error ) {
start := time . Now ( )
if i , err := bc . hc . ValidateHeaderChain ( chain , checkFreq ) ; err != nil {
return i , err
}
// Make sure only one thread manipulates the chain at once
bc . chainmu . Lock ( )
defer bc . chainmu . Unlock ( )
bc . wg . Add ( 1 )
defer bc . wg . Done ( )
whFunc := func ( header * block . Header ) error {
bc . mu . Lock ( )
defer bc . mu . Unlock ( )
_ , err := bc . hc . WriteHeader ( header )
return err
}
return bc . hc . InsertHeaderChain ( chain , whFunc , start )
}
// writeHeader writes a header into the local chain, given that its parent is
// already known. If the total difficulty of the newly inserted header becomes
// greater than the current known TD, the canonical chain is re-routed.
//
// Note: This method is not concurrent-safe with inserting blocks simultaneously
// into the chain, as side effects caused by reorganisations cannot be emulated
// without the real blocks. Hence, writing headers directly should only be done
// in two scenarios: pure-header mode of operation (light clients), or properly
// separated header/block phases (non-archive clients).
func ( bc * BlockChain ) writeHeader ( header * block . Header ) error {
bc . wg . Add ( 1 )
defer bc . wg . Done ( )
bc . mu . Lock ( )
defer bc . mu . Unlock ( )
_ , err := bc . hc . WriteHeader ( header )
return err
}
// CurrentHeader retrieves the current head header of the canonical chain. The
// header is retrieved from the HeaderChain's internal cache.
func ( bc * BlockChain ) CurrentHeader ( ) * block . Header {
return bc . hc . CurrentHeader ( )
}
// GetTd retrieves a block's total difficulty in the canonical chain from the
// database by hash and number, caching it if found.
func ( bc * BlockChain ) GetTd ( hash common . Hash , number uint64 ) * big . Int {
return bc . hc . GetTd ( hash , number )
}
// GetTdByHash retrieves a block's total difficulty in the canonical chain from the
// database by hash, caching it if found.
func ( bc * BlockChain ) GetTdByHash ( hash common . Hash ) * big . Int {
return bc . hc . GetTdByHash ( hash )
}
// GetHeader retrieves a block header from the database by hash and number,
// caching it if found.
func ( bc * BlockChain ) GetHeader ( hash common . Hash , number uint64 ) * block . Header {
return bc . hc . GetHeader ( hash , number )
}
// GetHeaderByHash retrieves a block header from the database by hash, caching it if
// found.
func ( bc * BlockChain ) GetHeaderByHash ( hash common . Hash ) * block . Header {
return bc . hc . GetHeaderByHash ( hash )
}
// HasHeader checks if a block header is present in the database or not, caching
// it if present.
func ( bc * BlockChain ) HasHeader ( hash common . Hash , number uint64 ) bool {
return bc . hc . HasHeader ( hash , number )
}
// GetBlockHashesFromHash retrieves a number of block hashes starting at a given
// hash, fetching towards the genesis block.
func ( bc * BlockChain ) GetBlockHashesFromHash ( hash common . Hash , max uint64 ) [ ] common . Hash {
return bc . hc . GetBlockHashesFromHash ( hash , max )
}
// GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or
// a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the
// number of blocks to be individually checked before we reach the canonical chain.
//
// Note: ancestor == 0 returns the same block, 1 returns its parent and so on.
func ( bc * BlockChain ) GetAncestor ( hash common . Hash , number , ancestor uint64 , maxNonCanonical * uint64 ) ( common . Hash , uint64 ) {
bc . chainmu . Lock ( )
defer bc . chainmu . Unlock ( )
return bc . hc . GetAncestor ( hash , number , ancestor , maxNonCanonical )
}
// GetHeaderByNumber retrieves a block header from the database by number,
// caching it (associated with its hash) if found.
func ( bc * BlockChain ) GetHeaderByNumber ( number uint64 ) * block . Header {
return bc . hc . GetHeaderByNumber ( number )
}
// Config retrieves the blockchain's chain configuration.
func ( bc * BlockChain ) Config ( ) * params . ChainConfig { return bc . chainConfig }
// Engine retrieves the blockchain's consensus engine.
func ( bc * BlockChain ) Engine ( ) consensus_engine . Engine { return bc . engine }
// SubscribeRemovedLogsEvent registers a subscription of RemovedLogsEvent.
func ( bc * BlockChain ) SubscribeRemovedLogsEvent ( ch chan <- RemovedLogsEvent ) event . Subscription {
return bc . scope . Track ( bc . rmLogsFeed . Subscribe ( ch ) )
}
// SubscribeChainEvent registers a subscription of ChainEvent.
func ( bc * BlockChain ) SubscribeChainEvent ( ch chan <- ChainEvent ) event . Subscription {
return bc . scope . Track ( bc . chainFeed . Subscribe ( ch ) )
}
// SubscribeChainHeadEvent registers a subscription of ChainHeadEvent.
func ( bc * BlockChain ) SubscribeChainHeadEvent ( ch chan <- ChainHeadEvent ) event . Subscription {
return bc . scope . Track ( bc . chainHeadFeed . Subscribe ( ch ) )
}
// SubscribeChainSideEvent registers a subscription of ChainSideEvent.
func ( bc * BlockChain ) SubscribeChainSideEvent ( ch chan <- ChainSideEvent ) event . Subscription {
return bc . scope . Track ( bc . chainSideFeed . Subscribe ( ch ) )
}
// SubscribeLogsEvent registers a subscription of []*types.Log.
func ( bc * BlockChain ) SubscribeLogsEvent ( ch chan <- [ ] * types . Log ) event . Subscription {
return bc . scope . Track ( bc . logsFeed . Subscribe ( ch ) )
}
// ReadShardState retrieves sharding state given the epoch number.
func ( bc * BlockChain ) ReadShardState ( epoch * big . Int ) ( shard . State , error ) {
cacheKey := string ( epoch . Bytes ( ) )
if cached , ok := bc . shardStateCache . Get ( cacheKey ) ; ok {
shardState := cached . ( shard . State )
return shardState , nil
}
shardState , err := rawdb . ReadShardState ( bc . db , epoch )
if err != nil {
return nil , err
}
bc . shardStateCache . Add ( cacheKey , shardState )
return shardState , nil
}
// WriteShardState saves the given sharding state under the given epoch number.
func ( bc * BlockChain ) WriteShardState (
epoch * big . Int , shardState shard . State ,
) error {
shardState = shardState . DeepCopy ( )
err := rawdb . WriteShardState ( bc . db , epoch , shardState )
if err != nil {
return err
}
cacheKey := string ( epoch . Bytes ( ) )
bc . shardStateCache . Add ( cacheKey , shardState )
return nil
}
// WriteShardStateBytes saves the given sharding state under the given epoch number.
func ( bc * BlockChain ) WriteShardStateBytes (
epoch * big . Int , shardState [ ] byte ,
) error {
decodeShardState := shard . State { }
if err := rlp . DecodeBytes ( shardState , & decodeShardState ) ; err != nil {
return err
}
err := rawdb . WriteShardStateBytes ( bc . db , epoch , shardState )
if err != nil {
return err
}
cacheKey := string ( epoch . Bytes ( ) )
bc . shardStateCache . Add ( cacheKey , decodeShardState )
return nil
}
// ReadLastCommits retrieves last commits.
func ( bc * BlockChain ) ReadLastCommits ( ) ( [ ] byte , error ) {
if cached , ok := bc . lastCommitsCache . Get ( "lastCommits" ) ; ok {
lastCommits := cached . ( [ ] byte )
return lastCommits , nil
}
lastCommits , err := rawdb . ReadLastCommits ( bc . db )
if err != nil {
return nil , err
}
return lastCommits , nil
}
// WriteLastCommits saves the commits of last block.
func ( bc * BlockChain ) WriteLastCommits ( lastCommits [ ] byte ) error {
err := rawdb . WriteLastCommits ( bc . db , lastCommits )
if err != nil {
return err
}
bc . lastCommitsCache . Add ( "lastCommits" , lastCommits )
return nil
}
// GetVdfByNumber retrieves the rand seed given the block number, return 0 if not exist
func ( bc * BlockChain ) GetVdfByNumber ( number uint64 ) [ ] byte {
header := bc . GetHeaderByNumber ( number )
if header == nil {
return [ ] byte { }
}
return header . Vdf ( )
}
// GetVrfByNumber retrieves the randomness preimage given the block number, return 0 if not exist
func ( bc * BlockChain ) GetVrfByNumber ( number uint64 ) [ ] byte {
header := bc . GetHeaderByNumber ( number )
if header == nil {
return [ ] byte { }
}
return header . Vrf ( )
}
// GetShardState returns the shard state for the given epoch,
// creating one if needed.
func ( bc * BlockChain ) GetShardState ( epoch * big . Int ) ( shard . State , error ) {
shardState , err := bc . ReadShardState ( epoch )
if err == nil { // TODO ek – distinguish ErrNotFound
return shardState , err
}
shardState , err = CalculateNewShardState ( bc , epoch )
if err != nil {
return nil , err
}
err = bc . WriteShardState ( epoch , shardState )
if err != nil {
return nil , err
}
utils . Logger ( ) . Debug ( ) . Str ( "epoch" , epoch . String ( ) ) . Msg ( "saved new shard state" )
return shardState , nil
}
// ChainDb returns the database
func ( bc * BlockChain ) ChainDb ( ) ethdb . Database { return bc . db }
// GetEpochBlockNumber returns the first block number of the given epoch.
func ( bc * BlockChain ) GetEpochBlockNumber ( epoch * big . Int ) ( * big . Int , error ) {
// Try cache first
cacheKey := string ( epoch . Bytes ( ) )
if cachedValue , ok := bc . epochCache . Get ( cacheKey ) ; ok {
return ( & big . Int { } ) . SetBytes ( [ ] byte ( cachedValue . ( string ) ) ) , nil
}
blockNum , err := rawdb . ReadEpochBlockNumber ( bc . db , epoch )
if err != nil {
return nil , ctxerror . New ( "cannot read epoch block number from database" ,
"epoch" , epoch ,
) . WithCause ( err )
}
cachedValue := [ ] byte ( blockNum . Bytes ( ) )
bc . epochCache . Add ( cacheKey , cachedValue )
return blockNum , nil
}
// StoreEpochBlockNumber stores the given epoch-first block number.
func ( bc * BlockChain ) StoreEpochBlockNumber (
epoch * big . Int , blockNum * big . Int ,
) error {
cacheKey := string ( epoch . Bytes ( ) )
cachedValue := [ ] byte ( blockNum . Bytes ( ) )
bc . epochCache . Add ( cacheKey , cachedValue )
if err := rawdb . WriteEpochBlockNumber ( bc . db , epoch , blockNum ) ; err != nil {
return ctxerror . New ( "cannot write epoch block number to database" ,
"epoch" , epoch ,
"epochBlockNum" , blockNum ,
) . WithCause ( err )
}
return nil
}
// ReadEpochVrfBlockNums retrieves block numbers with valid VRF for the specified epoch
func ( bc * BlockChain ) ReadEpochVrfBlockNums ( epoch * big . Int ) ( [ ] uint64 , error ) {
vrfNumbers := [ ] uint64 { }
if cached , ok := bc . randomnessCache . Get ( "vrf-" + string ( epoch . Bytes ( ) ) ) ; ok {
encodedVrfNumbers := cached . ( [ ] byte )
if err := rlp . DecodeBytes ( encodedVrfNumbers , & vrfNumbers ) ; err != nil {
return nil , err
}
return vrfNumbers , nil
}
encodedVrfNumbers , err := rawdb . ReadEpochVrfBlockNums ( bc . db , epoch )
if err != nil {
return nil , err
}
if err := rlp . DecodeBytes ( encodedVrfNumbers , & vrfNumbers ) ; err != nil {
return nil , err
}
return vrfNumbers , nil
}
// WriteEpochVrfBlockNums saves block numbers with valid VRF for the specified epoch
func ( bc * BlockChain ) WriteEpochVrfBlockNums ( epoch * big . Int , vrfNumbers [ ] uint64 ) error {
encodedVrfNumbers , err := rlp . EncodeToBytes ( vrfNumbers )
if err != nil {
return err
}
err = rawdb . WriteEpochVrfBlockNums ( bc . db , epoch , encodedVrfNumbers )
if err != nil {
return err
}
bc . randomnessCache . Add ( "vrf-" + string ( epoch . Bytes ( ) ) , encodedVrfNumbers )
return nil
}
// ReadEpochVdfBlockNum retrieves block number with valid VDF for the specified epoch
func ( bc * BlockChain ) ReadEpochVdfBlockNum ( epoch * big . Int ) ( * big . Int , error ) {
if cached , ok := bc . randomnessCache . Get ( "vdf-" + string ( epoch . Bytes ( ) ) ) ; ok {
encodedVdfNumber := cached . ( [ ] byte )
return new ( big . Int ) . SetBytes ( encodedVdfNumber ) , nil
}
encodedVdfNumber , err := rawdb . ReadEpochVdfBlockNum ( bc . db , epoch )
if err != nil {
return nil , err
}
return new ( big . Int ) . SetBytes ( encodedVdfNumber ) , nil
}
// WriteEpochVdfBlockNum saves block number with valid VDF for the specified epoch
func ( bc * BlockChain ) WriteEpochVdfBlockNum ( epoch * big . Int , blockNum * big . Int ) error {
err := rawdb . WriteEpochVdfBlockNum ( bc . db , epoch , blockNum . Bytes ( ) )
if err != nil {
return err
}
bc . randomnessCache . Add ( "vdf-" + string ( epoch . Bytes ( ) ) , blockNum . Bytes ( ) )
return nil
}
// WriteCrossLinks saves the hashes of crosslinks by shardID and blockNum combination key
// temp=true is to write the just received cross link that's not committed into blockchain with consensus
func ( bc * BlockChain ) WriteCrossLinks ( cls [ ] types . CrossLink , temp bool ) error {
var err error
for i := 0 ; i < len ( cls ) ; i ++ {
cl := cls [ i ]
err = rawdb . WriteCrossLinkShardBlock ( bc . db , cl . ShardID ( ) , cl . BlockNum ( ) . Uint64 ( ) , cl . Serialize ( ) , temp )
}
return err
}
// DeleteCrossLinks removes the hashes of crosslinks by shardID and blockNum combination key
// temp=true is to write the just received cross link that's not committed into blockchain with consensus
func ( bc * BlockChain ) DeleteCrossLinks ( cls [ ] types . CrossLink , temp bool ) error {
var err error
for i := 0 ; i < len ( cls ) ; i ++ {
cl := cls [ i ]
err = rawdb . DeleteCrossLinkShardBlock ( bc . db , cl . ShardID ( ) , cl . BlockNum ( ) . Uint64 ( ) , temp )
}
return err
}
// ReadCrossLink retrieves crosslink given shardID and blockNum.
// temp=true is to retrieve the just received cross link that's not committed into blockchain with consensus
func ( bc * BlockChain ) ReadCrossLink ( shardID uint32 , blockNum uint64 , temp bool ) ( * types . CrossLink , error ) {
bytes , err := rawdb . ReadCrossLinkShardBlock ( bc . db , shardID , blockNum , temp )
if err != nil {
return nil , err
}
crossLink , err := types . DeserializeCrossLink ( bytes )
return crossLink , err
}
// WriteShardLastCrossLink saves the last crosslink of a shard
func ( bc * BlockChain ) WriteShardLastCrossLink ( shardID uint32 , cl types . CrossLink ) error {
return rawdb . WriteShardLastCrossLink ( bc . db , cl . ShardID ( ) , cl . Serialize ( ) )
}
// ReadShardLastCrossLink retrieves the last crosslink of a shard.
func ( bc * BlockChain ) ReadShardLastCrossLink ( shardID uint32 ) ( * types . CrossLink , error ) {
bytes , err := rawdb . ReadShardLastCrossLink ( bc . db , shardID )
if err != nil {
return nil , err
}
crossLink , err := types . DeserializeCrossLink ( bytes )
return crossLink , err
}
// IsSameLeaderAsPreviousBlock retrieves a block from the database by number, caching it
func ( bc * BlockChain ) IsSameLeaderAsPreviousBlock ( block * types . Block ) bool {
if IsEpochBlock ( block ) {
return false
}
previousHeader := bc . GetHeaderByNumber ( block . NumberU64 ( ) - 1 )
return block . Coinbase ( ) == previousHeader . Coinbase ( )
}
// ChainDB ...
// TODO(ricl): in eth, this is not exposed. I expose it here because I need it in Harmony object.
// In eth, chainDB is initialized within Ethereum object
func ( bc * BlockChain ) ChainDB ( ) ethdb . Database {
return bc . db
}
// GetVMConfig returns the block chain VM config.
func ( bc * BlockChain ) GetVMConfig ( ) * vm . Config {
return & bc . vmConfig
}
// GetToShardReceipts filters the cross shard receipts with given destination shardID
func GetToShardReceipts ( cxReceipts types . CXReceipts , shardID uint32 ) types . CXReceipts {
cxs := types . CXReceipts { }
for i := range cxReceipts {
cx := cxReceipts [ i ]
if cx . ToShardID == shardID {
cxs = append ( cxs , cx )
}
}
return cxs
}
// ReadCXReceipts retrieves the cross shard transaction receipts of a given shard
// temp=true is to retrieve the just received receipts that's not committed into blockchain with consensus
func ( bc * BlockChain ) ReadCXReceipts ( shardID uint32 , blockNum uint64 , blockHash common . Hash , temp bool ) ( types . CXReceipts , error ) {
cxs , err := rawdb . ReadCXReceipts ( bc . db , shardID , blockNum , blockHash , temp )
if err != nil || len ( cxs ) == 0 {
return nil , err
}
return cxs , nil
}
// WriteCXReceipts saves the cross shard transaction receipts of a given shard
// temp=true is to store the just received receipts that's not committed into blockchain with consensus
func ( bc * BlockChain ) WriteCXReceipts ( shardID uint32 , blockNum uint64 , blockHash common . Hash , receipts types . CXReceipts , temp bool ) error {
return rawdb . WriteCXReceipts ( bc . db , shardID , blockNum , blockHash , receipts , temp )
}
// CXMerkleProof calculates the cross shard transaction merkle proof of a given destination shard
func ( bc * BlockChain ) CXMerkleProof ( shardID uint32 , block * types . Block ) ( * types . CXMerkleProof , error ) {
proof := & types . CXMerkleProof { BlockNum : block . Number ( ) , BlockHash : block . Hash ( ) , ShardID : block . ShardID ( ) , CXReceiptHash : block . Header ( ) . OutgoingReceiptHash ( ) , CXShardHashes : [ ] common . Hash { } , ShardIDs : [ ] uint32 { } }
cxs , err := rawdb . ReadCXReceipts ( bc . db , shardID , block . NumberU64 ( ) , block . Hash ( ) , false )
if err != nil || cxs == nil {
return nil , err
}
epoch := block . Header ( ) . Epoch ( )
shardingConfig := ShardingSchedule . InstanceForEpoch ( epoch )
shardNum := int ( shardingConfig . NumShards ( ) )
for i := 0 ; i < shardNum ; i ++ {
receipts , err := bc . ReadCXReceipts ( uint32 ( i ) , block . NumberU64 ( ) , block . Hash ( ) , false )
if err != nil || len ( receipts ) == 0 {
continue
} else {
hash := types . DeriveSha ( receipts )
proof . CXShardHashes = append ( proof . CXShardHashes , hash )
proof . ShardIDs = append ( proof . ShardIDs , uint32 ( i ) )
}
}
if len ( proof . ShardIDs ) == 0 {
return nil , nil
}
return proof , nil
}
// LatestCXReceiptsCheckpoint returns the latest checkpoint
func ( bc * BlockChain ) LatestCXReceiptsCheckpoint ( shardID uint32 ) uint64 {
blockNum , _ := rawdb . ReadCXReceiptsProofUnspentCheckpoint ( bc . db , shardID )
return blockNum
}
// NextCXReceiptsCheckpoint returns the next checkpoint blockNum
func ( bc * BlockChain ) NextCXReceiptsCheckpoint ( currentNum uint64 , shardID uint32 ) uint64 {
lastCheckpoint , _ := rawdb . ReadCXReceiptsProofUnspentCheckpoint ( bc . db , shardID )
newCheckpoint := lastCheckpoint
// the new checkpoint will not exceed currentNum+1
for num := lastCheckpoint ; num <= currentNum + 1 ; num ++ {
newCheckpoint = num
by , _ := rawdb . ReadCXReceiptsProofSpent ( bc . db , shardID , num )
if by == rawdb . NAByte {
// TODO chao: check if there is IncompingReceiptsHash in crosslink header
// if the rootHash is non-empty, it means incomingReceipts are not delivered
// otherwise, it means there is no cross-shard transactions for this block
continue
}
if by == rawdb . SpentByte {
continue
}
// the first unspent blockHash found, break the loop
break
}
return newCheckpoint
}
// updateCXReceiptsCheckpoints will update the checkpoint and clean spent receipts upto checkpoint
func ( bc * BlockChain ) updateCXReceiptsCheckpoints ( shardID uint32 , currentNum uint64 ) {
lastCheckpoint , err := rawdb . ReadCXReceiptsProofUnspentCheckpoint ( bc . db , shardID )
if err != nil {
utils . Logger ( ) . Warn ( ) . Msg ( "[updateCXReceiptsCheckpoints] Cannot get lastCheckpoint" )
}
newCheckpoint := bc . NextCXReceiptsCheckpoint ( currentNum , shardID )
if lastCheckpoint == newCheckpoint {
return
}
utils . Logger ( ) . Debug ( ) . Uint64 ( "lastCheckpoint" , lastCheckpoint ) . Uint64 ( "newCheckpont" , newCheckpoint ) . Msg ( "[updateCXReceiptsCheckpoints]" )
for num := lastCheckpoint ; num < newCheckpoint ; num ++ {
rawdb . DeleteCXReceiptsProofSpent ( bc . db , shardID , num )
}
rawdb . WriteCXReceiptsProofUnspentCheckpoint ( bc . db , shardID , newCheckpoint )
}
// WriteCXReceiptsProofSpent mark the CXReceiptsProof list with given unspent status
// true: unspent, false: spent
func ( bc * BlockChain ) WriteCXReceiptsProofSpent ( cxps [ ] * types . CXReceiptsProof ) {
for _ , cxp := range cxps {
rawdb . WriteCXReceiptsProofSpent ( bc . db , cxp )
}
}
// IsSpent checks whether a CXReceiptsProof is unspent
func ( bc * BlockChain ) IsSpent ( cxp * types . CXReceiptsProof ) bool {
shardID := cxp . MerkleProof . ShardID
blockNum := cxp . MerkleProof . BlockNum . Uint64 ( )
by , _ := rawdb . ReadCXReceiptsProofSpent ( bc . db , shardID , blockNum )
if by == rawdb . SpentByte || cxp . MerkleProof . BlockNum . Uint64 ( ) < bc . LatestCXReceiptsCheckpoint ( cxp . MerkleProof . ShardID ) {
return true
}
return false
}
// UpdateCXReceiptsCheckpointsByBlock cleans checkpoints and update latest checkpoint based on incomingReceipts of the given block
func ( bc * BlockChain ) UpdateCXReceiptsCheckpointsByBlock ( block * types . Block ) {
m := make ( map [ uint32 ] uint64 )
for _ , cxp := range block . IncomingReceipts ( ) {
shardID := cxp . MerkleProof . ShardID
blockNum := cxp . MerkleProof . BlockNum . Uint64 ( )
if _ , ok := m [ shardID ] ; ! ok {
m [ shardID ] = blockNum
} else if m [ shardID ] < blockNum {
m [ shardID ] = blockNum
}
}
for k , v := range m {
utils . Logger ( ) . Debug ( ) . Uint32 ( "shardID" , k ) . Uint64 ( "blockNum" , v ) . Msg ( "[CleanCXReceiptsCheckpoints] Cleaning CXReceiptsProof upto" )
bc . updateCXReceiptsCheckpoints ( k , v )
}
}
// ReadTxLookupEntry returns where the given transaction resides in the chain,
// as a (block hash, block number, index in transaction list) triple.
// returns 0, 0 if not found
func ( bc * BlockChain ) ReadTxLookupEntry ( txID common . Hash ) ( common . Hash , uint64 , uint64 ) {
return rawdb . ReadTxLookupEntry ( bc . db , txID )
}
// ReadStakingValidator reads staking information of given validatorWrapper
func ( bc * BlockChain ) ReadStakingValidator ( addr common . Address ) ( * staking . ValidatorWrapper , error ) {
if cached , ok := bc . stakingCache . Get ( "staking-" + string ( addr . Bytes ( ) ) ) ; ok {
by := cached . ( [ ] byte )
v := staking . ValidatorWrapper { }
if err := rlp . DecodeBytes ( by , & v ) ; err != nil {
return nil , err
}
return & v , nil
}
return rawdb . ReadStakingValidator ( bc . db , addr )
}
// WriteStakingValidator reads staking information of given validatorWrapper
func ( bc * BlockChain ) WriteStakingValidator ( v * staking . ValidatorWrapper ) error {
err := rawdb . WriteStakingValidator ( bc . db , v )
if err != nil {
return err
}
by , err := rlp . EncodeToBytes ( v )
if err != nil {
return err
}
bc . stakingCache . Add ( "staking-" + string ( v . Address . Bytes ( ) ) , by )
return nil
}
// ReadValidatorMap reads the addresses of current all validators
func ( bc * BlockChain ) ReadValidatorMap ( ) ( map [ common . Address ] struct { } , error ) {
if cached , ok := bc . validatorMapCache . Get ( "validatorMap" ) ; ok {
by := cached . ( [ ] byte )
m := make ( map [ common . Address ] struct { } )
if err := rlp . DecodeBytes ( by , & m ) ; err != nil {
return nil , err
}
return m , nil
}
return rawdb . ReadValidatorMap ( bc . db )
}
// WriteValidatorMap writes the list of validator addresses to database
func ( bc * BlockChain ) WriteValidatorMap ( addrs map [ common . Address ] struct { } ) error {
err := rawdb . WriteValidatorMap ( bc . db , addrs )
if err != nil {
return err
}
by , err := rlp . EncodeToBytes ( addrs )
if err != nil {
return err
}
bc . validatorMapCache . Add ( "validatorMap" , by )
return nil
}
// UpdateValidatorMap updates the validator map according to staking transaction
func ( bc * BlockChain ) UpdateValidatorMap ( tx * staking . StakingTransaction ) error {
switch tx . StakingType ( ) {
case staking . DirectiveCreateValidator :
createValidator := tx . StakingMessage ( ) . ( staking . CreateValidator )
m , err := bc . ReadValidatorMap ( )
if err != nil {
return err
}
if m == nil {
m = make ( map [ common . Address ] struct { } )
}
m [ createValidator . ValidatorAddress ] = struct { } { }
err = bc . WriteValidatorMap ( m )
return err
// following cases are placeholder for now
case staking . DirectiveEditValidator :
case staking . DirectiveDelegate :
case staking . DirectiveUndelegate :
case staking . DirectiveCollectRewards :
default :
}
return nil
}
// CurrentValidatorAddresses returns the address of active validators for current epoch
func ( bc * BlockChain ) CurrentValidatorAddresses ( ) [ ] common . Address {
return nil
}
// ValidatorCandidates returns the up to date validator candidates for next epoch
func ( bc * BlockChain ) ValidatorCandidates ( ) [ ] common . Address {
return nil
}
// ValidatorInformation returns the information of validator
func ( bc * BlockChain ) ValidatorInformation ( addr common . Address ) * staking . Validator {
return nil
}
// DelegatorsInformation returns up to date information of delegators of a given validator address
func ( bc * BlockChain ) DelegatorsInformation ( addr common . Address ) [ ] * staking . Delegation {
return nil
}
// ValidatorStakingWithDelegation returns the amount of staking after applying all delegated stakes
func ( bc * BlockChain ) ValidatorStakingWithDelegation ( addr common . Address ) * big . Int {
return nil
}