The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
woop/accounts/abi/argument.go

281 lines
8.8 KiB

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package abi
import (
"encoding/json"
"fmt"
"reflect"
"strings"
)
// Argument holds the name of the argument and the corresponding type.
// Types are used when packing and testing arguments.
type Argument struct {
Name string
Type Type
Indexed bool // indexed is only used by events
}
// Arguments is a list of Argument
type Arguments []Argument
// ArgumentMarshaling is a struct for argument
type ArgumentMarshaling struct {
Name string
Type string
InternalType string
Components []ArgumentMarshaling
Indexed bool
}
// UnmarshalJSON implements json.Unmarshaler interface.
func (argument *Argument) UnmarshalJSON(data []byte) error {
var arg ArgumentMarshaling
err := json.Unmarshal(data, &arg)
if err != nil {
return fmt.Errorf("argument json err: %v", err)
}
argument.Type, err = NewType(arg.Type, arg.InternalType, arg.Components)
if err != nil {
return err
}
argument.Name = arg.Name
argument.Indexed = arg.Indexed
return nil
}
// NonIndexed returns the arguments with indexed arguments filtered out.
func (arguments Arguments) NonIndexed() Arguments {
var ret []Argument
for _, arg := range arguments {
if !arg.Indexed {
ret = append(ret, arg)
}
}
return ret
}
// isTuple returns true for non-atomic constructs, like (uint,uint) or uint[].
func (arguments Arguments) isTuple() bool {
return len(arguments) > 1
}
// Unpack performs the operation hexdata -> Go format.
func (arguments Arguments) Unpack(data []byte) ([]interface{}, error) {
if len(data) == 0 {
if len(arguments) != 0 {
return nil, fmt.Errorf("abi: attempting to unmarshall an empty string while arguments are expected")
}
// Nothing to unmarshal, return default variables
nonIndexedArgs := arguments.NonIndexed()
defaultVars := make([]interface{}, len(nonIndexedArgs))
for index, arg := range nonIndexedArgs {
defaultVars[index] = reflect.New(arg.Type.GetType())
}
return defaultVars, nil
}
return arguments.UnpackValues(data)
}
// UnpackIntoMap performs the operation hexdata -> mapping of argument name to argument value.
func (arguments Arguments) UnpackIntoMap(v map[string]interface{}, data []byte) error {
// Make sure map is not nil
if v == nil {
return fmt.Errorf("abi: cannot unpack into a nil map")
}
if len(data) == 0 {
if len(arguments) != 0 {
return fmt.Errorf("abi: attempting to unmarshall an empty string while arguments are expected")
}
return nil // Nothing to unmarshal, return
}
marshalledValues, err := arguments.UnpackValues(data)
if err != nil {
return err
}
for i, arg := range arguments.NonIndexed() {
v[arg.Name] = marshalledValues[i]
}
return nil
}
// Copy performs the operation go format -> provided struct.
func (arguments Arguments) Copy(v interface{}, values []interface{}) error {
// make sure the passed value is arguments pointer
if reflect.Ptr != reflect.ValueOf(v).Kind() {
return fmt.Errorf("abi: Unpack(non-pointer %T)", v)
}
if len(values) == 0 {
if len(arguments) != 0 {
return fmt.Errorf("abi: attempting to copy no values while %d arguments are expected", len(arguments))
}
return nil // Nothing to copy, return
}
if arguments.isTuple() {
return arguments.copyTuple(v, values)
}
return arguments.copyAtomic(v, values[0])
}
// unpackAtomic unpacks ( hexdata -> go ) a single value
func (arguments Arguments) copyAtomic(v interface{}, marshalledValues interface{}) error {
dst := reflect.ValueOf(v).Elem()
src := reflect.ValueOf(marshalledValues)
if dst.Kind() == reflect.Struct && src.Kind() != reflect.Struct {
return set(dst.Field(0), src)
}
return set(dst, src)
}
// copyTuple copies a batch of values from marshalledValues to v.
func (arguments Arguments) copyTuple(v interface{}, marshalledValues []interface{}) error {
value := reflect.ValueOf(v).Elem()
nonIndexedArgs := arguments.NonIndexed()
switch value.Kind() {
case reflect.Struct:
argNames := make([]string, len(nonIndexedArgs))
for i, arg := range nonIndexedArgs {
argNames[i] = arg.Name
}
var err error
abi2struct, err := mapArgNamesToStructFields(argNames, value)
if err != nil {
return err
}
for i, arg := range nonIndexedArgs {
field := value.FieldByName(abi2struct[arg.Name])
if !field.IsValid() {
return fmt.Errorf("abi: field %s can't be found in the given value", arg.Name)
}
if err := set(field, reflect.ValueOf(marshalledValues[i])); err != nil {
return err
}
}
case reflect.Slice, reflect.Array:
if value.Len() < len(marshalledValues) {
return fmt.Errorf("abi: insufficient number of arguments for unpack, want %d, got %d", len(arguments), value.Len())
}
for i := range nonIndexedArgs {
if err := set(value.Index(i), reflect.ValueOf(marshalledValues[i])); err != nil {
return err
}
}
default:
return fmt.Errorf("abi:[2] cannot unmarshal tuple in to %v", value.Type())
}
return nil
}
// UnpackValues can be used to unpack ABI-encoded hexdata according to the ABI-specification,
// without supplying a struct to unpack into. Instead, this method returns a list containing the
// values. An atomic argument will be a list with one element.
func (arguments Arguments) UnpackValues(data []byte) ([]interface{}, error) {
nonIndexedArgs := arguments.NonIndexed()
retval := make([]interface{}, 0, len(nonIndexedArgs))
virtualArgs := 0
for index, arg := range nonIndexedArgs {
marshalledValue, err := toGoType((index+virtualArgs)*32, arg.Type, data)
if arg.Type.T == ArrayTy && !isDynamicType(arg.Type) {
// If we have a static array, like [3]uint256, these are coded as
// just like uint256,uint256,uint256.
// This means that we need to add two 'virtual' arguments when
// we count the index from now on.
//
// Array values nested multiple levels deep are also encoded inline:
// [2][3]uint256: uint256,uint256,uint256,uint256,uint256,uint256
//
// Calculate the full array size to get the correct offset for the next argument.
// Decrement it by 1, as the normal index increment is still applied.
virtualArgs += getTypeSize(arg.Type)/32 - 1
} else if arg.Type.T == TupleTy && !isDynamicType(arg.Type) {
// If we have a static tuple, like (uint256, bool, uint256), these are
// coded as just like uint256,bool,uint256
virtualArgs += getTypeSize(arg.Type)/32 - 1
}
if err != nil {
return nil, err
}
retval = append(retval, marshalledValue)
}
return retval, nil
}
// PackValues performs the operation Go format -> Hexdata.
// It is the semantic opposite of UnpackValues.
func (arguments Arguments) PackValues(args []interface{}) ([]byte, error) {
return arguments.Pack(args...)
}
// Pack performs the operation Go format -> Hexdata.
func (arguments Arguments) Pack(args ...interface{}) ([]byte, error) {
// Make sure arguments match up and pack them
abiArgs := arguments
if len(args) != len(abiArgs) {
return nil, fmt.Errorf("argument count mismatch: got %d for %d", len(args), len(abiArgs))
}
// variable input is the output appended at the end of packed
// output. This is used for strings and bytes types input.
var variableInput []byte
// input offset is the bytes offset for packed output
inputOffset := 0
for _, abiArg := range abiArgs {
inputOffset += getTypeSize(abiArg.Type)
}
var ret []byte
for i, a := range args {
input := abiArgs[i]
// pack the input
packed, err := input.Type.pack(reflect.ValueOf(a))
if err != nil {
return nil, err
}
// check for dynamic types
if isDynamicType(input.Type) {
// set the offset
ret = append(ret, packNum(reflect.ValueOf(inputOffset))...)
// calculate next offset
inputOffset += len(packed)
// append to variable input
variableInput = append(variableInput, packed...)
} else {
// append the packed value to the input
ret = append(ret, packed...)
}
}
// append the variable input at the end of the packed input
ret = append(ret, variableInput...)
return ret, nil
}
// ToCamelCase converts an under-score string to a camel-case string
func ToCamelCase(input string) string {
parts := strings.Split(input, "_")
for i, s := range parts {
if len(s) > 0 {
parts[i] = strings.ToUpper(s[:1]) + s[1:]
}
}
return strings.Join(parts, "")
}