package consensus
import (
"bytes"
"crypto/sha256"
"encoding/binary"
"encoding/gob"
"fmt"
"harmony-benchmark/blockchain"
"harmony-benchmark/p2p"
"strings"
"time"
)
// WaitForNewBlock waits for a new block.
func ( consensus * Consensus ) WaitForNewBlock ( blockChannel chan blockchain . Block ) {
consensus . Log . Debug ( "Waiting for block" , "consensus" , consensus )
for { // keep waiting for new blocks
newBlock := <- blockChannel
// TODO: think about potential race condition
consensus . Log . Debug ( "STARTING CONSENSUS" , "consensus" , consensus )
for consensus . state == FINISHED {
time . Sleep ( 500 * time . Millisecond )
consensus . startConsensus ( & newBlock )
break
}
}
}
// ProcessMessageLeader is the leader's consensus message dispatcher
func ( consensus * Consensus ) ProcessMessageLeader ( message [ ] byte ) {
msgType , err := GetConsensusMessageType ( message )
if err != nil {
consensus . Log . Error ( "Failed to get consensus message type." , "err" , err , "consensus" , consensus )
}
payload , err := GetConsensusMessagePayload ( message )
if err != nil {
consensus . Log . Error ( "Failed to get consensus message payload." , "err" , err , "consensus" , consensus )
}
switch msgType {
case ANNOUNCE :
consensus . Log . Error ( "Unexpected message type" , "msgType" , msgType , "consensus" , consensus )
case COMMIT :
consensus . processCommitMessage ( payload )
case CHALLENGE :
consensus . Log . Error ( "Unexpected message type" , "msgType" , msgType , "consensus" , consensus )
case RESPONSE :
consensus . processResponseMessage ( payload )
case START_CONSENSUS :
consensus . processStartConsensusMessage ( payload )
default :
consensus . Log . Error ( "Unexpected message type" , "msgType" , msgType , "consensus" , consensus )
}
}
// Handler for message which triggers consensus process
func ( consensus * Consensus ) processStartConsensusMessage ( payload [ ] byte ) {
tx := blockchain . NewCoinbaseTX ( "x" , "y" )
consensus . startConsensus ( blockchain . NewGenesisBlock ( tx ) )
}
func ( consensus * Consensus ) startConsensus ( newBlock * blockchain . Block ) {
// prepare message and broadcast to validators
// Copy over block hash and block header data
copy ( consensus . blockHash [ : ] , newBlock . Hash [ : ] )
byteBuffer := bytes . NewBuffer ( [ ] byte { } )
encoder := gob . NewEncoder ( byteBuffer )
encoder . Encode ( newBlock )
consensus . blockHeader = byteBuffer . Bytes ( )
msgToSend := consensus . constructAnnounceMessage ( )
fmt . Printf ( "BROADCAST ANNOUNCE: %d\n" , consensus . consensusId )
p2p . BroadcastMessage ( consensus . validators , msgToSend )
fmt . Printf ( "BROADCAST ANNOUNCE DONE: %d\n" , consensus . consensusId )
// Set state to ANNOUNCE_DONE
consensus . state = ANNOUNCE_DONE
}
// Construct the announce message to send to validators
func ( consensus * Consensus ) constructAnnounceMessage ( ) [ ] byte {
buffer := bytes . NewBuffer ( [ ] byte { } )
// 4 byte consensus id
fourBytes := make ( [ ] byte , 4 )
binary . BigEndian . PutUint32 ( fourBytes , consensus . consensusId )
buffer . Write ( fourBytes )
// 32 byte block hash
buffer . Write ( consensus . blockHash [ : ] )
// 2 byte leader id
twoBytes := make ( [ ] byte , 2 )
binary . BigEndian . PutUint16 ( twoBytes , consensus . nodeId )
buffer . Write ( twoBytes )
// n byte of block header
buffer . Write ( consensus . blockHeader )
// 4 byte of payload size
sizeOfPayload := uint32 ( len ( consensus . blockHeader ) )
binary . BigEndian . PutUint32 ( fourBytes , sizeOfPayload )
buffer . Write ( fourBytes )
// 64 byte of signature on previous data
signature := signMessage ( buffer . Bytes ( ) )
buffer . Write ( signature )
consensus . Log . Debug ( "SENDING ANNOUNCE" )
return consensus . ConstructConsensusMessage ( ANNOUNCE , buffer . Bytes ( ) )
}
func signMessage ( message [ ] byte ) [ ] byte {
// TODO: implement real ECC signature
mockSignature := sha256 . Sum256 ( message )
return append ( mockSignature [ : ] , mockSignature [ : ] ... )
}
func ( consensus * Consensus ) processCommitMessage ( payload [ ] byte ) {
//#### Read payload data
offset := 0
// 4 byte consensus id
consensusId := binary . BigEndian . Uint32 ( payload [ offset : offset + 4 ] )
offset += 4
// 32 byte block hash
blockHash := payload [ offset : offset + 32 ]
offset += 32
// 2 byte validator id
validatorId := string ( payload [ offset : offset + 2 ] )
offset += 2
// 33 byte commit
commit := payload [ offset : offset + 33 ]
offset += 33
// 64 byte of signature on previous data
signature := payload [ offset : offset + 64 ]
offset += 64
//#### END: Read payload data
// TODO: make use of the data. This is just to avoid the unused variable warning
_ = consensusId
_ = blockHash
_ = commit
_ = signature
// check consensus Id
if consensusId != consensus . consensusId {
consensus . Log . Debug ( "[ERROR] Received COMMIT with wrong consensus Id" , "myConsensusId" , consensus . consensusId , "theirConsensusId" , consensusId , "consensus" , consensus )
return
}
// proceed only when the message is not received before and this consensus phase is not done.
consensus . mutex . Lock ( )
_ , ok := consensus . commits [ validatorId ]
shouldProcess := ! ok
if shouldProcess {
consensus . commits [ validatorId ] = validatorId
//consensus.Log.Debug("Number of commits received", "count", len(consensus.commits))
fmt . Printf ( "Number of COMMITS received %d\n" , len ( consensus . commits ) )
}
consensus . mutex . Unlock ( )
if ! shouldProcess {
return
}
if len ( consensus . commits ) >= ( 2 * len ( consensus . validators ) ) / 3 + 1 && consensus . state < CHALLENGE_DONE {
consensus . mutex . Lock ( )
if len ( consensus . commits ) >= ( 2 * len ( consensus . validators ) ) / 3 + 1 && consensus . state < CHALLENGE_DONE {
consensus . Log . Debug ( "Enough commits received with signatures" , "numOfSignatures" , len ( consensus . commits ) )
// Broadcast challenge
msgToSend := consensus . constructChallengeMessage ( )
//fmt.Printf("BROADCAST CHALLENGE: %d\n", consensus.consensusId)
p2p . BroadcastMessage ( consensus . validators , msgToSend )
//fmt.Printf("BROADCAST CHALLENGE DONE: %d\n", consensus.consensusId)
// Set state to CHALLENGE_DONE
consensus . state = CHALLENGE_DONE
}
consensus . mutex . Unlock ( )
}
}
// Construct the challenge message to send to validators
func ( consensus * Consensus ) constructChallengeMessage ( ) [ ] byte {
buffer := bytes . NewBuffer ( [ ] byte { } )
// 4 byte consensus id
fourBytes := make ( [ ] byte , 4 )
binary . BigEndian . PutUint32 ( fourBytes , consensus . consensusId )
buffer . Write ( fourBytes )
// 32 byte block hash
buffer . Write ( consensus . blockHash [ : ] )
// 2 byte leader id
twoBytes := make ( [ ] byte , 2 )
binary . BigEndian . PutUint16 ( twoBytes , consensus . nodeId )
buffer . Write ( twoBytes )
// 33 byte aggregated commit
buffer . Write ( getAggregatedCommit ( consensus . commits ) )
// 33 byte aggregated key
buffer . Write ( getAggregatedKey ( consensus . commits ) )
// 32 byte challenge
buffer . Write ( getChallenge ( ) )
// 64 byte of signature on previous data
signature := signMessage ( buffer . Bytes ( ) )
buffer . Write ( signature )
return consensus . ConstructConsensusMessage ( CHALLENGE , buffer . Bytes ( ) )
}
func getAggregatedCommit ( commits map [ string ] string ) [ ] byte {
// TODO: implement actual commit aggregation
var commitArray [ ] string
for _ , val := range commits {
commitArray = append ( commitArray , val )
}
var commit [ 32 ] byte
commit = sha256 . Sum256 ( [ ] byte ( strings . Join ( commitArray , "" ) ) )
return append ( commit [ : ] , byte ( 0 ) )
}
func getAggregatedKey ( commits map [ string ] string ) [ ] byte {
// TODO: implement actual key aggregation
var commitArray [ ] string
for key := range commits {
commitArray = append ( commitArray , key )
}
var commit [ 32 ] byte
commit = sha256 . Sum256 ( [ ] byte ( strings . Join ( commitArray , "" ) ) )
return append ( commit [ : ] , byte ( 0 ) )
}
func getChallenge ( ) [ ] byte {
// TODO: implement actual challenge data
return make ( [ ] byte , 32 )
}
func ( consensus * Consensus ) processResponseMessage ( payload [ ] byte ) {
//#### Read payload data
offset := 0
// 4 byte consensus id
consensusId := binary . BigEndian . Uint32 ( payload [ offset : offset + 4 ] )
offset += 4
// 32 byte block hash
blockHash := payload [ offset : offset + 32 ]
offset += 32
// 2 byte validator id
validatorId := string ( payload [ offset : offset + 2 ] )
offset += 2
// 32 byte response
response := payload [ offset : offset + 32 ]
offset += 32
// 64 byte of signature on previous data
signature := payload [ offset : offset + 64 ]
offset += 64
//#### END: Read payload data
// TODO: make use of the data. This is just to avoid the unused variable warning
_ = consensusId
_ = blockHash
_ = response
_ = signature
// proceed only when the message is not received before and this consensus phase is not done.
shouldProcess := true
consensus . mutex . Lock ( )
// check consensus Id
if consensusId != consensus . consensusId {
shouldProcess = false
consensus . Log . Debug ( "[ERROR] Received RESPONSE with wrong consensus Id" , "myConsensusId" , consensus . consensusId , "theirConsensusId" , consensusId , "consensus" , consensus )
}
_ , ok := consensus . responses [ validatorId ]
shouldProcess = shouldProcess && ! ok
if shouldProcess {
consensus . responses [ validatorId ] = validatorId
//consensus.Log.Debug("Number of responses received", "count", len(consensus.responses), "consensudId", consensusId)
fmt . Printf ( "Number of RESPONSES received %d\n" , len ( consensus . responses ) )
}
consensus . mutex . Unlock ( )
if ! shouldProcess {
return
}
//consensus.Log.Debug("RECEIVED RESPONSE", "consensusId", consensusId)
if len ( consensus . responses ) >= ( 2 * len ( consensus . validators ) ) / 3 + 1 && consensus . state != FINISHED {
consensus . mutex . Lock ( )
if len ( consensus . responses ) >= ( 2 * len ( consensus . validators ) ) / 3 + 1 && consensus . state != FINISHED {
consensus . Log . Debug ( "Consensus reached with signatures." , "numOfSignatures" , len ( consensus . responses ) )
// Reset state to FINISHED, and clear other data.
consensus . ResetState ( )
consensus . consensusId ++
consensus . Log . Debug ( "HOORAY!!! CONSENSUS REACHED!!!" , "consensusId" , consensus . consensusId )
// TODO: reconstruct the whole block from header and transactions
// For now, we used the stored whole block in consensus.blockHeader
txDecoder := gob . NewDecoder ( bytes . NewReader ( consensus . blockHeader ) )
var blockHeaderObj blockchain . Block
err := txDecoder . Decode ( & blockHeaderObj )
if err != nil {
consensus . Log . Debug ( "failed to construct the new block after consensus" )
}
consensus . OnConsensusDone ( & blockHeaderObj )
// Send signal to Node so the new block can be added and new round of consensus can be triggered
consensus . ReadySignal <- 1
}
consensus . mutex . Unlock ( )
// TODO: composes new block and broadcast the new block to validators
}
}