parent
780fedaec4
commit
85633ef482
@ -1,293 +0,0 @@ |
||||
/* |
||||
The btctxgen iterates the btc tx history block by block, transaction by transaction. |
||||
|
||||
The btxtxiter provide a simple api called `NextTx` for us to move thru TXs one by one. |
||||
|
||||
Same as txgen, iterate on each shard to generate simulated TXs (GenerateSimulatedTransactions): |
||||
|
||||
1. Get a new btc tx |
||||
2. If it's a coinbase tx, create a corresponding coinbase tx in our blockchain |
||||
3. Otherwise, create a normal TX, which might be cross-shard and might not, depending on whether all the TX inputs belong to the current shard. |
||||
|
||||
Same as txgen, send single shard tx shard by shard, then broadcast cross shard tx. |
||||
|
||||
TODO |
||||
|
||||
Some todos for ricl |
||||
* correct the logic to outputing to one of the input shard, rather than the current shard |
||||
*/ |
||||
package main |
||||
|
||||
import ( |
||||
"flag" |
||||
"fmt" |
||||
"sync" |
||||
"time" |
||||
|
||||
"github.com/simple-rules/harmony-benchmark/blockchain" |
||||
"github.com/simple-rules/harmony-benchmark/client" |
||||
"github.com/simple-rules/harmony-benchmark/client/btctxiter" |
||||
client_config "github.com/simple-rules/harmony-benchmark/client/config" |
||||
"github.com/simple-rules/harmony-benchmark/consensus" |
||||
"github.com/simple-rules/harmony-benchmark/crypto/pki" |
||||
"github.com/simple-rules/harmony-benchmark/log" |
||||
"github.com/simple-rules/harmony-benchmark/node" |
||||
"github.com/simple-rules/harmony-benchmark/p2p" |
||||
proto_node "github.com/simple-rules/harmony-benchmark/proto/node" |
||||
) |
||||
|
||||
type txGenSettings struct { |
||||
crossShard bool |
||||
maxNumTxsPerBatch int |
||||
} |
||||
|
||||
type TXRef struct { |
||||
txID [32]byte |
||||
shardID uint32 |
||||
toAddress [20]byte // we use the same toAddress in btc and hmy
|
||||
} |
||||
|
||||
var ( |
||||
utxoPoolMutex sync.Mutex |
||||
setting txGenSettings |
||||
iter btctxiter.BTCTXIterator |
||||
utxoMapping map[string]TXRef // btcTXID to { txID, shardID }
|
||||
// map from bitcoin address to a int value (the privKey in hmy)
|
||||
addressMapping map[[20]byte]int |
||||
currentInt int |
||||
) |
||||
|
||||
func getHmyInt(btcAddr [20]byte) int { |
||||
var privKey int |
||||
if privKey, ok := addressMapping[btcAddr]; !ok { // If cannot find key
|
||||
privKey = currentInt |
||||
addressMapping[btcAddr] = privKey |
||||
currentInt++ |
||||
} |
||||
return privKey |
||||
} |
||||
|
||||
// Generates at most "maxNumTxs" number of simulated transactions based on the current UtxoPools of all shards.
|
||||
// The transactions are generated by going through the existing utxos and
|
||||
// randomly select a subset of them as the input for each new transaction. The output
|
||||
// address of the new transaction are randomly selected from [0 - N), where N is the total number of fake addresses.
|
||||
//
|
||||
// When crossShard=true, besides the selected utxo input, select another valid utxo as input from the same address in a second shard.
|
||||
// Similarly, generate another utxo output in that second shard.
|
||||
//
|
||||
// NOTE: the genesis block should contain N coinbase transactions which add
|
||||
// token (1000) to each address in [0 - N). See node.AddTestingAddresses()
|
||||
//
|
||||
// Params:
|
||||
// shardID - the shardID for current shard
|
||||
// dataNodes - nodes containing utxopools of all shards
|
||||
// Returns:
|
||||
// all single-shard txs
|
||||
// all cross-shard txs
|
||||
func generateSimulatedTransactions(shardID int, dataNodes []*node.Node) ([]*blockchain.Transaction, []*blockchain.Transaction) { |
||||
/* |
||||
UTXO map structure: |
||||
{ |
||||
address: { |
||||
txID: { |
||||
outputIndex: value |
||||
} |
||||
} |
||||
} |
||||
*/ |
||||
|
||||
utxoPoolMutex.Lock() |
||||
txs := []*blockchain.Transaction{} |
||||
crossTxs := []*blockchain.Transaction{} |
||||
|
||||
nodeShardID := dataNodes[shardID].Consensus.ShardID |
||||
cnt := 0 |
||||
|
||||
LOOP: |
||||
for { |
||||
btcTx := iter.NextTx() |
||||
if btcTx == nil { |
||||
log.Error("Failed to parse tx", "height", iter.GetBlockIndex()) |
||||
} |
||||
tx := blockchain.Transaction{} |
||||
isCrossShardTx := false |
||||
|
||||
if btctxiter.IsCoinBaseTx(btcTx) { |
||||
// ricl: coinbase tx should just have one txo
|
||||
btcTXO := btcTx.Vout[0] |
||||
btcTXOAddr := btcTXO.ScriptPubKey.Addresses[0] |
||||
var toAddress [20]byte |
||||
copy(toAddress[:], btcTXOAddr) // TODO(ricl): string to [20]byte
|
||||
hmyInt := getHmyInt(toAddress) |
||||
tx = *blockchain.NewCoinbaseTX(pki.GetAddressFromInt(hmyInt), "", nodeShardID) |
||||
|
||||
utxoMapping[btcTx.Hash] = TXRef{tx.ID, nodeShardID, toAddress} |
||||
} else { |
||||
var btcFromAddresses [][20]byte |
||||
for _, btcTXI := range btcTx.Vin { |
||||
btcTXIDStr := btcTXI.Txid |
||||
txRef := utxoMapping[btcTXIDStr] // find the corresponding harmony tx info
|
||||
if txRef.shardID != nodeShardID { |
||||
isCrossShardTx = true |
||||
} |
||||
tx.TxInput = append(tx.TxInput, *blockchain.NewTXInput(blockchain.NewOutPoint(&txRef.txID, btcTXI.Vout), [20]byte{}, txRef.shardID)) |
||||
// Add the from address to array, so that we can later use it to sign the tx.
|
||||
btcFromAddresses = append(btcFromAddresses, txRef.toAddress) |
||||
} |
||||
for _, btcTXO := range btcTx.Vout { |
||||
for _, btcTXOAddr := range btcTXO.ScriptPubKey.Addresses { |
||||
var toAddress [20]byte |
||||
copy(toAddress[:], btcTXOAddr) //TODO(ricl): string to [20]byte
|
||||
txo := blockchain.TXOutput{Amount: int(btcTXO.Value), Address: toAddress, ShardID: nodeShardID} |
||||
tx.TxOutput = append(tx.TxOutput, txo) |
||||
utxoMapping[btcTx.Txid] = TXRef{tx.ID, nodeShardID, toAddress} |
||||
} |
||||
} |
||||
// get private key and sign the tx
|
||||
for _, btcFromAddress := range btcFromAddresses { |
||||
hmyInt := getHmyInt(btcFromAddress) |
||||
tx.SetID() // TODO(RJ): figure out the correct way to set Tx ID.
|
||||
tx.Sign(pki.GetPrivateKeyScalarFromInt(hmyInt)) |
||||
} |
||||
} |
||||
|
||||
if isCrossShardTx { |
||||
crossTxs = append(crossTxs, &tx) |
||||
} else { |
||||
txs = append(txs, &tx) |
||||
} |
||||
// log.Debug("[Generator] transformed btc tx", "block height", iter.GetBlockIndex(), "block tx count", iter.GetBlock().TxCount, "block tx cnt", len(iter.GetBlock().Txs), "txi", len(tx.TxInput), "txo", len(tx.TxOutput), "txCount", cnt)
|
||||
cnt++ |
||||
if cnt >= setting.maxNumTxsPerBatch { |
||||
break LOOP |
||||
} |
||||
} |
||||
|
||||
utxoPoolMutex.Unlock() |
||||
|
||||
log.Debug("[Generator] generated transations", "single-shard", len(txs), "cross-shard", len(crossTxs)) |
||||
return txs, crossTxs |
||||
} |
||||
|
||||
func initClient(clientNode *node.Node, clientPort string, shardIDLeaderMap *map[uint32]p2p.Peer, nodes *[]*node.Node) { |
||||
if clientPort == "" { |
||||
return |
||||
} |
||||
|
||||
clientNode.Client = client.NewClient(shardIDLeaderMap) |
||||
|
||||
// This func is used to update the client's utxopool when new blocks are received from the leaders
|
||||
updateBlocksFunc := func(blocks []*blockchain.Block) { |
||||
log.Debug("Received new block from leader", "len", len(blocks)) |
||||
for _, block := range blocks { |
||||
for _, node := range *nodes { |
||||
if node.Consensus.ShardID == block.ShardID { |
||||
log.Debug("Adding block from leader", "shardID", block.ShardID) |
||||
// Add it to blockchain
|
||||
utxoPoolMutex.Lock() |
||||
node.AddNewBlock(block) |
||||
utxoPoolMutex.Unlock() |
||||
} else { |
||||
continue |
||||
} |
||||
} |
||||
} |
||||
} |
||||
clientNode.Client.UpdateBlocks = updateBlocksFunc |
||||
|
||||
// Start the client server to listen to leader's message
|
||||
go func() { |
||||
clientNode.StartServer(clientPort) |
||||
}() |
||||
} |
||||
|
||||
func main() { |
||||
configFile := flag.String("config_file", "local_config.txt", "file containing all ip addresses and config") |
||||
maxNumTxsPerBatch := flag.Int("max_num_txs_per_batch", 10000, "number of transactions to send per message") |
||||
logFolder := flag.String("log_folder", "latest", "the folder collecting the logs of this execution") |
||||
flag.Parse() |
||||
|
||||
// Read the configs
|
||||
config := client_config.NewConfig() |
||||
config.ReadConfigFile(*configFile) |
||||
shardIDLeaderMap := config.GetShardIDToLeaderMap() |
||||
|
||||
// Do cross shard tx if there are more than one shard
|
||||
setting.crossShard = len(shardIDLeaderMap) > 1 |
||||
setting.maxNumTxsPerBatch = *maxNumTxsPerBatch |
||||
|
||||
// TODO(Richard): refactor this chuck to a single method
|
||||
// Setup a logger to stdout and log file.
|
||||
logFileName := fmt.Sprintf("./%v/txgen.log", *logFolder) |
||||
h := log.MultiHandler( |
||||
log.StdoutHandler, |
||||
log.Must.FileHandler(logFileName, log.LogfmtFormat()), // Log to file
|
||||
// log.Must.NetHandler("tcp", ":3000", log.JSONFormat()) // Log to remote
|
||||
) |
||||
log.Root().SetHandler(h) |
||||
|
||||
iter.Init() |
||||
utxoMapping = make(map[string]TXRef) |
||||
addressMapping = make(map[[20]byte]int) |
||||
|
||||
currentInt = 1 // start from address 1
|
||||
// Nodes containing utxopools to mirror the shards' data in the network
|
||||
nodes := []*node.Node{} |
||||
for shardID, _ := range shardIDLeaderMap { |
||||
node := node.New(&consensus.Consensus{ShardID: shardID}, nil) |
||||
// Assign many fake addresses so we have enough address to play with at first
|
||||
node.AddTestingAddresses(10000) |
||||
nodes = append(nodes, node) |
||||
} |
||||
|
||||
// Client/txgenerator server node setup
|
||||
clientPort := config.GetClientPort() |
||||
consensusObj := consensus.NewConsensus("0", clientPort, "0", nil, p2p.Peer{}) |
||||
clientNode := node.New(consensusObj, nil) |
||||
|
||||
initClient(clientNode, clientPort, &shardIDLeaderMap, &nodes) |
||||
|
||||
// Transaction generation process
|
||||
time.Sleep(3 * time.Second) // wait for nodes to be ready
|
||||
|
||||
leaders := []p2p.Peer{} |
||||
for _, leader := range shardIDLeaderMap { |
||||
leaders = append(leaders, leader) |
||||
} |
||||
|
||||
for { |
||||
allCrossTxs := []*blockchain.Transaction{} |
||||
// Generate simulated transactions
|
||||
for shardID, leader := range shardIDLeaderMap { |
||||
txs, crossTxs := generateSimulatedTransactions(int(shardID), nodes) |
||||
allCrossTxs = append(allCrossTxs, crossTxs...) |
||||
|
||||
log.Debug("[Generator] Sending single-shard txs ...", "leader", leader, "numTxs", len(txs), "numCrossTxs", len(crossTxs), "block height", iter.GetBlockIndex()) |
||||
msg := proto_node.ConstructTransactionListMessage(txs) |
||||
p2p.SendMessage(leader, msg) |
||||
// Note cross shard txs are later sent in batch
|
||||
} |
||||
|
||||
if len(allCrossTxs) > 0 { |
||||
log.Debug("[Generator] Broadcasting cross-shard txs ...", "allCrossTxs", len(allCrossTxs)) |
||||
msg := proto_node.ConstructTransactionListMessage(allCrossTxs) |
||||
p2p.BroadcastMessage(leaders, msg) |
||||
|
||||
// Put cross shard tx into a pending list waiting for proofs from leaders
|
||||
if clientPort != "" { |
||||
clientNode.Client.PendingCrossTxsMutex.Lock() |
||||
for _, tx := range allCrossTxs { |
||||
clientNode.Client.PendingCrossTxs[tx.ID] = tx |
||||
} |
||||
clientNode.Client.PendingCrossTxsMutex.Unlock() |
||||
} |
||||
} |
||||
|
||||
time.Sleep(500 * time.Millisecond) // Send a batch of transactions periodically
|
||||
} |
||||
|
||||
// Send a stop message to stop the nodes at the end
|
||||
msg := proto_node.ConstructStopMessage() |
||||
peers := append(config.GetValidators(), leaders...) |
||||
p2p.BroadcastMessage(peers, msg) |
||||
} |
Loading…
Reference in new issue