Merge pull request #99 from harmony-one/rj_branch
[HAR-21] Add simulated transactions and integrate into txgenpull/103/head
commit
9a3b178ff4
@ -0,0 +1,32 @@ |
||||
package txgen |
||||
|
||||
import ( |
||||
"github.com/ethereum/go-ethereum/crypto" |
||||
"github.com/ethereum/go-ethereum/params" |
||||
"github.com/harmony-one/harmony/core/types" |
||||
"github.com/harmony-one/harmony/node" |
||||
"math/big" |
||||
) |
||||
|
||||
type TxGenSettings struct { |
||||
NumOfAddress int |
||||
CrossShard bool |
||||
MaxNumTxsPerBatch int |
||||
CrossShardRatio int |
||||
} |
||||
|
||||
func GenerateSimulatedTransactionsAccount(shardID int, dataNodes []*node.Node, setting TxGenSettings) (types.Transactions, types.Transactions) { |
||||
_ = setting // TODO: take use of settings
|
||||
node := dataNodes[shardID] |
||||
txs := make([]*types.Transaction, 1000) |
||||
for i := 0; i < 100; i++ { |
||||
baseNonce := node.Worker.GetCurrentState().GetNonce(crypto.PubkeyToAddress(node.TestBankKeys[i].PublicKey)) |
||||
for j := 0; j < 10; j++ { |
||||
randomUserKey, _ := crypto.GenerateKey() |
||||
randomUserAddress := crypto.PubkeyToAddress(randomUserKey.PublicKey) |
||||
tx, _ := types.SignTx(types.NewTransaction(baseNonce+uint64(j), randomUserAddress, big.NewInt(1000), params.TxGas, nil, nil), types.HomesteadSigner{}, node.TestBankKeys[i]) |
||||
txs[i*10+j] = tx |
||||
} |
||||
} |
||||
return txs, nil |
||||
} |
@ -0,0 +1,212 @@ |
||||
package txgen |
||||
|
||||
import ( |
||||
"encoding/binary" |
||||
"encoding/hex" |
||||
"github.com/harmony-one/harmony/blockchain" |
||||
"github.com/harmony-one/harmony/client" |
||||
"github.com/harmony-one/harmony/crypto/pki" |
||||
"github.com/harmony-one/harmony/log" |
||||
"github.com/harmony-one/harmony/node" |
||||
"math/rand" |
||||
) |
||||
|
||||
type TxInfo struct { |
||||
// Global Input
|
||||
shardID int |
||||
dataNodes []*node.Node |
||||
// Temp Input
|
||||
id [32]byte |
||||
index uint32 |
||||
value int |
||||
address [20]byte |
||||
// Output
|
||||
txs []*blockchain.Transaction |
||||
crossTxs []*blockchain.Transaction |
||||
txCount int |
||||
} |
||||
|
||||
// Generates at most "maxNumTxs" number of simulated transactions based on the current UtxoPools of all shards.
|
||||
// The transactions are generated by going through the existing utxos and
|
||||
// randomly select a subset of them as the input for each new transaction. The output
|
||||
// address of the new transaction are randomly selected from [0 - N), where N is the total number of fake addresses.
|
||||
//
|
||||
// When crossShard=true, besides the selected utxo input, select another valid utxo as input from the same address in a second shard.
|
||||
// Similarly, generate another utxo output in that second shard.
|
||||
//
|
||||
// NOTE: the genesis block should contain N coinbase transactions which add
|
||||
// token (1000) to each address in [0 - N). See node.AddTestingAddresses()
|
||||
//
|
||||
// Params:
|
||||
// subsetId - the which subset of the utxo to work on (used to select addresses)
|
||||
// shardID - the shardID for current shard
|
||||
// dataNodes - nodes containing utxopools of all shards
|
||||
// Returns:
|
||||
// all single-shard txs
|
||||
// all cross-shard txs
|
||||
func GenerateSimulatedTransactions(subsetId, numSubset int, shardID int, dataNodes []*node.Node, setting TxGenSettings) ([]*blockchain.Transaction, []*blockchain.Transaction) { |
||||
/* |
||||
UTXO map structure: |
||||
address - [ |
||||
txID1 - [ |
||||
outputIndex1 - value1 |
||||
outputIndex2 - value2 |
||||
] |
||||
txID2 - [ |
||||
outputIndex1 - value1 |
||||
outputIndex2 - value2 |
||||
] |
||||
] |
||||
*/ |
||||
|
||||
txInfo := TxInfo{} |
||||
txInfo.shardID = shardID |
||||
txInfo.dataNodes = dataNodes |
||||
txInfo.txCount = 0 |
||||
|
||||
UTXOLOOP: |
||||
// Loop over all addresses
|
||||
for address, txMap := range dataNodes[shardID].UtxoPool.UtxoMap { |
||||
if int(binary.BigEndian.Uint32(address[:]))%numSubset == subsetId%numSubset { // Work on one subset of utxo at a time
|
||||
txInfo.address = address |
||||
// Loop over all txIDs for the address
|
||||
for txIDStr, utxoMap := range txMap { |
||||
// Parse TxId
|
||||
id, err := hex.DecodeString(txIDStr) |
||||
if err != nil { |
||||
continue |
||||
} |
||||
copy(txInfo.id[:], id[:]) |
||||
|
||||
// Loop over all utxos for the txID
|
||||
utxoSize := len(utxoMap) |
||||
batchSize := utxoSize / numSubset |
||||
i := subsetId % numSubset |
||||
counter := 0 |
||||
for index, value := range utxoMap { |
||||
counter++ |
||||
if batchSize*i < counter && counter > batchSize*(i+1) { |
||||
continue |
||||
} |
||||
txInfo.index = index |
||||
txInfo.value = value |
||||
|
||||
randNum := rand.Intn(100) |
||||
|
||||
subsetRatio := 100 // / numSubset
|
||||
if randNum < subsetRatio { // Sample based on batch size
|
||||
if setting.CrossShard && randNum < subsetRatio*setting.CrossShardRatio/100 { // 30% cross shard transactions: add another txinput from another shard
|
||||
generateCrossShardTx(&txInfo, setting) |
||||
} else { |
||||
generateSingleShardTx(&txInfo, setting) |
||||
} |
||||
if txInfo.txCount >= setting.MaxNumTxsPerBatch { |
||||
break UTXOLOOP |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
log.Info("UTXO CLIENT", "numUtxo", dataNodes[shardID].UtxoPool.CountNumOfUtxos(), "shardID", shardID) |
||||
log.Debug("[Generator] generated transations", "single-shard", len(txInfo.txs), "cross-shard", len(txInfo.crossTxs)) |
||||
return txInfo.txs, txInfo.crossTxs |
||||
} |
||||
|
||||
func generateCrossShardTx(txInfo *TxInfo, setting TxGenSettings) { |
||||
nodeShardID := txInfo.dataNodes[txInfo.shardID].Consensus.ShardID |
||||
crossShardID := nodeShardID |
||||
// a random shard to spend money to
|
||||
for { |
||||
crossShardID = uint32(rand.Intn(len(txInfo.dataNodes))) |
||||
if crossShardID != nodeShardID { |
||||
break |
||||
} |
||||
} |
||||
|
||||
//crossShardNode := txInfo.dataNodes[crossShardID]
|
||||
//crossShardUtxosMap := crossShardNode.UtxoPool.UtxoMap[txInfo.address]
|
||||
//
|
||||
//// Get the cross shard utxo from another shard
|
||||
//var crossTxin *blockchain.TXInput
|
||||
//crossUtxoValue := 0
|
||||
//// Loop over utxos for the same address from the other shard and use the first utxo as the second cross tx input
|
||||
//for crossTxIdStr, crossShardUtxos := range crossShardUtxosMap {
|
||||
// // Parse TxId
|
||||
// id, err := hex.DecodeString(crossTxIdStr)
|
||||
// if err != nil {
|
||||
// continue
|
||||
// }
|
||||
// crossTxId := [32]byte{}
|
||||
// copy(crossTxId[:], id[:])
|
||||
//
|
||||
// for crossShardIndex, crossShardValue := range crossShardUtxos {
|
||||
// crossUtxoValue = crossShardValue
|
||||
// crossTxin = blockchain.NewTXInput(blockchain.NewOutPoint(&crossTxId, crossShardIndex), txInfo.address, crossShardID)
|
||||
// break
|
||||
// }
|
||||
// if crossTxin != nil {
|
||||
// break
|
||||
// }
|
||||
//}
|
||||
|
||||
// Add the utxo from current shard
|
||||
txIn := blockchain.NewTXInput(blockchain.NewOutPoint(&txInfo.id, txInfo.index), txInfo.address, nodeShardID) |
||||
txInputs := []blockchain.TXInput{*txIn} |
||||
|
||||
// Add the utxo from the other shard, if any
|
||||
//if crossTxin != nil { // This means the ratio of cross shard tx could be lower than 1/3
|
||||
// txInputs = append(txInputs, *crossTxin)
|
||||
//}
|
||||
|
||||
// Spend the utxo from the current shard to a random address in [0 - N)
|
||||
txout := blockchain.TXOutput{Amount: txInfo.value, Address: pki.GetAddressFromInt(rand.Intn(setting.NumOfAddress) + 1), ShardID: crossShardID} |
||||
|
||||
txOutputs := []blockchain.TXOutput{txout} |
||||
|
||||
// Spend the utxo from the other shard, if any, to a random address in [0 - N)
|
||||
//if crossTxin != nil {
|
||||
// crossTxout := blockchain.TXOutput{Amount: crossUtxoValue, Address: pki.GetAddressFromInt(rand.Intn(setting.numOfAddress) + 1), ShardID: crossShardID}
|
||||
// txOutputs = append(txOutputs, crossTxout)
|
||||
//}
|
||||
|
||||
// Construct the new transaction
|
||||
tx := blockchain.Transaction{ID: [32]byte{}, TxInput: txInputs, TxOutput: txOutputs, Proofs: nil} |
||||
|
||||
priKeyInt, ok := client.LookUpIntPriKey(txInfo.address) |
||||
if ok { |
||||
tx.PublicKey = pki.GetBytesFromPublicKey(pki.GetPublicKeyFromScalar(pki.GetPrivateKeyScalarFromInt(priKeyInt))) |
||||
|
||||
tx.SetID() // TODO(RJ): figure out the correct way to set Tx ID.
|
||||
tx.Sign(pki.GetPrivateKeyScalarFromInt(priKeyInt)) |
||||
} else { |
||||
log.Error("Failed to look up the corresponding private key from address", "Address", txInfo.address) |
||||
return |
||||
} |
||||
|
||||
txInfo.crossTxs = append(txInfo.crossTxs, &tx) |
||||
txInfo.txCount++ |
||||
} |
||||
|
||||
func generateSingleShardTx(txInfo *TxInfo, setting TxGenSettings) { |
||||
nodeShardID := txInfo.dataNodes[txInfo.shardID].Consensus.ShardID |
||||
// Add the utxo as new tx input
|
||||
txin := blockchain.NewTXInput(blockchain.NewOutPoint(&txInfo.id, txInfo.index), txInfo.address, nodeShardID) |
||||
|
||||
// Spend the utxo to a random address in [0 - N)
|
||||
txout := blockchain.TXOutput{Amount: txInfo.value, Address: pki.GetAddressFromInt(rand.Intn(setting.NumOfAddress) + 1), ShardID: nodeShardID} |
||||
tx := blockchain.Transaction{ID: [32]byte{}, TxInput: []blockchain.TXInput{*txin}, TxOutput: []blockchain.TXOutput{txout}, Proofs: nil} |
||||
|
||||
priKeyInt, ok := client.LookUpIntPriKey(txInfo.address) |
||||
if ok { |
||||
tx.PublicKey = pki.GetBytesFromPublicKey(pki.GetPublicKeyFromScalar(pki.GetPrivateKeyScalarFromInt(priKeyInt))) |
||||
tx.SetID() // TODO(RJ): figure out the correct way to set Tx ID.
|
||||
tx.Sign(pki.GetPrivateKeyScalarFromInt(priKeyInt)) |
||||
} else { |
||||
log.Error("Failed to look up the corresponding private key from address", "Address", txInfo.address) |
||||
return |
||||
} |
||||
|
||||
txInfo.txs = append(txInfo.txs, &tx) |
||||
txInfo.txCount++ |
||||
} |
Loading…
Reference in new issue