package node import ( "math/big" "sort" "strings" "time" "github.com/harmony-one/harmony/consensus" "github.com/harmony-one/harmony/core" "github.com/harmony-one/harmony/crypto/bls" "github.com/pkg/errors" staking "github.com/harmony-one/harmony/staking/types" "github.com/ethereum/go-ethereum/common" "github.com/harmony-one/harmony/core/rawdb" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/shard" ) // Constants of proposing a new block const ( SleepPeriod = 20 * time.Millisecond IncomingReceiptsLimit = 6000 // 2000 * (numShards - 1) ) // WaitForConsensusReadyV2 listen for the readiness signal from consensus and generate new block for consensus. // only leader will receive the ready signal func (node *Node) WaitForConsensusReadyV2(cs *consensus.Consensus, stopChan chan struct{}, stoppedChan chan struct{}) { go func() { // Setup stoppedChan defer close(stoppedChan) utils.Logger().Debug(). Msg("Waiting for Consensus ready") select { case <-time.After(30 * time.Second): case <-stopChan: return } for { // keep waiting for Consensus ready select { case <-stopChan: utils.Logger().Warn(). Msg("Consensus new block proposal: STOPPED!") return case proposalType := <-cs.GetReadySignal(): for retryCount := 0; retryCount < 3 && cs.IsLeader(); retryCount++ { time.Sleep(SleepPeriod) utils.Logger().Info(). Uint64("blockNum", cs.Blockchain().CurrentBlock().NumberU64()+1). Bool("asyncProposal", proposalType == consensus.AsyncProposal). Msg("PROPOSING NEW BLOCK ------------------------------------------------") // Prepare last commit signatures newCommitSigsChan := make(chan []byte) go func() { waitTime := 0 * time.Second if proposalType == consensus.AsyncProposal { waitTime = consensus.CommitSigReceiverTimeout } select { case <-time.After(waitTime): if waitTime == 0 { utils.Logger().Info().Msg("[ProposeNewBlock] Sync block proposal, reading commit sigs directly from DB") } else { utils.Logger().Info().Msg("[ProposeNewBlock] Timeout waiting for commit sigs, reading directly from DB") } sigs, err := cs.BlockCommitSigs(cs.Blockchain().CurrentBlock().NumberU64()) if err != nil { utils.Logger().Error().Err(err).Msg("[ProposeNewBlock] Cannot get commit signatures from last block") } else { newCommitSigsChan <- sigs } case commitSigs := <-cs.GetCommitSigChannel(): utils.Logger().Info().Msg("[ProposeNewBlock] received commit sigs asynchronously") if len(commitSigs) > bls.BLSSignatureSizeInBytes { newCommitSigsChan <- commitSigs } } }() newBlock, err := node.ProposeNewBlock(newCommitSigsChan) if err == nil { utils.Logger().Info(). Uint64("blockNum", newBlock.NumberU64()). Uint64("epoch", newBlock.Epoch().Uint64()). Uint64("viewID", newBlock.Header().ViewID().Uint64()). Int("numTxs", newBlock.Transactions().Len()). Int("numStakingTxs", newBlock.StakingTransactions().Len()). Int("crossShardReceipts", newBlock.IncomingReceipts().Len()). Msgf("=========Successfully Proposed New Block, shard: %d epoch: %d number: %d ==========", newBlock.ShardID(), newBlock.Epoch().Uint64(), newBlock.NumberU64()) // Send the new block to Consensus so it can be confirmed. cs.BlockChannel(newBlock) break } else { utils.Logger().Err(err).Int("retryCount", retryCount). Msg("!!!!!!!!!Failed Proposing New Block!!!!!!!!!") continue } } } } }() } // ProposeNewBlock proposes a new block... func (node *Node) ProposeNewBlock(commitSigs chan []byte) (*types.Block, error) { currentHeader := node.Blockchain().CurrentHeader() nowEpoch, blockNow := currentHeader.Epoch(), currentHeader.Number() utils.AnalysisStart("ProposeNewBlock", nowEpoch, blockNow) defer utils.AnalysisEnd("ProposeNewBlock", nowEpoch, blockNow) // Update worker's current header and // state data in preparation to propose/process new transactions env, err := node.Worker.UpdateCurrent() if err != nil { return nil, errors.Wrap(err, "failed to update worker") } var ( header = env.CurrentHeader() leaderKey = node.Consensus.GetLeaderPubKey() coinbase = node.GetAddressForBLSKey(leaderKey.Object, header.Epoch()) beneficiary = coinbase ) // After staking, all coinbase will be the address of bls pub key if node.Blockchain().Config().IsStaking(header.Epoch()) { blsPubKeyBytes := leaderKey.Object.GetAddress() coinbase.SetBytes(blsPubKeyBytes[:]) } if coinbase == (common.Address{}) { return nil, errors.New("[ProposeNewBlock] Failed setting coinbase") } // Must set coinbase here because the operations below depend on it header.SetCoinbase(coinbase) // Get beneficiary based on coinbase // Before staking, coinbase itself is the beneficial // After staking, beneficial is the corresponding ECDSA address of the bls key beneficiary, err = node.Blockchain().GetECDSAFromCoinbase(header) if err != nil { return nil, err } // Add VRF if node.Blockchain().Config().IsVRF(header.Epoch()) { //generate a new VRF for the current block if err := node.Consensus.GenerateVrfAndProof(header); err != nil { return nil, err } } // Execute all the time except for last block of epoch for shard 0 if !shard.Schedule.IsLastBlock(header.Number().Uint64()) || node.Consensus.ShardID != 0 { // Prepare normal and staking transactions retrieved from transaction pool utils.AnalysisStart("proposeNewBlockChooseFromTxnPool") pendingPoolTxs, err := node.TxPool.Pending() if err != nil { utils.Logger().Err(err).Msg("Failed to fetch pending transactions") return nil, err } pendingPlainTxs := map[common.Address]types.Transactions{} pendingStakingTxs := staking.StakingTransactions{} for addr, poolTxs := range pendingPoolTxs { plainTxsPerAcc := types.Transactions{} for _, tx := range poolTxs { if plainTx, ok := tx.(*types.Transaction); ok { plainTxsPerAcc = append(plainTxsPerAcc, plainTx) } else if stakingTx, ok := tx.(*staking.StakingTransaction); ok { // Only process staking transactions after pre-staking epoch happened. if node.Blockchain().Config().IsPreStaking(node.Worker.GetCurrentHeader().Epoch()) { pendingStakingTxs = append(pendingStakingTxs, stakingTx) } } else { utils.Logger().Err(types.ErrUnknownPoolTxType). Msg("Failed to parse pending transactions") return nil, types.ErrUnknownPoolTxType } } if plainTxsPerAcc.Len() > 0 { pendingPlainTxs[addr] = plainTxsPerAcc } } // Try commit normal and staking transactions based on the current state // The successfully committed transactions will be put in the proposed block if err := node.Worker.CommitTransactions( pendingPlainTxs, pendingStakingTxs, beneficiary, ); err != nil { utils.Logger().Error().Err(err).Msg("cannot commit transactions") return nil, err } utils.AnalysisEnd("proposeNewBlockChooseFromTxnPool") } // Prepare incoming cross shard transaction receipts // These are accepted even during the epoch before hip-30 // because the destination shard only receives them after // balance is deducted on source shard. to prevent this from // being a significant problem, the source shards will stop // accepting txs destined to the shards which are shutting down // one epoch prior the shut down receiptsList := node.proposeReceiptsProof() if len(receiptsList) != 0 { if err := node.Worker.CommitReceipts(receiptsList); err != nil { return nil, err } } isBeaconchainInCrossLinkEra := node.NodeConfig.ShardID == shard.BeaconChainShardID && node.Blockchain().Config().IsCrossLink(node.Worker.GetCurrentHeader().Epoch()) isBeaconchainInStakingEra := node.NodeConfig.ShardID == shard.BeaconChainShardID && node.Blockchain().Config().IsStaking(node.Worker.GetCurrentHeader().Epoch()) utils.AnalysisStart("proposeNewBlockVerifyCrossLinks") // Prepare cross links and slashing messages var crossLinksToPropose types.CrossLinks ten := big.NewInt(10) crossLinkEpochThreshold := new(big.Int).Sub(currentHeader.Epoch(), ten) if isBeaconchainInCrossLinkEra { allPending, err := node.Blockchain().ReadPendingCrossLinks() invalidToDelete := []types.CrossLink{} if err == nil { for _, pending := range allPending { // if pending crosslink is older than 10 epochs, delete it and continue. this logic is also applied when the node starts if pending.EpochF.Cmp(crossLinkEpochThreshold) <= 0 { invalidToDelete = append(invalidToDelete, pending) continue } // ReadCrossLink beacon chain usage. exist, err := node.Blockchain().ReadCrossLink(pending.ShardID(), pending.BlockNum()) if err == nil || exist != nil { invalidToDelete = append(invalidToDelete, pending) utils.Logger().Debug(). AnErr("[ProposeNewBlock] pending crosslink is already committed onchain", err) continue } // Crosslink is already verified before it's accepted to pending, // no need to verify again in proposal. if !node.Blockchain().Config().IsCrossLink(pending.Epoch()) { utils.Logger().Debug(). AnErr("[ProposeNewBlock] pending crosslink that's before crosslink epoch", err) continue } crossLinksToPropose = append(crossLinksToPropose, pending) if len(crossLinksToPropose) > 15 { break } } utils.Logger().Info(). Msgf("[ProposeNewBlock] Proposed %d crosslinks from %d pending crosslinks", len(crossLinksToPropose), len(allPending), ) } else { utils.Logger().Warn().Err(err).Msgf( "[ProposeNewBlock] Unable to Read PendingCrossLinks, number of crosslinks: %d", len(allPending), ) } if n, err := node.Blockchain().DeleteFromPendingCrossLinks(invalidToDelete); err != nil { utils.Logger().Error(). Err(err). Msg("[ProposeNewBlock] invalid pending cross links failed") } else if len(invalidToDelete) > 0 { utils.Logger().Info(). Int("not-deleted", n). Int("deleted", len(invalidToDelete)). Msg("[ProposeNewBlock] deleted invalid pending cross links") } } utils.AnalysisEnd("proposeNewBlockVerifyCrossLinks") if isBeaconchainInStakingEra { // this will set a meaningful w.current.slashes if err := node.Worker.CollectVerifiedSlashes(); err != nil { return nil, err } } node.Worker.ApplyShardReduction() // Prepare shard state var shardState *shard.State if shardState, err = node.Blockchain().SuperCommitteeForNextEpoch( node.Beaconchain(), node.Worker.GetCurrentHeader(), false, ); err != nil { return nil, err } viewIDFunc := func() uint64 { return node.Consensus.GetCurBlockViewID() } finalizedBlock, err := node.Worker.FinalizeNewBlock( commitSigs, viewIDFunc, coinbase, crossLinksToPropose, shardState, ) if err != nil { utils.Logger().Error().Err(err).Msg("[ProposeNewBlock] Failed finalizing the new block") return nil, err } utils.Logger().Info().Msg("[ProposeNewBlock] verifying the new block header") // err = node.Blockchain().Validator().ValidateHeader(finalizedBlock, true) err = core.NewBlockValidator(node.Blockchain()).ValidateHeader(finalizedBlock, true) if err != nil { utils.Logger().Error().Err(err).Msg("[ProposeNewBlock] Failed verifying the new block header") return nil, err } // Save process result in the cache for later use for faster block commitment to db. result := node.Worker.GetCurrentResult() node.Blockchain().Processor().CacheProcessorResult(finalizedBlock.Hash(), result) return finalizedBlock, nil } func (node *Node) proposeReceiptsProof() []*types.CXReceiptsProof { if !node.Blockchain().Config().HasCrossTxFields(node.Worker.GetCurrentHeader().Epoch()) { return []*types.CXReceiptsProof{} } numProposed := 0 validReceiptsList := []*types.CXReceiptsProof{} pendingReceiptsList := []*types.CXReceiptsProof{} node.pendingCXMutex.Lock() defer node.pendingCXMutex.Unlock() // not necessary to sort the list, but we just prefer to process the list ordered by shard and blocknum pendingCXReceipts := []*types.CXReceiptsProof{} for _, v := range node.pendingCXReceipts { pendingCXReceipts = append(pendingCXReceipts, v) } sort.SliceStable(pendingCXReceipts, func(i, j int) bool { shardCMP := pendingCXReceipts[i].MerkleProof.ShardID < pendingCXReceipts[j].MerkleProof.ShardID shardEQ := pendingCXReceipts[i].MerkleProof.ShardID == pendingCXReceipts[j].MerkleProof.ShardID blockCMP := pendingCXReceipts[i].MerkleProof.BlockNum.Cmp( pendingCXReceipts[j].MerkleProof.BlockNum, ) == -1 return shardCMP || (shardEQ && blockCMP) }) m := map[common.Hash]struct{}{} Loop: for _, cxp := range node.pendingCXReceipts { if numProposed > IncomingReceiptsLimit { pendingReceiptsList = append(pendingReceiptsList, cxp) continue } // check double spent if node.Blockchain().IsSpent(cxp) { utils.Logger().Debug().Interface("cxp", cxp).Msg("[proposeReceiptsProof] CXReceipt is spent") continue } hash := cxp.MerkleProof.BlockHash // ignore duplicated receipts if _, ok := m[hash]; ok { continue } else { m[hash] = struct{}{} } for _, item := range cxp.Receipts { if item.ToShardID != node.Blockchain().ShardID() { continue Loop } } if err := core.NewBlockValidator(node.Blockchain()).ValidateCXReceiptsProof(cxp); err != nil { if strings.Contains(err.Error(), rawdb.MsgNoShardStateFromDB) { pendingReceiptsList = append(pendingReceiptsList, cxp) } else { utils.Logger().Error().Err(err).Msg("[proposeReceiptsProof] Invalid CXReceiptsProof") } continue } utils.Logger().Debug().Interface("cxp", cxp).Msg("[proposeReceiptsProof] CXReceipts Added") validReceiptsList = append(validReceiptsList, cxp) numProposed = numProposed + len(cxp.Receipts) } node.pendingCXReceipts = make(map[string]*types.CXReceiptsProof) for _, v := range pendingReceiptsList { blockNum := v.Header.Number().Uint64() shardID := v.Header.ShardID() key := utils.GetPendingCXKey(shardID, blockNum) node.pendingCXReceipts[key] = v } utils.Logger().Debug().Msgf("[proposeReceiptsProof] number of validReceipts %d", len(validReceiptsList)) return validReceiptsList }