package effective import ( "bytes" "encoding/json" "math/big" "sort" "github.com/harmony-one/harmony/crypto/bls" "github.com/ethereum/go-ethereum/common" common2 "github.com/harmony-one/harmony/internal/common" "github.com/harmony-one/harmony/numeric" ) // medium.com/harmony-one/introducing-harmonys-effective-proof-of-stake-epos-2d39b4b8d58 var ( two = numeric.NewDecFromBigInt(big.NewInt(2)) c, _ = numeric.NewDecFromStr("0.15") onePlusC = numeric.OneDec().Add(c) oneMinusC = numeric.OneDec().Sub(c) ) func effectiveStake(median, actual numeric.Dec) numeric.Dec { left := numeric.MinDec(onePlusC.Mul(median), actual) right := oneMinusC.Mul(median) return numeric.MaxDec(left, right) } // SlotPurchase .. type SlotPurchase struct { Addr common.Address Key bls.SerializedPublicKey RawStake numeric.Dec EPoSStake numeric.Dec } // MarshalJSON .. func (p SlotPurchase) MarshalJSON() ([]byte, error) { return json.Marshal(struct { Addr string `json:"slot-owner"` Key string `json:"bls-public-key"` RawStake numeric.Dec `json:"raw-stake"` EPoSStake numeric.Dec `json:"eposed-stake"` }{ common2.MustAddressToBech32(p.Addr), p.Key.Hex(), p.RawStake, p.EPoSStake, }) } // SlotOrder .. type SlotOrder struct { Stake *big.Int `json:"stake"` SpreadAmong []bls.SerializedPublicKey `json:"keys-at-auction"` Percentage numeric.Dec `json:"percentage-of-total-auction-stake"` } // Median .. func Median(stakes []SlotPurchase) numeric.Dec { if len(stakes) == 0 { return numeric.ZeroDec() } sort.SliceStable( stakes, func(i, j int) bool { return stakes[i].RawStake.GT(stakes[j].RawStake) }, ) const isEven = 0 switch l := len(stakes); l % 2 { case isEven: left := (l / 2) - 1 right := l / 2 return stakes[left].RawStake.Add(stakes[right].RawStake).Quo(two) default: return stakes[l/2].RawStake } } // Compute .. func Compute( shortHand map[common.Address]*SlotOrder, pull int, ) (numeric.Dec, []SlotPurchase) { eposedSlots := []SlotPurchase{} if len(shortHand) == 0 { return numeric.ZeroDec(), eposedSlots } type t struct { addr common.Address slot *SlotOrder } shorter := []t{} for key, value := range shortHand { shorter = append(shorter, t{key, value}) } sort.SliceStable( shorter, func(i, j int) bool { return bytes.Compare( shorter[i].addr.Bytes(), shorter[j].addr.Bytes(), ) == -1 }, ) // Expand for _, staker := range shorter { slotsCount := len(staker.slot.SpreadAmong) if slotsCount == 0 { continue } spread := numeric.NewDecFromBigInt(staker.slot.Stake). QuoInt64(int64(slotsCount)) for i := 0; i < slotsCount; i++ { eposedSlots = append(eposedSlots, SlotPurchase{ Addr: staker.addr, Key: staker.slot.SpreadAmong[i], // NOTE these are same because later the .EPoSStake mutated RawStake: spread, EPoSStake: spread, }) } } sort.SliceStable( eposedSlots, func(i, j int) bool { return eposedSlots[i].RawStake.GT(eposedSlots[j].RawStake) }, ) if l := len(eposedSlots); l < pull { pull = l } picks := eposedSlots[:pull] if len(picks) == 0 { return numeric.ZeroDec(), []SlotPurchase{} } return Median(picks), picks } // Apply .. func Apply(shortHand map[common.Address]*SlotOrder, pull int) ( numeric.Dec, []SlotPurchase, ) { median, picks := Compute(shortHand, pull) for i := range picks { picks[i].EPoSStake = effectiveStake(median, picks[i].RawStake) } return median, picks }