// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "crypto/ecdsa" "fmt" "io/ioutil" "math/big" "math/rand" "os" "sync/atomic" "testing" "time" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/harmony-one/harmony/crypto/bls" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/event" bls_core "github.com/harmony-one/bls/ffi/go/bls" blockfactory "github.com/harmony-one/harmony/block/factory" "github.com/harmony-one/harmony/common/denominations" "github.com/harmony-one/harmony/core/state" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/core/vm" "github.com/harmony-one/harmony/crypto/hash" chain2 "github.com/harmony-one/harmony/internal/chain" "github.com/harmony-one/harmony/internal/params" "github.com/harmony-one/harmony/numeric" staking "github.com/harmony-one/harmony/staking/types" ) var ( // testTxPoolConfig is a transaction pool configuration without stateful disk sideeffects used during testing. testTxPoolConfig TxPoolConfig testBLSPubKey = "30b2c38b1316da91e068ac3bd8751c0901ef6c02a1d58bc712104918302c6ed03d5894671d0c816dad2b4d303320f202" testBLSPrvKey = "c6d7603520311f7a4e6aac0b26701fc433b75b38df504cd416ef2b900cd66205" gasPrice = big.NewInt(3e10) gasLimit = big.NewInt(int64(params.TxGasValidatorCreation)) cost = big.NewInt(1).Mul(gasPrice, gasLimit) dummyErrorSink = types.NewTransactionErrorSink() ) func init() { testTxPoolConfig = DefaultTxPoolConfig testTxPoolConfig.Journal = "" } type testBlockChain struct { statedb *state.DB gasLimit uint64 chainHeadFeed *event.Feed } func (bc *testBlockChain) SetGasLimit(value uint64) { atomic.StoreUint64(&bc.gasLimit, value) } func (bc *testBlockChain) CurrentBlock() *types.Block { return types.NewBlock(blockfactory.NewTestHeader().With(). GasLimit(atomic.LoadUint64(&bc.gasLimit)). Header(), nil, nil, nil, nil, nil) } func (bc *testBlockChain) GetBlock(hash common.Hash, number uint64) *types.Block { return bc.CurrentBlock() } func (bc *testBlockChain) StateAt(common.Hash) (*state.DB, error) { return bc.statedb, nil } func (bc *testBlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription { return bc.chainHeadFeed.Subscribe(ch) } // TODO: more staking tests in tx pool & testing lib func stakingCreateValidatorTransaction(key *ecdsa.PrivateKey) (*staking.StakingTransaction, error) { stakePayloadMaker := func() (staking.Directive, interface{}) { p := &bls_core.PublicKey{} p.DeserializeHexStr(testBLSPubKey) pub := bls.SerializedPublicKey{} pub.FromLibBLSPublicKey(p) messageBytes := []byte(staking.BLSVerificationStr) privateKey := &bls_core.SecretKey{} privateKey.DeserializeHexStr(testBLSPrvKey) msgHash := hash.Keccak256(messageBytes) signature := privateKey.SignHash(msgHash[:]) var sig bls.SerializedSignature copy(sig[:], signature.Serialize()) ra, _ := numeric.NewDecFromStr("0.7") maxRate, _ := numeric.NewDecFromStr("1") maxChangeRate, _ := numeric.NewDecFromStr("0.5") return staking.DirectiveCreateValidator, staking.CreateValidator{ Description: staking.Description{ Name: "SuperHero", Identity: "YouWouldNotKnow", Website: "Secret Website", SecurityContact: "LicenseToKill", Details: "blah blah blah", }, CommissionRates: staking.CommissionRates{ Rate: ra, MaxRate: maxRate, MaxChangeRate: maxChangeRate, }, MinSelfDelegation: tenKOnes, MaxTotalDelegation: twelveKOnes, ValidatorAddress: crypto.PubkeyToAddress(key.PublicKey), SlotPubKeys: []bls.SerializedPublicKey{pub}, SlotKeySigs: []bls.SerializedSignature{sig}, Amount: tenKOnes, } } gasPrice := big.NewInt(30000000000) tx, _ := staking.NewStakingTransaction(0, 1e10, gasPrice, stakePayloadMaker) return staking.Sign(tx, staking.NewEIP155Signer(tx.ChainID()), key) } func transaction(shardID uint32, nonce uint64, gaslimit uint64, key *ecdsa.PrivateKey) types.PoolTransaction { return pricedTransaction(shardID, nonce, gaslimit, big.NewInt(30000000000), key) } func pricedTransaction(shardID uint32, nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) types.PoolTransaction { signedTx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, shardID, big.NewInt(100000000000), gaslimit, gasprice, nil), types.HomesteadSigner{}, key) return signedTx } func createBlockChain() *BlockChainImpl { key, _ := crypto.GenerateKey() gspec := Genesis{ Config: params.TestChainConfig, Factory: blockfactory.ForTest, Alloc: GenesisAlloc{ crypto.PubkeyToAddress(key.PublicKey): { Balance: big.NewInt(8e18), }, }, GasLimit: 1e18, ShardID: 0, } database := rawdb.NewMemoryDatabase() genesis := gspec.MustCommit(database) _ = genesis engine := chain2.NewEngine() blockchain, _ := NewBlockChain(database, nil, gspec.Config, engine, vm.Config{}, nil) return blockchain } func setupTxPool(chain blockChain) (*TxPool, *ecdsa.PrivateKey) { if chain == nil { statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) chain = &testBlockChain{statedb, 1e18, new(event.Feed)} } key, _ := crypto.GenerateKey() pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, chain, dummyErrorSink) return pool, key } // validateTxPoolInternals checks various consistency invariants within the pool. func validateTxPoolInternals(pool *TxPool) error { pool.mu.RLock() defer pool.mu.RUnlock() // Ensure the total transaction set is consistent with pending + queued pending, queued := pool.stats() if total := pool.all.Count(); total != pending+queued { return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued) } if priced := pool.priced.items.Len() - pool.priced.stales; priced != pending+queued { return fmt.Errorf("total priced transaction count %d != %d pending + %d queued", priced, pending, queued) } // Ensure the next nonce to assign is the correct one for addr, txs := range pool.pending { // Find the last transaction var last uint64 for nonce := range txs.txs.items { if last < nonce { last = nonce } } if nonce := pool.pendingState.GetNonce(addr); nonce != last+1 { return fmt.Errorf("pending nonce mismatch: have %v, want %v", nonce, last+1) } } return nil } func deriveSender(tx types.PoolTransaction) (common.Address, error) { return tx.SenderAddress() } type testChain struct { *testBlockChain address common.Address trigger *bool } // testChain.State() is used multiple times to reset the pending state. // when simulate is true it will create a state that indicates // that tx0 and tx1 are included in the chain. func (c *testChain) State() (*state.DB, error) { // delay "state change" by one. The tx pool fetches the // state multiple times and by delaying it a bit we simulate // a state change between those fetches. stdb := c.statedb if *c.trigger { c.statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) // simulate that the new head block included tx0 and tx1 c.statedb.SetNonce(c.address, 2) c.statedb.SetBalance(c.address, new(big.Int).SetUint64(denominations.One)) *c.trigger = false } return stdb, nil } // This test simulates a scenario where a new block is imported during a // state reset and tests whether the pending state is in sync with the // block head event that initiated the resetState(). func TestStateChangeDuringTransactionPoolReset(t *testing.T) { t.Parallel() var ( key, _ = crypto.GenerateKey() address = crypto.PubkeyToAddress(key.PublicKey) statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) trigger = false ) // setup pool with 2 transaction in it statedb.SetBalance(address, new(big.Int).SetUint64(denominations.One)) blockchain := &testChain{&testBlockChain{statedb, 1000000000, new(event.Feed)}, address, &trigger} tx0 := transaction(0, 0, 100000, key) tx1 := transaction(0, 1, 100000, key) pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain, dummyErrorSink) defer pool.Stop() nonce := pool.State().GetNonce(address) if nonce != 0 { t.Fatalf("Invalid nonce, want 0, got %d", nonce) } pool.AddRemotes(types.PoolTransactions{tx0, tx1}) nonce = pool.State().GetNonce(address) if nonce != 2 { t.Fatalf("Invalid nonce, want 2, got %d", nonce) } // trigger state change in the background trigger = true pool.lockedReset(nil, nil) _, err := pool.Pending() if err != nil { t.Fatalf("Could not fetch pending transactions: %v", err) } nonce = pool.State().GetNonce(address) if nonce != 2 { t.Fatalf("Invalid nonce, want 2, got %d", nonce) } } func TestInvalidTransactions(t *testing.T) { t.Parallel() pool, key := setupTxPool(nil) defer pool.Stop() tx := transaction(0, 0, 100, key) from, _ := deriveSender(tx) pool.currentState.AddBalance(from, big.NewInt(1)) if err := pool.AddRemote(tx); err != ErrInsufficientFunds { t.Error("expected", ErrInsufficientFunds) } balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(new(big.Int).SetUint64(tx.GasLimit()), tx.GasPrice())) pool.currentState.AddBalance(from, balance) if err := pool.AddRemote(tx); err != ErrIntrinsicGas { t.Error("expected", ErrIntrinsicGas, "got", err) } pool.currentState.SetNonce(from, 1) pool.currentState.AddBalance(from, big.NewInt(0xffffffffffffff)) tx = transaction(0, 0, 100000, key) if err := pool.AddRemote(tx); err != ErrNonceTooLow { t.Error("expected", ErrNonceTooLow) } tx = transaction(0, 1, 100000, key) pool.gasPrice = big.NewInt(300000000000) if err := pool.AddRemote(tx); err != ErrUnderpriced { t.Error("expected", ErrUnderpriced, "got", err) } if err := pool.AddLocal(tx); err != nil { t.Error("expected", nil, "got", err) } tx = transaction(1, 0, 100, key) if err := pool.AddRemote(tx); err != ErrInvalidShard { t.Error("expected", ErrInvalidShard, "got", err) } } func TestErrorSink(t *testing.T) { t.Parallel() pool, key := setupTxPool(createBlockChain()) defer pool.Stop() testTxErrorSink := types.NewTransactionErrorSink() pool.txErrorSink = testTxErrorSink tx := transaction(0, 0, 100, key) from, _ := deriveSender(tx) stxKey, _ := crypto.GenerateKey() stx, err := stakingCreateValidatorTransaction(stxKey) if err != nil { t.Errorf("cannot create new staking transaction, %v\n", err) } fromStx, _ := stx.SenderAddress() pool.currentState.SetNonce(from, 1) pool.currentState.AddBalance(from, big.NewInt(0xffffffffffffff)) tx = transaction(0, 0, 100000, key) if err := pool.AddRemote(tx); err != ErrNonceTooLow { t.Error("expected", ErrNonceTooLow) } if !testTxErrorSink.Contains(tx.Hash().String()) { t.Error("expected errored transaction in tx pool") } pool.currentState.SetNonce(from, 0) tx = transaction(0, 0, 100000, key) if err := pool.AddRemote(tx); err != nil { t.Error("expected successful transaction got", err) } if testTxErrorSink.Contains(tx.Hash().String()) { t.Error("expected successful transaction to not be in error sink") } pool.currentState.SetNonce(from, 2) tx = transaction(0, 2, 100000, key) pool.currentState.SetBalance(from, big.NewInt(0x0)) pool.currentState.SetBalance(fromStx, big.NewInt(0x0)) if err := pool.AddRemote(tx); err != ErrInsufficientFunds { t.Error("expected", ErrInsufficientFunds) } if err := pool.AddRemote(stx); err != ErrInsufficientFunds { t.Error("expected", ErrInsufficientFunds) } if !testTxErrorSink.Contains(tx.Hash().String()) { t.Error("expected errored transaction in tx pool") } if !testTxErrorSink.Contains(stx.Hash().String()) { t.Error("expected errored transaction in tx pool") } pool.currentState.SetBalance(from, twelveKOnes) pool.currentState.SetBalance(fromStx, twelveKOnes) if err := pool.AddRemote(tx); err != nil { t.Error("expected successful transaction got", err) } if err := pool.AddRemote(stx); err != nil { t.Error("expected successful transaction got", err) } if testTxErrorSink.Contains(tx.Hash().String()) { t.Error("expected successful transaction to not be in error sink") } if testTxErrorSink.Contains(stx.Hash().String()) { t.Error("expected successful transaction to not be in error sink") } } func TestCreateValidatorTransaction(t *testing.T) { t.Parallel() pool, _ := setupTxPool(createBlockChain()) defer pool.Stop() fromKey, _ := crypto.GenerateKey() stx, err := stakingCreateValidatorTransaction(fromKey) if err != nil { t.Errorf("cannot create new staking transaction, %v\n", err) } senderAddr, _ := stx.SenderAddress() pool.currentState.AddBalance(senderAddr, hundredKOnes) // Add additional create validator tx cost pool.currentState.AddBalance(senderAddr, cost) if err = pool.AddRemote(stx); err != nil { t.Error(err.Error()) } if pool.pending[senderAddr] == nil || pool.pending[senderAddr].Len() != 1 { t.Error("Expected 1 pending transaction") } } func TestMixedTransactions(t *testing.T) { t.Parallel() pool, _ := setupTxPool(createBlockChain()) defer pool.Stop() fromKey, _ := crypto.GenerateKey() stx, err := stakingCreateValidatorTransaction(fromKey) if err != nil { t.Errorf("cannot create new staking transaction, %v\n", err) } stxAddr, _ := stx.SenderAddress() pool.currentState.AddBalance(stxAddr, hundredKOnes) // Add additional create validator tx cost pool.currentState.AddBalance(stxAddr, cost) goodFromKey, _ := crypto.GenerateKey() tx := transaction(0, 0, 25000, goodFromKey) txAddr, _ := deriveSender(tx) pool.currentState.AddBalance(txAddr, big.NewInt(1503000000000000)) errs := pool.AddRemotes(types.PoolTransactions{stx, tx}) for _, err := range errs { if err != nil { t.Error(err) } } if pool.pending[stxAddr] == nil || pool.pending[stxAddr].Len() != 1 { t.Error("Expected 1 pending transaction") } } func TestBlacklistedTransactions(t *testing.T) { // DO NOT parallelize, test will add accounts to tx pool config. // Create the pool pool, _ := setupTxPool(nil) defer pool.Stop() // Create testing keys bannedFromKey, _ := crypto.GenerateKey() goodFromKey, _ := crypto.GenerateKey() // Create testing transactions badTx := transaction(0, 0, 25000, bannedFromKey) goodTx := transaction(0, 0, 25000, goodFromKey) bannedFromAcc, _ := deriveSender(badTx) bannedToAcc := *badTx.To() goodFromAcc, _ := deriveSender(goodTx) // Fund from accounts pool.currentState.AddBalance(bannedFromAcc, big.NewInt(1503000000000000)) pool.currentState.AddBalance(goodFromAcc, big.NewInt(1503000000000000)) DefaultTxPoolConfig.Blacklist[bannedToAcc] = struct{}{} err := pool.AddRemotes(types.PoolTransactions{badTx}) if err[0] != ErrBlacklistTo { t.Error("expected", ErrBlacklistTo, "got", err[0]) } delete(DefaultTxPoolConfig.Blacklist, bannedToAcc) DefaultTxPoolConfig.Blacklist[bannedFromAcc] = struct{}{} err = pool.AddRemotes(types.PoolTransactions{badTx}) if err[0] != ErrBlacklistFrom { t.Error("expected", ErrBlacklistFrom, "got", err[0]) } // to acc is same for bad and good tx, so keep off blacklist for valid tx check err = pool.AddRemotes(types.PoolTransactions{goodTx}) if err[0] != nil { t.Error("expected", nil, "got", err[0]) } // cleanup blacklist config for other tests DefaultTxPoolConfig.Blacklist = map[common.Address]struct{}{} } func TestTransactionQueue(t *testing.T) { t.Parallel() pool, key := setupTxPool(nil) defer pool.Stop() tx := transaction(0, 0, 100, key) from, _ := deriveSender(tx) pool.currentState.AddBalance(from, big.NewInt(30000000000000)) pool.lockedReset(nil, nil) pool.enqueueTx(tx) pool.promoteExecutables([]common.Address{from}) if len(pool.pending) != 1 { t.Error("expected valid txs to be 1 is", len(pool.pending)) } tx = transaction(0, 1, 100, key) from, _ = deriveSender(tx) pool.currentState.SetNonce(from, 2) pool.enqueueTx(tx) pool.promoteExecutables([]common.Address{from}) if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok { t.Error("expected transaction to be in tx pool") } if len(pool.queue) > 0 { t.Error("expected transaction queue to be empty. is", len(pool.queue)) } pool, key = setupTxPool(nil) defer pool.Stop() tx1 := transaction(0, 0, 100, key) tx2 := transaction(0, 10, 100, key) tx3 := transaction(0, 11, 100, key) from, _ = deriveSender(tx1) pool.currentState.AddBalance(from, big.NewInt(30000000000000)) pool.lockedReset(nil, nil) pool.enqueueTx(tx1) pool.enqueueTx(tx2) pool.enqueueTx(tx3) pool.promoteExecutables([]common.Address{from}) if len(pool.pending) != 1 { t.Error("expected tx pool to be 1, got", len(pool.pending)) } if pool.queue[from].Len() != 2 { t.Error("expected len(queue) == 2, got", pool.queue[from].Len()) } } func TestTransactionNegativeValue(t *testing.T) { t.Parallel() pool, key := setupTxPool(nil) defer pool.Stop() tx, _ := types.SignTx( types.NewTransaction(0, common.Address{}, 0, big.NewInt(-1), 100, big.NewInt(1), nil), types.HomesteadSigner{}, key) from, _ := deriveSender(tx) pool.currentState.AddBalance(from, big.NewInt(1)) if err := pool.AddRemote(tx); err != ErrNegativeValue { t.Error("expected", ErrNegativeValue, "got", err) } } func TestTransactionChainFork(t *testing.T) { t.Skip("This test doesn't work with race detector") t.Parallel() pool, key := setupTxPool(nil) defer pool.Stop() addr := crypto.PubkeyToAddress(key.PublicKey) resetState := func() { statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) statedb.AddBalance(addr, big.NewInt(9000000000000000000)) pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)} pool.lockedReset(nil, nil) } resetState() tx := transaction(0, 0, 100000, key) if _, err := pool.add(tx, false); err != nil { t.Error("didn't expect error", err) } pool.removeTx(tx.Hash(), true) // reset the pool's internal state resetState() if _, err := pool.add(tx, false); err != nil { t.Error("didn't expect error", err) } } func TestTransactionDoubleNonce(t *testing.T) { t.Parallel() key, _ := crypto.GenerateKey() addr := crypto.PubkeyToAddress(key.PublicKey) statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) statedb.AddBalance(addr, big.NewInt(1000000000000000000)) pool, _ := setupTxPool(&testBlockChain{statedb, 1000000, new(event.Feed)}) defer pool.Stop() pool.lockedReset(nil, nil) signer := types.HomesteadSigner{} tx1, _ := types.SignTx( types.NewTransaction(0, common.Address{}, 0, big.NewInt(100), 100000, big.NewInt(30000000000), nil), signer, key) tx2, _ := types.SignTx( types.NewTransaction(0, common.Address{}, 0, big.NewInt(100), 1000000, big.NewInt(31000000000), nil), signer, key) tx3, _ := types.SignTx( types.NewTransaction(0, common.Address{}, 0, big.NewInt(100), 1000000, big.NewInt(30000000000), nil), signer, key) // Add the first two transaction, ensure higher priced stays only if replace, err := pool.add(tx1, false); err != nil || replace { t.Errorf("first transaction insert failed (%v) or reported replacement (%v)", err, replace) } if replace, err := pool.add(tx2, false); err != nil || !replace { t.Errorf("second transaction insert failed (%v) or not reported replacement (%v)", err, replace) } pool.promoteExecutables([]common.Address{addr}) if pool.pending[addr].Len() != 1 { t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) } if tx := pool.pending[addr].txs.items[0]; tx.Hash() != (*tx2).Hash() { t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), (*tx2).Hash()) } // Add the third transaction and ensure it's not saved (smaller price) pool.add(tx3, false) pool.promoteExecutables([]common.Address{addr}) if pool.pending[addr].Len() != 1 { t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) } if tx := pool.pending[addr].txs.items[0]; tx.Hash() != (*tx2).Hash() { t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), (*tx2).Hash()) } // Ensure the total transaction count is correct if pool.all.Count() != 1 { t.Error("expected 1 total transactions, got", pool.all.Count()) } } func TestTransactionMissingNonce(t *testing.T) { t.Parallel() pool, key := setupTxPool(nil) defer pool.Stop() addr := crypto.PubkeyToAddress(key.PublicKey) pool.currentState.AddBalance(addr, big.NewInt(3003000000000000)) tx := transaction(0, 1, 100000, key) if _, err := pool.add(tx, false); err != nil { t.Error("didn't expect error", err) } if len(pool.pending) != 0 { t.Error("expected 0 pending transactions, got", len(pool.pending)) } if pool.queue[addr].Len() != 1 { t.Error("expected 1 queued transaction, got", pool.queue[addr].Len()) } if pool.all.Count() != 1 { t.Error("expected 1 total transactions, got", pool.all.Count()) } } func TestTransactionNonceRecovery(t *testing.T) { t.Parallel() const n = 10 pool, key := setupTxPool(nil) defer pool.Stop() addr := crypto.PubkeyToAddress(key.PublicKey) pool.currentState.SetNonce(addr, n) pool.currentState.AddBalance(addr, big.NewInt(3003000000000000)) pool.lockedReset(nil, nil) tx := transaction(0, n, 100000, key) if err := pool.AddRemote(tx); err != nil { t.Error(err) } // simulate some weird re-order of transactions and missing nonce(s) pool.currentState.SetNonce(addr, n-1) pool.lockedReset(nil, nil) if fn := pool.pendingState.GetNonce(addr); fn != n-1 { t.Errorf("expected nonce to be %d, got %d", n-1, fn) } } // Tests that if an account runs out of funds, any pending and queued transactions // are dropped. func TestTransactionDropping(t *testing.T) { t.Parallel() // Create a test account and fund it pool, key := setupTxPool(nil) defer pool.Stop() account, _ := deriveSender(transaction(0, 0, 0, key)) pool.currentState.AddBalance(account, big.NewInt(30000000000000)) // Add some pending and some queued transactions var ( tx0 = transaction(0, 0, 100, key) tx1 = transaction(0, 1, 200, key) tx2 = transaction(0, 2, 300, key) tx10 = transaction(0, 10, 100, key) tx11 = transaction(0, 11, 200, key) tx12 = transaction(0, 12, 300, key) ) pool.promoteTx(account, tx0) pool.promoteTx(account, tx1) pool.promoteTx(account, tx2) pool.enqueueTx(tx10) pool.enqueueTx(tx11) pool.enqueueTx(tx12) // Check that pre and post validations leave the pool as is if pool.pending[account].Len() != 3 { t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3) } if pool.queue[account].Len() != 3 { t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3) } if pool.all.Count() != 6 { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6) } pool.lockedReset(nil, nil) if pool.pending[account].Len() != 3 { t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3) } if pool.queue[account].Len() != 3 { t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3) } if pool.all.Count() != 6 { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6) } // Reduce the balance of the account, and check that invalidated transactions are dropped pool.currentState.AddBalance(account, big.NewInt(-23000000000000)) pool.lockedReset(nil, nil) if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok { t.Errorf("funded pending transaction missing: %v", tx0) } if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; !ok { t.Errorf("funded pending transaction missing: %v", tx1) } if _, ok := pool.pending[account].txs.items[tx2.Nonce()]; ok { t.Errorf("out-of-fund pending transaction present: %v", tx2) } if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok { t.Errorf("funded queued transaction missing: %v", tx10) } if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; !ok { t.Errorf("funded queued transaction missing: %v", tx11) } if _, ok := pool.queue[account].txs.items[tx12.Nonce()]; ok { t.Errorf("out-of-fund queued transaction present: %v", tx12) } if pool.all.Count() != 4 { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 4) } // Reduce the block gas limit, check that invalidated transactions are dropped pool.chain.(*testBlockChain).SetGasLimit(100) pool.lockedReset(nil, nil) if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok { t.Errorf("funded pending transaction missing: %v", tx0) } if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok { t.Errorf("over-gased pending transaction present: %v", tx1) } if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok { t.Errorf("funded queued transaction missing: %v", tx10) } if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok { t.Errorf("over-gased queued transaction present: %v", tx11) } if pool.all.Count() != 2 { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 2) } } // Tests that if a transaction is dropped from the current pending pool (e.g. out // of fund), all consecutive (still valid, but not executable) transactions are // postponed back into the future queue to prevent broadcasting them. func TestTransactionPostponing(t *testing.T) { t.Parallel() // Create the pool to test the postponing with statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain, dummyErrorSink) defer pool.Stop() // Create two test accounts to produce different gap profiles with keys := make([]*ecdsa.PrivateKey, 2) accs := make([]common.Address, len(keys)) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() accs[i] = crypto.PubkeyToAddress(keys[i].PublicKey) pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1500100000000000)) } // Add a batch consecutive pending transactions for validation txs := types.PoolTransactions{} for i, key := range keys { for j := 0; j < 100; j++ { var tx types.PoolTransaction if (i+j)%2 == 0 { tx = transaction(0, uint64(j), 25000, key) } else { tx = transaction(0, uint64(j), 50000, key) } txs = append(txs, tx) } } for i, err := range pool.AddRemotes(txs) { if err != nil { t.Fatalf("tx %d: failed to add transactions: %v", i, err) } } // Check that pre and post validations leave the pool as is if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) { t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs)) } if len(pool.queue) != 0 { t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0) } if pool.all.Count() != len(txs) { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)) } pool.lockedReset(nil, nil) if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) { t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs)) } if len(pool.queue) != 0 { t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0) } if pool.all.Count() != len(txs) { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)) } // Reduce the balance of the account, and check that transactions are reorganised for _, addr := range accs { pool.currentState.AddBalance(addr, big.NewInt(-30)) } pool.lockedReset(nil, nil) // The first account's first transaction remains valid, check that subsequent // ones are either filtered out, or queued up for later. if _, ok := pool.pending[accs[0]].txs.items[txs[0].Nonce()]; !ok { t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txs[0]) } if pool.queue[accs[0]] != nil { if _, ok := pool.queue[accs[0]].txs.items[txs[0].Nonce()]; ok { t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txs[0]) } } for i, tx := range txs[1:100] { if i%2 == 1 { if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok { t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx) } if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; !ok { t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx) } } else { if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok { t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx) } if pool.queue[accs[0]] != nil { if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; ok { t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx) } } } } // The second account's first transaction got invalid, check that all transactions // are either filtered out, or queued up for later. if pool.pending[accs[1]] != nil { t.Errorf("invalidated account still has pending transactions") } for i, tx := range txs[100:] { if i%2 == 1 { if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; !ok { t.Errorf("tx %d: valid but future transaction missing from future queue: %v", 100+i, tx) } } else { if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; ok { t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", 100+i, tx) } } } if pool.all.Count() != len(txs)/2 { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)/2) } } // Tests that if the transaction count belonging to a single account goes above // some threshold, the higher transactions are dropped to prevent DOS attacks. func TestTransactionQueueAccountLimiting(t *testing.T) { t.Parallel() // Create a test account and fund it pool, key := setupTxPool(nil) defer pool.Stop() account, _ := deriveSender(transaction(0, 0, 0, key)) pool.currentState.AddBalance(account, big.NewInt(9000000000000000000)) // Keep queuing up transactions and make sure all above a limit are dropped for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ { if err := pool.AddRemote(transaction(0, i, 100000, key)); err != nil { t.Fatalf("tx %d: failed to add transaction: %v", i, err) } if len(pool.pending) != 0 { t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0) } if i <= testTxPoolConfig.AccountQueue { if pool.queue[account].Len() != int(i) { t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i) } } else { if pool.queue[account].Len() != int(testTxPoolConfig.AccountQueue) { t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), testTxPoolConfig.AccountQueue) } } } if pool.all.Count() != int(testTxPoolConfig.AccountQueue) { t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue) } } // Tests that if the transaction count belonging to multiple accounts go above // some threshold, the higher transactions are dropped to prevent DOS attacks. // // This logic should not hold for local transactions, unless the local tracking // mechanism is disabled. func TestTransactionQueueGlobalLimiting(t *testing.T) { testTransactionQueueGlobalLimiting(t, false) } func TestTransactionQueueGlobalLimitingNoLocals(t *testing.T) { testTransactionQueueGlobalLimiting(t, true) } func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) { t.Parallel() // Create the pool to test the limit enforcement with statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} config := testTxPoolConfig config.NoLocals = nolocals config.GlobalQueue = config.AccountQueue*3 - 1 // reduce the queue limits to shorten test time (-1 to make it non divisible) pool := NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink) defer pool.Stop() // Create a number of test accounts and fund them (last one will be the local) keys := make([]*ecdsa.PrivateKey, 5) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(30000000000000000)) } local := keys[len(keys)-1] // Generate and queue a batch of transactions nonces := make(map[common.Address]uint64) txs := make(types.PoolTransactions, 0, 3*config.GlobalQueue) for len(txs) < cap(txs) { key := keys[rand.Intn(len(keys)-1)] // skip adding transactions with the local account addr := crypto.PubkeyToAddress(key.PublicKey) txs = append(txs, transaction(0, nonces[addr]+1, 100000, key)) nonces[addr]++ } // Import the batch and verify that limits have been enforced pool.AddRemotes(txs) queued := 0 for addr, list := range pool.queue { if list.Len() > int(config.AccountQueue) { t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue) } queued += list.Len() } if queued > int(config.GlobalQueue) { t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue) } // Generate a batch of transactions from the local account and import them txs = txs[:0] for i := uint64(0); i < 3*config.GlobalQueue; i++ { txs = append(txs, transaction(0, i+1, 100000, local)) } pool.AddLocals(txs) // If locals are disabled, the previous eviction algorithm should apply here too if nolocals { queued := 0 for addr, list := range pool.queue { if list.Len() > int(config.AccountQueue) { t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue) } queued += list.Len() } if queued > int(config.GlobalQueue) { t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue) } } else { // Local exemptions are enabled, make sure the local account owned the queue if len(pool.queue) != 1 { t.Errorf("multiple accounts in queue: have %v, want %v", len(pool.queue), 1) } // Also ensure no local transactions are ever dropped, even if above global limits if queued := pool.queue[crypto.PubkeyToAddress(local.PublicKey)].Len(); uint64(queued) != 3*config.GlobalQueue { t.Fatalf("local account queued transaction count mismatch: have %v, want %v", queued, 3*config.GlobalQueue) } } } // Tests that if an account remains idle for a prolonged amount of time, any // non-executable transactions queued up are dropped to prevent wasting resources // on shuffling them around. // // This logic should not hold for local transactions, unless the local tracking // mechanism is disabled. func TestTransactionQueueTimeLimiting(t *testing.T) { testTransactionQueueTimeLimiting(t, false) } func TestTransactionQueueTimeLimitingNoLocals(t *testing.T) { testTransactionQueueTimeLimiting(t, true) } func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) { // Reduce the eviction interval to a testable amount defer func(old time.Duration) { evictionInterval = old }(evictionInterval) evictionInterval = time.Second // Create the pool to test the non-expiration enforcement statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} config := testTxPoolConfig config.Lifetime = time.Second config.NoLocals = nolocals pool := NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink) defer pool.Stop() // Create two test accounts to ensure remotes expire but locals do not local, _ := crypto.GenerateKey() remote, _ := crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(9000000000000000000)) pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(9000000000000000000)) // Add the two transactions and ensure they both are queued up if err := pool.AddLocal(pricedTransaction(0, 1, 100000, big.NewInt(100000000000), local)); err != nil { t.Fatalf("failed to add local transaction: %v", err) } if err := pool.AddRemote(pricedTransaction(0, 1, 100000, big.NewInt(100000000000), remote)); err != nil { t.Fatalf("failed to add remote transaction: %v", err) } pending, queued := pool.Stats() if pending != 0 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) } if queued != 2 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Wait a bit for eviction to run and clean up any leftovers, and ensure only the local remains time.Sleep(2 * config.Lifetime) pending, queued = pool.Stats() if pending != 0 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) } if nolocals { if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } } else { if queued != 1 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) } } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that the transaction limits are enforced the same way irrelevant whether // the transactions are added one by one or in batches. func TestTransactionQueueLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 1) } func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) } func testTransactionLimitingEquivalency(t *testing.T, origin uint64) { t.Parallel() // Add a batch of transactions to a pool one by one pool1, key1 := setupTxPool(nil) defer pool1.Stop() account1, _ := deriveSender(transaction(0, 0, 0, key1)) pool1.currentState.AddBalance(account1, big.NewInt(9000000000000000000)) for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ { if err := pool1.AddRemote(transaction(0, origin+i, 100000, key1)); err != nil { t.Fatalf("tx %d: failed to add transaction: %v", i, err) } } // Add a batch of transactions to a pool in one big batch pool2, key2 := setupTxPool(nil) defer pool2.Stop() account2, _ := deriveSender(transaction(0, 0, 0, key2)) pool2.currentState.AddBalance(account2, big.NewInt(9000000000000000000)) txs := types.PoolTransactions{} for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ { txs = append(txs, transaction(0, origin+i, 100000, key2)) } pool2.AddRemotes(txs) // Ensure the batch optimization honors the same pool mechanics if len(pool1.pending) != len(pool2.pending) { t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending)) } if len(pool1.queue) != len(pool2.queue) { t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue), len(pool2.queue)) } if pool1.all.Count() != pool2.all.Count() { t.Errorf("total transaction count mismatch: one-by-one algo %d, batch algo %d", pool1.all.Count(), pool2.all.Count()) } if err := validateTxPoolInternals(pool1); err != nil { t.Errorf("pool 1 internal state corrupted: %v", err) } if err := validateTxPoolInternals(pool2); err != nil { t.Errorf("pool 2 internal state corrupted: %v", err) } } // Tests that if the transaction count belonging to multiple accounts go above // some hard threshold, the higher transactions are dropped to prevent DOS // attacks. func TestTransactionPendingGlobalLimiting(t *testing.T) { t.Parallel() // Create the pool to test the limit enforcement with statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} config := testTxPoolConfig config.GlobalSlots = config.AccountSlots * 10 pool := NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink) defer pool.Stop() // Create a number of test accounts and fund them keys := make([]*ecdsa.PrivateKey, 5) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) } // Generate and queue a batch of transactions nonces := make(map[common.Address]uint64) txs := types.PoolTransactions{} for _, key := range keys { addr := crypto.PubkeyToAddress(key.PublicKey) for j := 0; j < int(config.GlobalSlots)/len(keys)*2; j++ { txs = append(txs, transaction(0, nonces[addr], 100000, key)) nonces[addr]++ } } // Import the batch and verify that limits have been enforced pool.AddRemotes(txs) pending := 0 for _, list := range pool.pending { pending += list.Len() } if pending > int(config.GlobalSlots) { t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, config.GlobalSlots) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that if transactions start being capped, transactions are also removed from 'all' func TestTransactionCapClearsFromAll(t *testing.T) { t.Parallel() // Create the pool to test the limit enforcement with statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} config := testTxPoolConfig config.AccountSlots = 2 config.AccountQueue = 2 config.GlobalSlots = 8 pool := NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink) defer pool.Stop() // Create a number of test accounts and fund them key, _ := crypto.GenerateKey() addr := crypto.PubkeyToAddress(key.PublicKey) pool.currentState.AddBalance(addr, big.NewInt(1000000)) txs := types.PoolTransactions{} for j := 0; j < int(config.GlobalSlots)*2; j++ { txs = append(txs, transaction(0, uint64(j), 100000, key)) } // Import the batch and verify that limits have been enforced pool.AddRemotes(txs) if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that if the transaction count belonging to multiple accounts go above // some hard threshold, if they are under the minimum guaranteed slot count then // the transactions are still kept. func TestTransactionPendingMinimumAllowance(t *testing.T) { t.Parallel() // Create the pool to test the limit enforcement with statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} config := testTxPoolConfig config.GlobalSlots = 0 pool := NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink) defer pool.Stop() // Create a number of test accounts and fund them keys := make([]*ecdsa.PrivateKey, 5) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) } // Generate and queue a batch of transactions nonces := make(map[common.Address]uint64) txs := types.PoolTransactions{} for _, key := range keys { addr := crypto.PubkeyToAddress(key.PublicKey) for j := 0; j < int(config.AccountSlots)*2; j++ { txs = append(txs, transaction(0, nonces[addr], 100000, key)) nonces[addr]++ } } // Import the batch and verify that limits have been enforced pool.AddRemotes(txs) for addr, list := range pool.pending { if list.Len() != int(config.AccountSlots) { t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), config.AccountSlots) } } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } // Tests that setting the transaction pool gas price to a higher value does not // remove local transactions. func TestTransactionPoolRepricingKeepsLocals(t *testing.T) { t.Parallel() // Create the pool to test the pricing enforcement with statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain, dummyErrorSink) defer pool.Stop() // Create a number of test accounts and fund them keys := make([]*ecdsa.PrivateKey, 3) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000*1000000*1000000000)) } // Create transaction (both pending and queued) with a linearly growing gasprice for i := uint64(0); i < 500; i++ { // Add pending pTx := pricedTransaction(0, i, 100000, big.NewInt(int64(30000000000+i*1000000000)), keys[2]) if err := pool.AddLocal(pTx); err != nil { t.Fatal(err) } // Add queued qTx := pricedTransaction(0, i+501, 100000, big.NewInt(int64(30000000000+i*1000000000)), keys[2]) if err := pool.AddLocal(qTx); err != nil { t.Fatal(err) } } pending, queued := pool.Stats() expPending, expQueued := 500, 500 validate := func() { pending, queued = pool.Stats() if pending != expPending { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, expPending) } if queued != expQueued { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, expQueued) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } } validate() // Reprice the pool and check that nothing is dropped pool.SetGasPrice(big.NewInt(2000000000)) validate() pool.SetGasPrice(big.NewInt(2000000000)) pool.SetGasPrice(big.NewInt(4000000000)) pool.SetGasPrice(big.NewInt(8000000000)) pool.SetGasPrice(big.NewInt(100000000000)) validate() } // Tests that local transactions are journaled to disk, but remote transactions // get discarded between restarts. func TestTransactionJournaling(t *testing.T) { testTransactionJournaling(t, false) } func TestTransactionJournalingNoLocals(t *testing.T) { testTransactionJournaling(t, true) } func testTransactionJournaling(t *testing.T, nolocals bool) { t.Parallel() // Create a temporary file for the journal file, err := ioutil.TempFile("", "") if err != nil { t.Fatalf("failed to create temporary journal: %v", err) } journal := file.Name() defer os.Remove(journal) // Clean up the temporary file, we only need the path for now file.Close() os.Remove(journal) // Create the original pool to inject transaction into the journal statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} config := testTxPoolConfig config.NoLocals = nolocals config.Journal = journal config.Rejournal = time.Second pool := NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink) // Create two test accounts to ensure remotes expire but locals do not local, _ := crypto.GenerateKey() remote, _ := crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(9000000000000000000)) pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(9000000000000000000)) // Add three local and a remote transactions and ensure they are queued up if err := pool.AddLocal(pricedTransaction(0, 0, 100000, big.NewInt(30000000000), local)); err != nil { t.Fatalf("failed to add local transaction: %v", err) } if err := pool.AddLocal(pricedTransaction(0, 1, 100000, big.NewInt(30000000000), local)); err != nil { t.Fatalf("failed to add local transaction: %v", err) } if err := pool.AddLocal(pricedTransaction(0, 2, 100000, big.NewInt(30000000000), local)); err != nil { t.Fatalf("failed to add local transaction: %v", err) } if err := pool.AddRemote(pricedTransaction(0, 0, 100000, big.NewInt(30000000000), remote)); err != nil { t.Fatalf("failed to add remote transaction: %v", err) } pending, queued := pool.Stats() if pending != 4 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 4) } if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Terminate the old pool, bump the local nonce, create a new pool and ensure relevant transaction survive pool.Stop() statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1) blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)} pool = NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink) pending, queued = pool.Stats() if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } if nolocals { if pending != 0 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) } } else { if pending != 2 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) } } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Bump the nonce temporarily and ensure the newly invalidated transaction is removed statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 2) pool.lockedReset(nil, nil) time.Sleep(2 * config.Rejournal) pool.Stop() statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1) blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)} pool = NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink) pending, queued = pool.Stats() if pending != 0 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) } if nolocals { if queued != 0 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) } } else { if queued != 1 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) } } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } pool.Stop() } // TestTransactionStatusCheck tests that the pool can correctly retrieve the // pending status of individual transactions. func TestTransactionStatusCheck(t *testing.T) { t.Parallel() // Create the pool to test the status retrievals with statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase())) blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain, dummyErrorSink) defer pool.Stop() // Create the test accounts to check various transaction statuses with keys := make([]*ecdsa.PrivateKey, 3) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(9000000000000000000)) } // Generate and queue a batch of transactions, both pending and queued txs := types.PoolTransactions{} txs = append(txs, pricedTransaction(0, 0, 100000, big.NewInt(30000000000), keys[0])) // Pending only txs = append(txs, pricedTransaction(0, 0, 100000, big.NewInt(30000000000), keys[1])) // Pending and queued txs = append(txs, pricedTransaction(0, 2, 100000, big.NewInt(30000000000), keys[1])) txs = append(txs, pricedTransaction(0, 2, 100000, big.NewInt(30000000000), keys[2])) // Queued only // Import the transaction and ensure they are correctly added pool.AddRemotes(txs) pending, queued := pool.Stats() if pending != 2 { t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) } if queued != 2 { t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) } if err := validateTxPoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } // Retrieve the status of each transaction and validate them hashes := make([]common.Hash, len(txs)) for i, tx := range txs { hashes[i] = tx.Hash() } hashes = append(hashes, common.Hash{}) statuses := pool.Status(hashes) expect := []TxStatus{TxStatusPending, TxStatusPending, TxStatusQueued, TxStatusQueued, TxStatusUnknown} for i := 0; i < len(statuses); i++ { if statuses[i] != expect[i] { t.Errorf("transaction %d: status mismatch: have %v, want %v", i, statuses[i], expect[i]) } } } // Benchmarks the speed of validating the contents of the pending queue of the // transaction pool. func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) } func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) } func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) } func benchmarkPendingDemotion(b *testing.B, size int) { // Add a batch of transactions to a pool one by one pool, key := setupTxPool(nil) defer pool.Stop() account, _ := deriveSender(transaction(0, 0, 0, key)) pool.currentState.AddBalance(account, big.NewInt(1000000)) for i := 0; i < size; i++ { tx := transaction(0, uint64(i), 100000, key) pool.promoteTx(account, tx) } // Benchmark the speed of pool validation b.ResetTimer() for i := 0; i < b.N; i++ { pool.demoteUnexecutables(0) } } // Benchmarks the speed of scheduling the contents of the future queue of the // transaction pool. func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) } func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) } func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) } func benchmarkFuturePromotion(b *testing.B, size int) { // Add a batch of transactions to a pool one by one pool, key := setupTxPool(nil) defer pool.Stop() account, _ := deriveSender(transaction(0, 0, 0, key)) pool.currentState.AddBalance(account, big.NewInt(1000000)) for i := 0; i < size; i++ { tx := transaction(0, uint64(1+i), 100000, key) pool.enqueueTx(tx) } // Benchmark the speed of pool validation b.ResetTimer() for i := 0; i < b.N; i++ { pool.promoteExecutables(nil) } } // Benchmarks the speed of iterative transaction insertion. func BenchmarkPoolInsert(b *testing.B) { // Generate a batch of transactions to enqueue into the pool pool, key := setupTxPool(nil) defer pool.Stop() account, _ := deriveSender(transaction(0, 0, 0, key)) pool.currentState.AddBalance(account, big.NewInt(1000000)) txs := make(types.PoolTransactions, b.N) for i := 0; i < b.N; i++ { txs[i] = transaction(0, uint64(i), 100000, key) } // Benchmark importing the transactions into the queue b.ResetTimer() for _, tx := range txs { pool.AddRemote(tx) } } // Benchmarks the speed of batched transaction insertion. func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100) } func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000) } func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) } func benchmarkPoolBatchInsert(b *testing.B, size int) { // Generate a batch of transactions to enqueue into the pool pool, key := setupTxPool(nil) defer pool.Stop() account, _ := deriveSender(transaction(0, 0, 0, key)) pool.currentState.AddBalance(account, big.NewInt(1000000)) batches := make([]types.PoolTransactions, b.N) for i := 0; i < b.N; i++ { batches[i] = make(types.PoolTransactions, size) for j := 0; j < size; j++ { batches[i][j] = transaction(0, uint64(size*i+j), 100000, key) } } // Benchmark importing the transactions into the queue b.ResetTimer() for _, batch := range batches { pool.AddRemotes(batch) } }