package chain import ( "bytes" "math/big" "sort" "github.com/ethereum/go-ethereum/common" "github.com/harmony-one/bls/ffi/go/bls" "github.com/harmony-one/harmony/block" "github.com/harmony-one/harmony/consensus/engine" "github.com/harmony-one/harmony/consensus/quorum" "github.com/harmony-one/harmony/consensus/reward" "github.com/harmony-one/harmony/consensus/signature" "github.com/harmony-one/harmony/core/state" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/multibls" "github.com/harmony-one/harmony/shard" "github.com/harmony-one/harmony/shard/committee" "github.com/harmony-one/harmony/staking/availability" "github.com/harmony-one/harmony/staking/slash" staking "github.com/harmony-one/harmony/staking/types" "github.com/pkg/errors" ) type engineImpl struct { beacon engine.ChainReader } // Engine is an algorithm-agnostic consensus engine. var Engine = &engineImpl{nil} func (e *engineImpl) Beaconchain() engine.ChainReader { return e.beacon } // SetBeaconchain assigns the beaconchain handle used func (e *engineImpl) SetBeaconchain(beaconchain engine.ChainReader) { e.beacon = beaconchain } // VerifyHeader checks whether a header conforms to the consensus rules of the bft engine. // Note that each block header contains the bls signature of the parent block func (e *engineImpl) VerifyHeader(chain engine.ChainReader, header *block.Header, seal bool) error { parentHeader := chain.GetHeader(header.ParentHash(), header.Number().Uint64()-1) if parentHeader == nil { return engine.ErrUnknownAncestor } if seal { if err := e.VerifySeal(chain, header); err != nil { return err } } return nil } // VerifyHeaders is similar to VerifyHeader, but verifies a batch of headers // concurrently. The method returns a quit channel to abort the operations and // a results channel to retrieve the async verifications. func (e *engineImpl) VerifyHeaders(chain engine.ChainReader, headers []*block.Header, seals []bool) (chan<- struct{}, <-chan error) { abort, results := make(chan struct{}), make(chan error, len(headers)) go func() { for i, header := range headers { err := e.VerifyHeader(chain, header, seals[i]) select { case <-abort: return case results <- err: } } }() return abort, results } // ReadPublicKeysFromLastBlock finds the public keys of last block's committee func ReadPublicKeysFromLastBlock( bc engine.ChainReader, header *block.Header, ) ([]*bls.PublicKey, error) { parentHeader := bc.GetHeaderByHash(header.ParentHash()) return GetPublicKeys(bc, parentHeader, false) } // VerifyShardState implements Engine, checking the shardstate is valid at epoch transition func (e *engineImpl) VerifyShardState( bc engine.ChainReader, beacon engine.ChainReader, header *block.Header, ) error { if bc.ShardID() != header.ShardID() { return errors.Errorf( "[VerifyShardState] shardID not match %d %d", bc.ShardID(), header.ShardID(), ) } headerShardStateBytes := header.ShardState() // TODO: figure out leader withhold shardState if len(headerShardStateBytes) == 0 { return nil } shardState, err := bc.SuperCommitteeForNextEpoch(beacon, header, true) if err != nil { return err } isStaking := false if shardState.Epoch != nil && bc.Config().IsStaking(shardState.Epoch) { isStaking = true } shardStateBytes, err := shard.EncodeWrapper(*shardState, isStaking) if err != nil { return errors.Wrapf( err, "[VerifyShardState] ShardState Encoding had error", ) } if !bytes.Equal(shardStateBytes, headerShardStateBytes) { return errors.New("shard state header did not match as expected") } return nil } // VerifySeal implements Engine, checking whether the given block's parent block satisfies // the PoS difficulty requirements, i.e. >= 2f+1 valid signatures from the committee // Note that each block header contains the bls signature of the parent block func (e *engineImpl) VerifySeal(chain engine.ChainReader, header *block.Header) error { if chain.CurrentHeader().Number().Uint64() <= uint64(1) { return nil } if header == nil { return errors.New("[VerifySeal] nil block header") } publicKeys, err := ReadPublicKeysFromLastBlock(chain, header) if err != nil { return errors.New("[VerifySeal] Cannot retrieve publickeys from last block") } sig := header.LastCommitSignature() payload := append(sig[:], header.LastCommitBitmap()...) aggSig, mask, err := ReadSignatureBitmapByPublicKeys(payload, publicKeys) if err != nil { return errors.New( "[VerifySeal] Unable to deserialize the LastCommitSignature" + " and LastCommitBitmap in Block Header", ) } parentHash := header.ParentHash() parentHeader := chain.GetHeader(parentHash, header.Number().Uint64()-1) if parentHeader == nil { return errors.New( "[VerifySeal] no parent header found", ) } if chain.Config().IsStaking(parentHeader.Epoch()) { slotList, err := chain.ReadShardState(parentHeader.Epoch()) if err != nil { return errors.Wrapf(err, "cannot decoded shard state") } subComm, err := slotList.FindCommitteeByID(parentHeader.ShardID()) if err != nil { return err } // TODO(audit): reuse a singleton decider and not recreate it for every single block d := quorum.NewDecider( quorum.SuperMajorityStake, subComm.ShardID, ) d.SetMyPublicKeyProvider(func() (multibls.PublicKeys, error) { return nil, nil }) if _, err := d.SetVoters(subComm, slotList.Epoch); err != nil { return err } if !d.IsQuorumAchievedByMask(mask) { return errors.New( "[VerifySeal] Not enough voting power in LastCommitSignature from Block Header", ) } } else { parentQuorum, err := QuorumForBlock(chain, parentHeader, false) if err != nil { return errors.Wrapf(err, "cannot calculate quorum for block %s", header.Number()) } if count := utils.CountOneBits(mask.Bitmap); count < int64(parentQuorum) { return errors.Errorf( "[VerifySeal] need %d signature in LastCommitSignature have %d", parentQuorum, count, ) } } lastCommitPayload := signature.ConstructCommitPayload(chain, parentHeader.Epoch(), parentHeader.Hash(), parentHeader.Number().Uint64(), parentHeader.ViewID().Uint64()) if !aggSig.VerifyHash(mask.AggregatePublic, lastCommitPayload) { const msg = "[VerifySeal] Unable to verify aggregated signature from last block" return errors.New(msg) } return nil } // Finalize implements Engine, accumulating the block rewards, // setting the final state and assembling the block. func (e *engineImpl) Finalize( chain engine.ChainReader, header *block.Header, state *state.DB, txs []*types.Transaction, receipts []*types.Receipt, outcxs []*types.CXReceipt, incxs []*types.CXReceiptsProof, stks staking.StakingTransactions, doubleSigners slash.Records, ) (*types.Block, reward.Reader, error) { isBeaconChain := header.ShardID() == shard.BeaconChainShardID isNewEpoch := len(header.ShardState()) > 0 inPreStakingEra := chain.Config().IsPreStaking(header.Epoch()) inStakingEra := chain.Config().IsStaking(header.Epoch()) // Process Undelegations, set LastEpochInCommittee and set EPoS status // Needs to be before AccumulateRewardsAndCountSigs if isBeaconChain && isNewEpoch && inPreStakingEra { if err := payoutUndelegations(chain, header, state); err != nil { return nil, nil, err } // Needs to be after payoutUndelegations because payoutUndelegations // depends on the old LastEpochInCommittee if err := setLastEpochInCommittee(header, state); err != nil { return nil, nil, err } curShardState, err := chain.ReadShardState(chain.CurrentBlock().Epoch()) if err != nil { return nil, nil, err } // Needs to be before AccumulateRewardsAndCountSigs because // ComputeAndMutateEPOSStatus depends on the signing counts that's // consistent with the counts when the new shardState was proposed. // Refer to committee.IsEligibleForEPoSAuction() for _, addr := range curShardState.StakedValidators().Addrs { if err := availability.ComputeAndMutateEPOSStatus( chain, state, addr, ); err != nil { return nil, nil, err } } } // Accumulate block rewards and commit the final state root // Header seems complete, assemble into a block and return payout, err := AccumulateRewardsAndCountSigs( chain, state, header, e.Beaconchain(), ) if err != nil { return nil, nil, errors.New("cannot pay block reward") } // Apply slashes if isBeaconChain && inStakingEra && len(doubleSigners) > 0 { if err := applySlashes(chain, header, state, doubleSigners); err != nil { return nil, nil, err } } else if len(doubleSigners) > 0 { return nil, nil, errors.New("slashes proposed in non-beacon chain or non-staking epoch") } // Finalize the state root header.SetRoot(state.IntermediateRoot(chain.Config().IsS3(header.Epoch()))) return types.NewBlock(header, txs, receipts, outcxs, incxs, stks), payout, nil } // Withdraw unlocked tokens to the delegators' accounts func payoutUndelegations( chain engine.ChainReader, header *block.Header, state *state.DB, ) error { currentHeader := chain.CurrentHeader() nowEpoch, blockNow := currentHeader.Epoch(), currentHeader.Number() utils.AnalysisStart("payoutUndelegations", nowEpoch, blockNow) defer utils.AnalysisEnd("payoutUndelegations", nowEpoch, blockNow) validators, err := chain.ReadValidatorList() countTrack := map[common.Address]int{} if err != nil { const msg = "[Finalize] failed to read all validators" return errors.New(msg) } // Payout undelegated/unlocked tokens for _, validator := range validators { wrapper, err := state.ValidatorWrapper(validator) if err != nil { return errors.New( "[Finalize] failed to get validator from state to finalize", ) } lockPeriod := staking.LockPeriodInEpoch if chain.Config().IsQuickUnlock(header.Epoch()) { lockPeriod = staking.LockPeriodInEpochV2 } for i := range wrapper.Delegations { delegation := &wrapper.Delegations[i] totalWithdraw := delegation.RemoveUnlockedUndelegations( header.Epoch(), wrapper.LastEpochInCommittee, lockPeriod, ) state.AddBalance(delegation.DelegatorAddress, totalWithdraw) } countTrack[validator] = len(wrapper.Delegations) } utils.Logger().Info(). Uint64("epoch", header.Epoch().Uint64()). Uint64("block-number", header.Number().Uint64()). Interface("count-track", countTrack). Msg("paid out delegations") return nil } func setLastEpochInCommittee(header *block.Header, state *state.DB) error { newShardState, err := header.GetShardState() if err != nil { const msg = "[Finalize] failed to read shard state" return errors.New(msg) } for _, addr := range newShardState.StakedValidators().Addrs { wrapper, err := state.ValidatorWrapper(addr) if err != nil { return errors.New( "[Finalize] failed to get validator from state to finalize", ) } wrapper.LastEpochInCommittee = newShardState.Epoch } return nil } func applySlashes( chain engine.ChainReader, header *block.Header, state *state.DB, doubleSigners slash.Records, ) error { type keyStruct struct { height uint64 viewID uint64 shardID uint32 epoch uint64 } groupedRecords := map[keyStruct]slash.Records{} // First group slashes by same signed blocks for i := range doubleSigners { thisKey := keyStruct{ height: doubleSigners[i].Evidence.Height, viewID: doubleSigners[i].Evidence.ViewID, shardID: doubleSigners[i].Evidence.Moment.ShardID, epoch: doubleSigners[i].Evidence.Moment.Epoch.Uint64(), } groupedRecords[thisKey] = append(groupedRecords[thisKey], doubleSigners[i]) } sortedKeys := []keyStruct{} for key := range groupedRecords { sortedKeys = append(sortedKeys, key) } // Sort them so the slashes are always consistent sort.SliceStable(sortedKeys, func(i, j int) bool { if sortedKeys[i].shardID < sortedKeys[j].shardID { return true } else if sortedKeys[i].height < sortedKeys[j].height { return true } else if sortedKeys[i].viewID < sortedKeys[j].viewID { return true } return false }) // Do the slashing by groups in the sorted order for _, key := range sortedKeys { records := groupedRecords[key] superCommittee, err := chain.ReadShardState(big.NewInt(int64(key.epoch))) if err != nil { return errors.New("could not read shard state") } subComm, err := superCommittee.FindCommitteeByID(key.shardID) if err != nil { return errors.New("could not find shard committee") } // Apply the slashes, invariant: assume been verified as legit slash by this point var slashApplied *slash.Application votingPower, err := lookupVotingPower( big.NewInt(int64(key.epoch)), subComm, ) if err != nil { return errors.Wrapf(err, "could not lookup cached voting power in slash application") } rate := slash.Rate(votingPower, records) utils.Logger().Info(). Str("rate", rate.String()). RawJSON("records", []byte(records.String())). Msg("now applying slash to state during block finalization") if slashApplied, err = slash.Apply( chain, state, records, rate, ); err != nil { return errors.New("[Finalize] could not apply slash") } utils.Logger().Info(). Str("rate", rate.String()). RawJSON("records", []byte(records.String())). RawJSON("applied", []byte(slashApplied.String())). Msg("slash applied successfully") } return nil } // QuorumForBlock returns the quorum for the given block header. func QuorumForBlock( chain engine.ChainReader, h *block.Header, reCalculate bool, ) (quorum int, err error) { ss := new(shard.State) if reCalculate { ss, _ = committee.WithStakingEnabled.Compute(h.Epoch(), chain) } else { ss, err = chain.ReadShardState(h.Epoch()) if err != nil { return 0, errors.Wrapf( err, "failed to read shard state of epoch %d", h.Epoch().Uint64(), ) } } subComm, err := ss.FindCommitteeByID(h.ShardID()) if err != nil { return 0, errors.Errorf("cannot find shard %d in shard state", h.ShardID()) } return (len(subComm.Slots))*2/3 + 1, nil } // Similiar to VerifyHeader, which is only for verifying the block headers of one's own chain, this verification // is used for verifying "incoming" block header against commit signature and bitmap sent from the other chain cross-shard via libp2p. // i.e. this header verification api is more flexible since the caller specifies which commit signature and bitmap to use // for verifying the block header, which is necessary for cross-shard block header verification. Example of such is cross-shard transaction. func (e *engineImpl) VerifyHeaderWithSignature(chain engine.ChainReader, header *block.Header, commitSig []byte, commitBitmap []byte, reCalculate bool) error { if chain.Config().IsStaking(header.Epoch()) { // Never recalculate after staking is enabled reCalculate = false } publicKeys, err := GetPublicKeys(chain, header, reCalculate) if err != nil { return errors.New("[VerifyHeaderWithSignature] Cannot get publickeys for block header") } payload := append(commitSig[:], commitBitmap[:]...) aggSig, mask, err := ReadSignatureBitmapByPublicKeys(payload, publicKeys) if err != nil { return errors.Wrapf( err, "[VerifyHeaderWithSignature] Unable to deserialize signatures", ) } if e := header.Epoch(); chain.Config().IsStaking(e) { slotList, err := chain.ReadShardState(e) if err != nil { return errors.Wrapf(err, "cannot read shard state") } subComm, err := slotList.FindCommitteeByID(header.ShardID()) if err != nil { return err } // TODO(audit): reuse a singleton decider and not recreate it for every single block d := quorum.NewDecider(quorum.SuperMajorityStake, subComm.ShardID) d.SetMyPublicKeyProvider(func() (multibls.PublicKeys, error) { return nil, nil }) if _, err := d.SetVoters(subComm, e); err != nil { return err } if !d.IsQuorumAchievedByMask(mask) { return errors.New( "[VerifySeal] Not enough voting power in commitSignature from Block Header", ) } } else { quorumCount, err := QuorumForBlock(chain, header, reCalculate) if err != nil { return errors.Wrapf(err, "cannot calculate quorum for block %s", header.Number()) } if count := utils.CountOneBits(mask.Bitmap); count < int64(quorumCount) { return errors.New( "[VerifyHeaderWithSignature] Not enough signature in commitSignature from Block Header", ) } } commitPayload := signature.ConstructCommitPayload(chain, header.Epoch(), header.Hash(), header.Number().Uint64(), header.ViewID().Uint64()) if !aggSig.VerifyHash(mask.AggregatePublic, commitPayload) { return errors.New("[VerifySeal] Unable to verify aggregated signature for block") } return nil } // GetPublicKeys finds the public keys of the committee that signed the block header func GetPublicKeys( chain engine.ChainReader, header *block.Header, reCalculate bool, ) ([]*bls.PublicKey, error) { if header == nil { return nil, errors.New("nil header provided") } shardState := new(shard.State) var err error if reCalculate { shardState, _ = committee.WithStakingEnabled.Compute(header.Epoch(), chain) } else { shardState, err = chain.ReadShardState(header.Epoch()) if err != nil { return nil, errors.Wrapf( err, "failed to read shard state of epoch %d", header.Epoch().Uint64(), ) } } subCommittee, err := shardState.FindCommitteeByID(header.ShardID()) if err != nil { return nil, errors.Wrapf( err, "cannot find shard in the shard state at block %d shard %d", header.Number(), header.ShardID(), ) } return subCommittee.BLSPublicKeys() }