package node import ( "context" "crypto/ecdsa" "fmt" "math/big" "os" "strings" "sync" "sync/atomic" "time" "github.com/harmony-one/harmony/crypto/bls" "github.com/ethereum/go-ethereum/common" protobuf "github.com/golang/protobuf/proto" "github.com/harmony-one/abool" bls_core "github.com/harmony-one/bls/ffi/go/bls" "github.com/harmony-one/harmony/api/proto" msg_pb "github.com/harmony-one/harmony/api/proto/message" proto_node "github.com/harmony-one/harmony/api/proto/node" "github.com/harmony-one/harmony/api/service" "github.com/harmony-one/harmony/api/service/syncing" "github.com/harmony-one/harmony/api/service/syncing/downloader" "github.com/harmony-one/harmony/consensus" "github.com/harmony-one/harmony/core" "github.com/harmony-one/harmony/core/rawdb" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/internal/chain" common2 "github.com/harmony-one/harmony/internal/common" nodeconfig "github.com/harmony-one/harmony/internal/configs/node" "github.com/harmony-one/harmony/internal/params" "github.com/harmony-one/harmony/internal/shardchain" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/node/worker" "github.com/harmony-one/harmony/p2p" "github.com/harmony-one/harmony/shard" "github.com/harmony-one/harmony/shard/committee" "github.com/harmony-one/harmony/staking/slash" staking "github.com/harmony-one/harmony/staking/types" "github.com/harmony-one/harmony/webhooks" libp2p_peer "github.com/libp2p/go-libp2p-core/peer" libp2p_pubsub "github.com/libp2p/go-libp2p-pubsub" "github.com/pkg/errors" "golang.org/x/sync/semaphore" ) const ( // NumTryBroadCast is the number of times trying to broadcast NumTryBroadCast = 3 // ClientRxQueueSize is the number of client messages to queue before tail-dropping. ClientRxQueueSize = 16384 // ShardRxQueueSize is the number of shard messages to queue before tail-dropping. ShardRxQueueSize = 16384 // GlobalRxQueueSize is the number of global messages to queue before tail-dropping. GlobalRxQueueSize = 16384 // ClientRxWorkers is the number of concurrent client message handlers. ClientRxWorkers = 8 // ShardRxWorkers is the number of concurrent shard message handlers. ShardRxWorkers = 32 // GlobalRxWorkers is the number of concurrent global message handlers. GlobalRxWorkers = 32 // MsgChanBuffer is the buffer of consensus message handlers. MsgChanBuffer = 1024 ) const ( maxBroadcastNodes = 10 // broadcast at most maxBroadcastNodes peers that need in sync broadcastTimeout int64 = 60 * 1000000000 // 1 mins //SyncIDLength is the length of bytes for syncID SyncIDLength = 20 ) // use to push new block to outofsync node type syncConfig struct { timestamp int64 client *downloader.Client } // Node represents a protocol-participating node in the network type Node struct { Consensus *consensus.Consensus // Consensus object containing all Consensus related data (e.g. committee members, signatures, commits) BlockChannel chan *types.Block // The channel to send newly proposed blocks ConfirmedBlockChannel chan *types.Block // The channel to send confirmed blocks BeaconBlockChannel chan *types.Block // The channel to send beacon blocks for non-beaconchain nodes pendingCXReceipts map[string]*types.CXReceiptsProof // All the receipts received but not yet processed for Consensus pendingCXMutex sync.Mutex // Shard databases shardChains shardchain.Collection SelfPeer p2p.Peer // TODO: Neighbors should store only neighbor nodes in the same shard Neighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer stateMutex sync.Mutex // mutex for change node state // BeaconNeighbors store only neighbor nodes in the beacon chain shard BeaconNeighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer TxPool *core.TxPool CxPool *core.CxPool // pool for missing cross shard receipts resend Worker, BeaconWorker *worker.Worker downloaderServer *downloader.Server // Syncing component. syncID [SyncIDLength]byte // a unique ID for the node during the state syncing process with peers stateSync, beaconSync *syncing.StateSync peerRegistrationRecord map[string]*syncConfig // record registration time (unixtime) of peers begin in syncing SyncingPeerProvider SyncingPeerProvider // The p2p host used to send/receive p2p messages host p2p.Host // Service manager. serviceManager *service.Manager ContractDeployerKey *ecdsa.PrivateKey ContractDeployerCurrentNonce uint64 // The nonce of the deployer contract at current block ContractAddresses []common.Address // Channel to notify consensus service to really start consensus startConsensus chan struct{} // node configuration, including group ID, shard ID, etc NodeConfig *nodeconfig.ConfigType // Chain configuration. chainConfig params.ChainConfig // map of service type to its message channel. serviceMessageChan map[service.Type]chan *msg_pb.Message isFirstTime bool // the node was started with a fresh database unixTimeAtNodeStart int64 // KeysToAddrs holds the addresses of bls keys run by the node KeysToAddrs map[string]common.Address keysToAddrsEpoch *big.Int keysToAddrsMutex sync.Mutex // TransactionErrorSink contains error messages for any failed transaction, in memory only TransactionErrorSink *types.TransactionErrorSink // BroadcastInvalidTx flag is considered when adding pending tx to tx-pool BroadcastInvalidTx bool // InSync flag indicates the node is in-sync or not IsInSync *abool.AtomicBool // metrics of p2p messages NumP2PMessages uint32 NumTotalMessages uint32 NumValidMessages uint32 NumInvalidMessages uint32 NumSlotMessages uint32 NumIgnoredMessages uint32 } // Blockchain returns the blockchain for the node's current shard. func (node *Node) Blockchain() *core.BlockChain { shardID := node.NodeConfig.ShardID bc, err := node.shardChains.ShardChain(shardID) if err != nil { utils.Logger().Error(). Uint32("shardID", shardID). Err(err). Msg("cannot get shard chain") } return bc } // Beaconchain returns the beaconchain from node. func (node *Node) Beaconchain() *core.BlockChain { bc, err := node.shardChains.ShardChain(shard.BeaconChainShardID) if err != nil { utils.Logger().Error().Err(err).Msg("cannot get beaconchain") } return bc } // TODO: make this batch more transactions func (node *Node) tryBroadcast(tx *types.Transaction) { msg := proto_node.ConstructTransactionListMessageAccount(types.Transactions{tx}) shardGroupID := nodeconfig.NewGroupIDByShardID(nodeconfig.ShardID(tx.ShardID())) utils.Logger().Info().Str("shardGroupID", string(shardGroupID)).Msg("tryBroadcast") for attempt := 0; attempt < NumTryBroadCast; attempt++ { if err := node.host.SendMessageToGroups([]nodeconfig.GroupID{shardGroupID}, p2p.ConstructMessage(msg)); err != nil && attempt < NumTryBroadCast { utils.Logger().Error().Int("attempt", attempt).Msg("Error when trying to broadcast tx") } else { break } } } func (node *Node) tryBroadcastStaking(stakingTx *staking.StakingTransaction) { msg := proto_node.ConstructStakingTransactionListMessageAccount(staking.StakingTransactions{stakingTx}) shardGroupID := nodeconfig.NewGroupIDByShardID( nodeconfig.ShardID(shard.BeaconChainShardID), ) // broadcast to beacon chain utils.Logger().Info().Str("shardGroupID", string(shardGroupID)).Msg("tryBroadcastStaking") for attempt := 0; attempt < NumTryBroadCast; attempt++ { if err := node.host.SendMessageToGroups([]nodeconfig.GroupID{shardGroupID}, p2p.ConstructMessage(msg)); err != nil && attempt < NumTryBroadCast { utils.Logger().Error().Int("attempt", attempt).Msg("Error when trying to broadcast staking tx") } else { break } } } // Add new transactions to the pending transaction list. func (node *Node) addPendingTransactions(newTxs types.Transactions) []error { poolTxs := types.PoolTransactions{} for _, tx := range newTxs { poolTxs = append(poolTxs, tx) } errs := node.TxPool.AddRemotes(poolTxs) pendingCount, queueCount := node.TxPool.Stats() utils.Logger().Info(). Interface("err", errs). Int("length of newTxs", len(newTxs)). Int("totalPending", pendingCount). Int("totalQueued", queueCount). Msg("[addPendingTransactions] Adding more transactions") return errs } // Add new staking transactions to the pending staking transaction list. func (node *Node) addPendingStakingTransactions(newStakingTxs staking.StakingTransactions) []error { if node.NodeConfig.ShardID == shard.BeaconChainShardID && node.Blockchain().Config().IsPreStaking(node.Blockchain().CurrentHeader().Epoch()) { poolTxs := types.PoolTransactions{} for _, tx := range newStakingTxs { poolTxs = append(poolTxs, tx) } errs := node.TxPool.AddRemotes(poolTxs) pendingCount, queueCount := node.TxPool.Stats() utils.Logger().Info(). Int("length of newStakingTxs", len(poolTxs)). Int("totalPending", pendingCount). Int("totalQueued", queueCount). Msg("Got more staking transactions") return errs } return make([]error, len(newStakingTxs)) } // AddPendingStakingTransaction staking transactions func (node *Node) AddPendingStakingTransaction( newStakingTx *staking.StakingTransaction, ) error { if node.NodeConfig.ShardID == shard.BeaconChainShardID { errs := node.addPendingStakingTransactions(staking.StakingTransactions{newStakingTx}) var err error for i := range errs { if errs[i] != nil { utils.Logger().Info().Err(errs[i]).Msg("[AddPendingStakingTransaction] Failed adding new staking transaction") err = errs[i] break } } if err == nil || node.BroadcastInvalidTx { utils.Logger().Info().Str("Hash", newStakingTx.Hash().Hex()).Msg("Broadcasting Staking Tx") node.tryBroadcastStaking(newStakingTx) } return err } return nil } // AddPendingTransaction adds one new transaction to the pending transaction list. // This is only called from SDK. func (node *Node) AddPendingTransaction(newTx *types.Transaction) error { if newTx.ShardID() == node.NodeConfig.ShardID { errs := node.addPendingTransactions(types.Transactions{newTx}) var err error for i := range errs { if errs[i] != nil { utils.Logger().Info().Err(errs[i]).Msg("[AddPendingTransaction] Failed adding new transaction") err = errs[i] break } } if err == nil || node.BroadcastInvalidTx { utils.Logger().Info().Str("Hash", newTx.Hash().Hex()).Msg("Broadcasting Tx") node.tryBroadcast(newTx) } return err } return errors.New("shard do not match") } // AddPendingReceipts adds one receipt message to pending list. func (node *Node) AddPendingReceipts(receipts *types.CXReceiptsProof) { node.pendingCXMutex.Lock() defer node.pendingCXMutex.Unlock() if receipts.ContainsEmptyField() { utils.Logger().Info(). Int("totalPendingReceipts", len(node.pendingCXReceipts)). Msg("CXReceiptsProof contains empty field") return } blockNum := receipts.Header.Number().Uint64() shardID := receipts.Header.ShardID() // Sanity checks if err := node.Blockchain().Validator().ValidateCXReceiptsProof(receipts); err != nil { if !strings.Contains(err.Error(), rawdb.MsgNoShardStateFromDB) { utils.Logger().Error().Err(err).Msg("[AddPendingReceipts] Invalid CXReceiptsProof") return } } // cross-shard receipt should not be coming from our shard if s := node.Consensus.ShardID; s == shardID { utils.Logger().Info(). Uint32("my-shard", s). Uint32("receipt-shard", shardID). Msg("ShardID of incoming receipt was same as mine") return } if e := receipts.Header.Epoch(); blockNum == 0 || !node.Blockchain().Config().AcceptsCrossTx(e) { utils.Logger().Info(). Uint64("incoming-epoch", e.Uint64()). Msg("Incoming receipt had meaningless epoch") return } key := utils.GetPendingCXKey(shardID, blockNum) // DDoS protection const maxCrossTxnSize = 4096 if s := len(node.pendingCXReceipts); s >= maxCrossTxnSize { utils.Logger().Info(). Int("pending-cx-receipts-size", s). Int("pending-cx-receipts-limit", maxCrossTxnSize). Msg("Current pending cx-receipts reached size limit") return } if _, ok := node.pendingCXReceipts[key]; ok { utils.Logger().Info(). Int("totalPendingReceipts", len(node.pendingCXReceipts)). Msg("Already Got Same Receipt message") return } node.pendingCXReceipts[key] = receipts utils.Logger().Info(). Int("totalPendingReceipts", len(node.pendingCXReceipts)). Msg("Got ONE more receipt message") } type withError struct { err error payload interface{} } var ( errNotRightKeySize = errors.New("key received over wire is wrong size") errNoSenderPubKey = errors.New("no sender public BLS key in message") errWrongShardID = errors.New("wrong shard id") ) // validateShardBoundMessage validate consensus message // validate shardID // validate public key size // verify message signature func (node *Node) validateShardBoundMessage( ctx context.Context, payload []byte, ) (*msg_pb.Message, *bls.SerializedPublicKey, bool, error) { var ( m msg_pb.Message ) atomic.AddUint32(&node.NumTotalMessages, 1) if err := protobuf.Unmarshal(payload, &m); err != nil { atomic.AddUint32(&node.NumInvalidMessages, 1) return nil, nil, true, errors.WithStack(err) } // when node is in ViewChanging mode, it still accepts normal messages into FBFTLog // in order to avoid possible trap forever but drop PREPARE and COMMIT // which are message types specifically for a node acting as leader // so we just ignore those messages if node.Consensus.IsViewChangingMode() { switch m.Type { case msg_pb.MessageType_PREPARE, msg_pb.MessageType_COMMIT: return nil, nil, true, nil } } // ignore message not intended for leader, but still forward them to the network if node.Consensus.IsLeader() { switch m.Type { case msg_pb.MessageType_ANNOUNCE, msg_pb.MessageType_PREPARED, msg_pb.MessageType_COMMITTED: atomic.AddUint32(&node.NumIgnoredMessages, 1) return nil, nil, true, nil } } maybeCon, maybeVC := m.GetConsensus(), m.GetViewchange() senderKey := bls.SerializedPublicKey{} if maybeCon != nil { if maybeCon.ShardId != node.Consensus.ShardID { atomic.AddUint32(&node.NumInvalidMessages, 1) return nil, nil, true, errors.WithStack(errWrongShardID) } copy(senderKey[:], maybeCon.SenderPubkey[:]) } else if maybeVC != nil { if maybeVC.ShardId != node.Consensus.ShardID { atomic.AddUint32(&node.NumInvalidMessages, 1) return nil, nil, true, errors.WithStack(errWrongShardID) } copy(senderKey[:], maybeVC.SenderPubkey) } else { atomic.AddUint32(&node.NumInvalidMessages, 1) return nil, nil, true, errors.WithStack(errNoSenderPubKey) } if len(senderKey) != bls.PublicKeySizeInBytes { atomic.AddUint32(&node.NumInvalidMessages, 1) return nil, nil, true, errors.WithStack(errNotRightKeySize) } if !node.Consensus.IsValidatorInCommittee(senderKey) { atomic.AddUint32(&node.NumSlotMessages, 1) return nil, nil, true, errors.WithStack(shard.ErrValidNotInCommittee) } // ignore mesage not intended for validator // but still forward them to the network if !node.Consensus.IsLeader() { switch m.Type { case msg_pb.MessageType_PREPARE, msg_pb.MessageType_COMMIT: atomic.AddUint32(&node.NumIgnoredMessages, 1) return nil, nil, true, nil } } atomic.AddUint32(&node.NumValidMessages, 1) return &m, &senderKey, false, nil } var ( errMsgHadNoHMYPayLoadAssumption = errors.New("did not have sufficient size for hmy msg") errConsensusMessageOnUnexpectedTopic = errors.New("received consensus on wrong topic") ) // Start kicks off the node message handling func (node *Node) Start() error { // groupID and whether this topic is used for consensus type t struct { tp nodeconfig.GroupID isCon bool } groups := map[nodeconfig.GroupID]bool{} // three topic subscribed by each validator for _, t := range []t{ {node.NodeConfig.GetShardGroupID(), true}, {nodeconfig.NewClientGroupIDByShardID(shard.BeaconChainShardID), false}, {node.NodeConfig.GetClientGroupID(), false}, } { if _, ok := groups[t.tp]; !ok { groups[t.tp] = t.isCon } } type u struct { p2p.NamedTopic consensusBound bool } var allTopics []u utils.Logger().Debug(). Interface("topics-ended-up-with", groups). Uint32("shard-id", node.Consensus.ShardID). Msg("starting with these topics") for key, isCon := range groups { topicHandle, err := node.host.GetOrJoin(string(key)) if err != nil { return err } allTopics = append( allTopics, u{ NamedTopic: p2p.NamedTopic{string(key), topicHandle}, consensusBound: isCon, }, ) } pubsub := node.host.PubSub() ownID := node.host.GetID() errChan := make(chan withError, 100) // p2p consensus message handler function type p2pHandlerConsensus func( ctx context.Context, msg *msg_pb.Message, key *bls.SerializedPublicKey, ) error // other p2p message handler function type p2pHandlerElse func( ctx context.Context, rlpPayload []byte, ) error // interface pass to p2p message validator type validated struct { consensusBound bool handleC p2pHandlerConsensus handleCArg *msg_pb.Message handleE p2pHandlerElse handleEArg []byte senderPubKey *bls.SerializedPublicKey } isThisNodeAnExplorerNode := node.NodeConfig.Role() == nodeconfig.ExplorerNode for i := range allTopics { sub, err := allTopics[i].Topic.Subscribe() if err != nil { return err } topicNamed := allTopics[i].Name isConsensusBound := allTopics[i].consensusBound utils.Logger().Info(). Str("topic", topicNamed). Msg("enabled topic validation pubsub messages") // register topic validator for each topic if err := pubsub.RegisterTopicValidator( topicNamed, // this is the validation function called to quickly validate every p2p message func(ctx context.Context, peer libp2p_peer.ID, msg *libp2p_pubsub.Message) libp2p_pubsub.ValidationResult { atomic.AddUint32(&node.NumP2PMessages, 1) hmyMsg := msg.GetData() // first to validate the size of the p2p message if len(hmyMsg) < p2pMsgPrefixSize { return libp2p_pubsub.ValidationAccept } openBox := hmyMsg[p2pMsgPrefixSize:] // validate message category switch proto.MessageCategory(openBox[proto.MessageCategoryBytes-1]) { case proto.Consensus: // received consensus message in non-consensus bound topic if !isConsensusBound { errChan <- withError{ errors.WithStack(errConsensusMessageOnUnexpectedTopic), msg, } return libp2p_pubsub.ValidationReject } // validate consensus message validMsg, senderPubKey, ignore, err := node.validateShardBoundMessage( context.TODO(), openBox[proto.MessageCategoryBytes:], ) if err != nil { errChan <- withError{err, msg.GetFrom()} return libp2p_pubsub.ValidationReject } // ignore the further processing of the p2p messages as it is not intended for this node if ignore { return libp2p_pubsub.ValidationAccept } msg.ValidatorData = validated{ consensusBound: true, handleC: node.Consensus.HandleMessageUpdate, handleCArg: validMsg, senderPubKey: senderPubKey, } return libp2p_pubsub.ValidationAccept case proto.Node: // TODO push the message parsing here, so can ban msg.ValidatorData = validated{ consensusBound: false, handleE: node.HandleNodeMessage, handleEArg: openBox, } default: return libp2p_pubsub.ValidationIgnore } select { case <-ctx.Done(): if errors.Is(ctx.Err(), context.DeadlineExceeded) { utils.Logger().Warn(). Str("topic", topicNamed).Msg("[context] exceeded validation deadline") } errChan <- withError{errors.WithStack(ctx.Err()), nil} default: return libp2p_pubsub.ValidationAccept } return libp2p_pubsub.ValidationReject }, // WithValidatorTimeout is an option that sets a timeout for an (asynchronous) topic validator. By default there is no timeout in asynchronous validators. libp2p_pubsub.WithValidatorTimeout(250*time.Millisecond), // WithValidatorConcurrency set the concurernt validator, default is 1024 libp2p_pubsub.WithValidatorConcurrency(p2p.SetAsideForConsensus), // WithValidatorInline is an option that sets the validation disposition to synchronous: // it will be executed inline in validation front-end, without spawning a new goroutine. // This is suitable for simple or cpu-bound validators that do not block. libp2p_pubsub.WithValidatorInline(true), ); err != nil { return err } sem := semaphore.NewWeighted(p2p.MaxMessageHandlers) msgChan := make(chan validated, MsgChanBuffer) go func() { for m := range msgChan { // should not take more than 10 seconds to process one message ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second) msg := m go func() { defer cancel() if sem.TryAcquire(1) { defer sem.Release(1) if msg.consensusBound { if isThisNodeAnExplorerNode { if err := node.explorerMessageHandler( ctx, msg.handleCArg, ); err != nil { errChan <- withError{err, nil} } } else { if err := msg.handleC(ctx, msg.handleCArg, msg.senderPubKey); err != nil { errChan <- withError{err, nil} } } } else { if err := msg.handleE(ctx, msg.handleEArg); err != nil { errChan <- withError{err, nil} } } select { case <-ctx.Done(): if errors.Is(ctx.Err(), context.DeadlineExceeded) { utils.Logger().Warn(). Str("topic", topicNamed).Msg("[context] exceeded handler deadline") } errChan <- withError{errors.WithStack(ctx.Err()), nil} default: return } } }() } }() go func() { for { nextMsg, err := sub.Next(context.Background()) if err != nil { errChan <- withError{errors.WithStack(err), nil} continue } if nextMsg.GetFrom() == ownID { continue } if validatedMessage, ok := nextMsg.ValidatorData.(validated); ok { msgChan <- validatedMessage } else { // continue if ValidatorData is nil if nextMsg.ValidatorData == nil { continue } } } }() } for e := range errChan { utils.SampledLogger().Info(). Interface("item", e.payload). Msgf("[p2p]: issue while handling incoming p2p message: %v", e.err) } // NOTE never gets here return nil } // GetSyncID returns the syncID of this node func (node *Node) GetSyncID() [SyncIDLength]byte { return node.syncID } // New creates a new node. func New( host p2p.Host, consensusObj *consensus.Consensus, chainDBFactory shardchain.DBFactory, blacklist map[common.Address]struct{}, isArchival bool, ) *Node { node := Node{} node.unixTimeAtNodeStart = time.Now().Unix() node.TransactionErrorSink = types.NewTransactionErrorSink() // Get the node config that's created in the harmony.go program. if consensusObj != nil { node.NodeConfig = nodeconfig.GetShardConfig(consensusObj.ShardID) } else { node.NodeConfig = nodeconfig.GetDefaultConfig() } copy(node.syncID[:], GenerateRandomString(SyncIDLength)) if host != nil { node.host = host node.SelfPeer = host.GetSelfPeer() } networkType := node.NodeConfig.GetNetworkType() chainConfig := networkType.ChainConfig() node.chainConfig = chainConfig collection := shardchain.NewCollection( chainDBFactory, &genesisInitializer{&node}, chain.Engine, &chainConfig, ) if isArchival { collection.DisableCache() } node.shardChains = collection node.IsInSync = abool.NewBool(false) if host != nil && consensusObj != nil { // Consensus and associated channel to communicate blocks node.Consensus = consensusObj // Load the chains. blockchain := node.Blockchain() // this also sets node.isFirstTime if the DB is fresh beaconChain := node.Beaconchain() if b1, b2 := beaconChain == nil, blockchain == nil; b1 || b2 { shardID := node.NodeConfig.ShardID // HACK get the real error reason _, err := node.shardChains.ShardChain(shardID) fmt.Fprintf( os.Stderr, "reason:%s beaconchain-is-nil:%t shardchain-is-nil:%t", err.Error(), b1, b2, ) os.Exit(-1) } node.BlockChannel = make(chan *types.Block) node.ConfirmedBlockChannel = make(chan *types.Block) node.BeaconBlockChannel = make(chan *types.Block) txPoolConfig := core.DefaultTxPoolConfig txPoolConfig.Blacklist = blacklist node.TxPool = core.NewTxPool(txPoolConfig, node.Blockchain().Config(), blockchain, node.TransactionErrorSink) node.CxPool = core.NewCxPool(core.CxPoolSize) node.Worker = worker.New(node.Blockchain().Config(), blockchain, chain.Engine) if node.Blockchain().ShardID() != shard.BeaconChainShardID { node.BeaconWorker = worker.New( node.Beaconchain().Config(), beaconChain, chain.Engine, ) } node.pendingCXReceipts = map[string]*types.CXReceiptsProof{} node.Consensus.VerifiedNewBlock = make(chan *types.Block) chain.Engine.SetBeaconchain(beaconChain) // the sequence number is the next block number to be added in consensus protocol, which is // always one more than current chain header block node.Consensus.SetBlockNum(blockchain.CurrentBlock().NumberU64() + 1) } utils.Logger().Info(). Interface("genesis block header", node.Blockchain().GetHeaderByNumber(0)). Msg("Genesis block hash") // Setup initial state of syncing. node.peerRegistrationRecord = map[string]*syncConfig{} node.startConsensus = make(chan struct{}) // Broadcast double-signers reported by consensus if node.Consensus != nil { go func() { for doubleSign := range node.Consensus.SlashChan { utils.Logger().Info(). RawJSON("double-sign-candidate", []byte(doubleSign.String())). Msg("double sign notified by consensus leader") // no point to broadcast the slash if we aren't even in the right epoch yet if !node.Blockchain().Config().IsStaking( node.Blockchain().CurrentHeader().Epoch(), ) { return } if hooks := node.NodeConfig.WebHooks.Hooks; hooks != nil { if s := hooks.Slashing; s != nil { url := s.OnNoticeDoubleSign go func() { webhooks.DoPost(url, &doubleSign) }() } } if node.NodeConfig.ShardID != shard.BeaconChainShardID { go node.BroadcastSlash(&doubleSign) } else { records := slash.Records{doubleSign} if err := node.Blockchain().AddPendingSlashingCandidates( records, ); err != nil { utils.Logger().Err(err).Msg("could not add new slash to ending slashes") } } } }() } go func() { ticker := time.NewTicker(time.Minute) defer ticker.Stop() for { select { case <-ticker.C: utils.Logger().Info(). Uint32("P2PMessage", node.NumP2PMessages). Uint32("TotalMessage", node.NumTotalMessages). Uint32("ValidMessage", node.NumValidMessages). Uint32("InvalidMessage", node.NumInvalidMessages). Uint32("SlotMessage", node.NumSlotMessages). Uint32("IgnoredMessage", node.NumIgnoredMessages). Msg("MsgValidator") atomic.StoreUint32(&node.NumInvalidMessages, 0) atomic.StoreUint32(&node.NumSlotMessages, 0) atomic.StoreUint32(&node.NumIgnoredMessages, 0) atomic.StoreUint32(&node.NumValidMessages, 0) atomic.StoreUint32(&node.NumTotalMessages, 0) atomic.StoreUint32(&node.NumP2PMessages, 0) } } }() return &node } // InitConsensusWithValidators initialize shard state // from latest epoch and update committee pub // keys for consensus func (node *Node) InitConsensusWithValidators() (err error) { if node.Consensus == nil { utils.Logger().Error(). Msg("[InitConsensusWithValidators] consenus is nil; Cannot figure out shardID") return errors.New( "[InitConsensusWithValidators] consenus is nil; Cannot figure out shardID", ) } shardID := node.Consensus.ShardID blockNum := node.Blockchain().CurrentBlock().NumberU64() node.Consensus.SetMode(consensus.Listening) epoch := shard.Schedule.CalcEpochNumber(blockNum) utils.Logger().Info(). Uint64("blockNum", blockNum). Uint32("shardID", shardID). Uint64("epoch", epoch.Uint64()). Msg("[InitConsensusWithValidators] Try To Get PublicKeys") shardState, err := committee.WithStakingEnabled.Compute( epoch, node.Consensus.ChainReader, ) if err != nil { utils.Logger().Err(err). Uint64("blockNum", blockNum). Uint32("shardID", shardID). Uint64("epoch", epoch.Uint64()). Msg("[InitConsensusWithValidators] Failed getting shard state") return err } subComm, err := shardState.FindCommitteeByID(shardID) if err != nil { return err } pubKeys, err := subComm.BLSPublicKeys() if err != nil { utils.Logger().Error(). Uint32("shardID", shardID). Uint64("blockNum", blockNum). Msg("[InitConsensusWithValidators] PublicKeys is Empty, Cannot update public keys") return errors.Wrapf( err, "[InitConsensusWithValidators] PublicKeys is Empty, Cannot update public keys", ) } for _, key := range pubKeys { if node.Consensus.GetPublicKeys().Contains(key) { utils.Logger().Info(). Uint64("blockNum", blockNum). Int("numPubKeys", len(pubKeys)). Msg("[InitConsensusWithValidators] Successfully updated public keys") node.Consensus.UpdatePublicKeys(pubKeys) node.Consensus.SetMode(consensus.Normal) return nil } } return nil } // AddPeers adds neighbors nodes func (node *Node) AddPeers(peers []*p2p.Peer) int { for _, p := range peers { key := fmt.Sprintf("%s:%s:%s", p.IP, p.Port, p.PeerID) _, ok := node.Neighbors.LoadOrStore(key, *p) if !ok { // !ok means new peer is stored node.host.AddPeer(p) continue } } return node.host.GetPeerCount() } // AddBeaconPeer adds beacon chain neighbors nodes // Return false means new neighbor peer was added // Return true means redundant neighbor peer wasn't added func (node *Node) AddBeaconPeer(p *p2p.Peer) bool { key := fmt.Sprintf("%s:%s:%s", p.IP, p.Port, p.PeerID) _, ok := node.BeaconNeighbors.LoadOrStore(key, *p) return ok } func (node *Node) initNodeConfiguration() (service.NodeConfig, chan p2p.Peer, error) { chanPeer := make(chan p2p.Peer) nodeConfig := service.NodeConfig{ IsClient: node.NodeConfig.IsClient(), Beacon: nodeconfig.NewGroupIDByShardID(shard.BeaconChainShardID), ShardGroupID: node.NodeConfig.GetShardGroupID(), Actions: map[nodeconfig.GroupID]nodeconfig.ActionType{}, } if nodeConfig.IsClient { nodeConfig.Actions[nodeconfig.NewClientGroupIDByShardID(shard.BeaconChainShardID)] = nodeconfig.ActionStart } else { nodeConfig.Actions[node.NodeConfig.GetShardGroupID()] = nodeconfig.ActionStart } groups := []nodeconfig.GroupID{ node.NodeConfig.GetShardGroupID(), nodeconfig.NewClientGroupIDByShardID(shard.BeaconChainShardID), node.NodeConfig.GetClientGroupID(), } // force the side effect of topic join if err := node.host.SendMessageToGroups(groups, []byte{}); err != nil { return nodeConfig, nil, err } return nodeConfig, chanPeer, nil } // ServiceManager ... func (node *Node) ServiceManager() *service.Manager { return node.serviceManager } // ShutDown gracefully shut down the node server and dump the in-memory blockchain state into DB. func (node *Node) ShutDown() { node.Blockchain().Stop() node.Beaconchain().Stop() const msg = "Successfully shut down!\n" utils.Logger().Print(msg) fmt.Print(msg) os.Exit(0) } func (node *Node) populateSelfAddresses(epoch *big.Int) { // reset the self addresses node.KeysToAddrs = map[string]common.Address{} node.keysToAddrsEpoch = epoch shardID := node.Consensus.ShardID shardState, err := node.Consensus.ChainReader.ReadShardState(epoch) if err != nil { utils.Logger().Error().Err(err). Int64("epoch", epoch.Int64()). Uint32("shard-id", shardID). Msg("[PopulateSelfAddresses] failed to read shard") return } committee, err := shardState.FindCommitteeByID(shardID) if err != nil { utils.Logger().Error().Err(err). Int64("epoch", epoch.Int64()). Uint32("shard-id", shardID). Msg("[PopulateSelfAddresses] failed to find shard committee") return } for _, blskey := range node.Consensus.GetPublicKeys() { blsStr := blskey.Bytes.Hex() shardkey := bls.FromLibBLSPublicKeyUnsafe(blskey.Object) if shardkey == nil { utils.Logger().Error(). Int64("epoch", epoch.Int64()). Uint32("shard-id", shardID). Str("blskey", blsStr). Msg("[PopulateSelfAddresses] failed to get shard key from bls key") return } addr, err := committee.AddressForBLSKey(*shardkey) if err != nil { utils.Logger().Error().Err(err). Int64("epoch", epoch.Int64()). Uint32("shard-id", shardID). Str("blskey", blsStr). Msg("[PopulateSelfAddresses] could not find address") return } node.KeysToAddrs[blsStr] = *addr utils.Logger().Debug(). Int64("epoch", epoch.Int64()). Uint32("shard-id", shardID). Str("bls-key", blsStr). Str("address", common2.MustAddressToBech32(*addr)). Msg("[PopulateSelfAddresses]") } } // GetAddressForBLSKey retrieves the ECDSA address associated with bls key for epoch func (node *Node) GetAddressForBLSKey(blskey *bls_core.PublicKey, epoch *big.Int) common.Address { // populate if first time setting or new epoch node.keysToAddrsMutex.Lock() defer node.keysToAddrsMutex.Unlock() if node.keysToAddrsEpoch == nil || epoch.Cmp(node.keysToAddrsEpoch) != 0 { node.populateSelfAddresses(epoch) } blsStr := blskey.SerializeToHexStr() addr, ok := node.KeysToAddrs[blsStr] if !ok { return common.Address{} } return addr } // GetAddresses retrieves all ECDSA addresses of the bls keys for epoch func (node *Node) GetAddresses(epoch *big.Int) map[string]common.Address { // populate if first time setting or new epoch node.keysToAddrsMutex.Lock() defer node.keysToAddrsMutex.Unlock() if node.keysToAddrsEpoch == nil || epoch.Cmp(node.keysToAddrsEpoch) != 0 { node.populateSelfAddresses(epoch) } // self addresses map can never be nil return node.KeysToAddrs }