package node import ( "crypto/ecdsa" "fmt" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/harmony-one/harmony/accounts" "github.com/harmony-one/harmony/api/client" clientService "github.com/harmony-one/harmony/api/client/service" msg_pb "github.com/harmony-one/harmony/api/proto/message" proto_node "github.com/harmony-one/harmony/api/proto/node" "github.com/harmony-one/harmony/api/service" "github.com/harmony-one/harmony/api/service/syncing" "github.com/harmony-one/harmony/api/service/syncing/downloader" "github.com/harmony-one/harmony/block" "github.com/harmony-one/harmony/consensus" "github.com/harmony-one/harmony/contracts" "github.com/harmony-one/harmony/core" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/core/values" "github.com/harmony-one/harmony/drand" "github.com/harmony-one/harmony/internal/chain" nodeconfig "github.com/harmony-one/harmony/internal/configs/node" "github.com/harmony-one/harmony/internal/ctxerror" "github.com/harmony-one/harmony/internal/params" "github.com/harmony-one/harmony/internal/shardchain" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/msgq" "github.com/harmony-one/harmony/node/worker" "github.com/harmony-one/harmony/p2p" p2p_host "github.com/harmony-one/harmony/p2p/host" "github.com/harmony-one/harmony/shard" staking "github.com/harmony-one/harmony/staking/types" ) // State is a state of a node. type State byte // All constants except the NodeLeader below are for validators only. const ( NodeInit State = iota // Node just started, before contacting BeaconChain NodeWaitToJoin // Node contacted BeaconChain, wait to join Shard NodeNotInSync // Node out of sync, might be just joined Shard or offline for a period of time NodeOffline // Node is offline NodeReadyForConsensus // Node is ready for doing consensus NodeDoingConsensus // Node is already doing consensus NodeLeader // Node is the leader of some shard. ) const ( // TxPoolLimit is the limit of transaction pool. TxPoolLimit = 20000 // NumTryBroadCast is the number of times trying to broadcast NumTryBroadCast = 3 // ClientRxQueueSize is the number of client messages to queue before tail-dropping. ClientRxQueueSize = 16384 // ShardRxQueueSize is the number of shard messages to queue before tail-dropping. ShardRxQueueSize = 16384 // GlobalRxQueueSize is the number of global messages to queue before tail-dropping. GlobalRxQueueSize = 16384 // ClientRxWorkers is the number of concurrent client message handlers. ClientRxWorkers = 8 // ShardRxWorkers is the number of concurrent shard message handlers. ShardRxWorkers = 32 // GlobalRxWorkers is the number of concurrent global message handlers. GlobalRxWorkers = 32 ) func (state State) String() string { switch state { case NodeInit: return "NodeInit" case NodeWaitToJoin: return "NodeWaitToJoin" case NodeNotInSync: return "NodeNotInSync" case NodeOffline: return "NodeOffline" case NodeReadyForConsensus: return "NodeReadyForConsensus" case NodeDoingConsensus: return "NodeDoingConsensus" case NodeLeader: return "NodeLeader" } return "Unknown" } const ( maxBroadcastNodes = 10 // broadcast at most maxBroadcastNodes peers that need in sync broadcastTimeout int64 = 60 * 1000000000 // 1 mins //SyncIDLength is the length of bytes for syncID SyncIDLength = 20 ) // use to push new block to outofsync node type syncConfig struct { timestamp int64 client *downloader.Client } // Node represents a protocol-participating node in the network type Node struct { Consensus *consensus.Consensus // Consensus object containing all Consensus related data (e.g. committee members, signatures, commits) BlockChannel chan *types.Block // The channel to send newly proposed blocks ConfirmedBlockChannel chan *types.Block // The channel to send confirmed blocks BeaconBlockChannel chan *types.Block // The channel to send beacon blocks for non-beaconchain nodes DRand *drand.DRand // The instance for distributed randomness protocol pendingCrossLinks []*block.Header pendingClMutex sync.Mutex pendingCXReceipts map[string]*types.CXReceiptsProof // All the receipts received but not yet processed for Consensus pendingCXMutex sync.Mutex // Shard databases shardChains shardchain.Collection Client *client.Client // The presence of a client object means this node will also act as a client SelfPeer p2p.Peer // TODO(minhdoan): it could be duplicated with Self below whose is Alok work. BCPeers []p2p.Peer // list of Beacon Chain Peers. This is needed by all nodes. // TODO: Neighbors should store only neighbor nodes in the same shard Neighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer numPeers int // Number of Peers State State // State of the Node stateMutex sync.Mutex // mutex for change node state // BeaconNeighbors store only neighbor nodes in the beacon chain shard BeaconNeighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer TxPool *core.TxPool // TODO migrate to TxPool from pendingTransactions list below CxPool *core.CxPool // pool for missing cross shard receipts resend pendingTransactions map[common.Hash]*types.Transaction // All the transactions received but not yet processed for Consensus pendingTxMutex sync.Mutex recentTxsStats types.RecentTxsStats pendingStakingTransactions map[common.Hash]*staking.StakingTransaction // All the staking transactions received but not yet processed for Consensus pendingStakingTxMutex sync.Mutex Worker *worker.Worker BeaconWorker *worker.Worker // worker for beacon chain // Client server (for wallet requests) clientServer *clientService.Server // Syncing component. syncID [SyncIDLength]byte // a unique ID for the node during the state syncing process with peers downloaderServer *downloader.Server stateSync *syncing.StateSync beaconSync *syncing.StateSync peerRegistrationRecord map[string]*syncConfig // record registration time (unixtime) of peers begin in syncing SyncingPeerProvider SyncingPeerProvider // syncing frequency parameters syncFreq int beaconSyncFreq int // The p2p host used to send/receive p2p messages host p2p.Host // Incoming messages to process. clientRxQueue *msgq.Queue shardRxQueue *msgq.Queue globalRxQueue *msgq.Queue // Service manager. serviceManager *service.Manager // Demo account. DemoContractAddress common.Address LotteryManagerPrivateKey *ecdsa.PrivateKey // Puzzle account. PuzzleContractAddress common.Address PuzzleManagerPrivateKey *ecdsa.PrivateKey // For test only; TODO ek – remove this TestBankKeys []*ecdsa.PrivateKey ContractDeployerKey *ecdsa.PrivateKey ContractDeployerCurrentNonce uint64 // The nonce of the deployer contract at current block ContractAddresses []common.Address // For puzzle contracts AddressNonce sync.Map // Shard group Message Receiver shardGroupReceiver p2p.GroupReceiver // Global group Message Receiver, communicate with beacon chain, or cross-shard TX globalGroupReceiver p2p.GroupReceiver // Client Message Receiver to handle light client messages // Beacon leader needs to use this receiver to talk to new node clientReceiver p2p.GroupReceiver // Duplicated Ping Message Received duplicatedPing sync.Map // Channel to notify consensus service to really start consensus startConsensus chan struct{} // node configuration, including group ID, shard ID, etc NodeConfig *nodeconfig.ConfigType // Chain configuration. chainConfig params.ChainConfig // map of service type to its message channel. serviceMessageChan map[service.Type]chan *msg_pb.Message // Used to call smart contract locally ContractCaller *contracts.ContractCaller accountManager *accounts.Manager // Next shard state nextShardState struct { // The received master shard state master *shard.EpochShardState // When for a leader to propose the next shard state, // or for a validator to wait for a proposal before view change. // TODO ek – replace with retry-based logic instead of delay proposeTime time.Time } isFirstTime bool // the node was started with a fresh database // How long in second the leader needs to wait to propose a new block. BlockPeriod time.Duration // last time consensus reached for metrics lastConsensusTime int64 } // Blockchain returns the blockchain for the node's current shard. func (node *Node) Blockchain() *core.BlockChain { shardID := node.NodeConfig.ShardID bc, err := node.shardChains.ShardChain(shardID) if err != nil { err = ctxerror.New("cannot get shard chain", "shardID", shardID). WithCause(err) ctxerror.Log15(utils.GetLogger().Crit, err) } return bc } // Beaconchain returns the beaconchain from node. func (node *Node) Beaconchain() *core.BlockChain { bc, err := node.shardChains.ShardChain(0) if err != nil { err = ctxerror.New("cannot get beaconchain").WithCause(err) ctxerror.Log15(utils.GetLogger().Crit, err) } return bc } func (node *Node) tryBroadcast(tx *types.Transaction) { msg := proto_node.ConstructTransactionListMessageAccount(types.Transactions{tx}) shardGroupID := nodeconfig.NewGroupIDByShardID(nodeconfig.ShardID(tx.ShardID())) utils.Logger().Info().Str("shardGroupID", string(shardGroupID)).Msg("tryBroadcast") for attempt := 0; attempt < NumTryBroadCast; attempt++ { if err := node.host.SendMessageToGroups([]nodeconfig.GroupID{shardGroupID}, p2p_host.ConstructP2pMessage(byte(0), msg)); err != nil && attempt < NumTryBroadCast { utils.Logger().Error().Int("attempt", attempt).Msg("Error when trying to broadcast tx") } else { break } } } // Add new transactions to the pending transaction list. func (node *Node) addPendingTransactions(newTxs types.Transactions) { txPoolLimit := core.ShardingSchedule.MaxTxPoolSizeLimit() node.pendingTxMutex.Lock() for _, tx := range newTxs { if _, ok := node.pendingTransactions[tx.Hash()]; !ok { node.pendingTransactions[tx.Hash()] = tx } if len(node.pendingTransactions) > txPoolLimit { break } } node.pendingTxMutex.Unlock() utils.Logger().Info().Int("length of newTxs", len(newTxs)).Int("totalPending", len(node.pendingTransactions)).Msg("Got more transactions") } // Add new staking transactions to the pending staking transaction list. func (node *Node) addPendingStakingTransactions(newStakingTxs staking.StakingTransactions) { txPoolLimit := core.ShardingSchedule.MaxTxPoolSizeLimit() node.pendingStakingTxMutex.Lock() for _, tx := range newStakingTxs { if _, ok := node.pendingStakingTransactions[tx.Hash()]; !ok { node.pendingStakingTransactions[tx.Hash()] = tx } if len(node.pendingStakingTransactions) > txPoolLimit { break } } node.pendingStakingTxMutex.Unlock() utils.Logger().Info().Int("length of newStakingTxs", len(newStakingTxs)).Int("totalPending", len(node.pendingTransactions)).Msg("Got more staking transactions") } // AddPendingStakingTransaction staking transactions func (node *Node) AddPendingStakingTransaction( newStakingTx *staking.StakingTransaction) { node.addPendingStakingTransactions(staking.StakingTransactions{newStakingTx}) } // AddPendingTransaction adds one new transaction to the pending transaction list. // This is only called from SDK. func (node *Node) AddPendingTransaction(newTx *types.Transaction) { if node.Consensus.IsLeader() && newTx.ShardID() == node.NodeConfig.ShardID { node.addPendingTransactions(types.Transactions{newTx}) } else { utils.Logger().Info().Str("Hash", newTx.Hash().Hex()).Msg("Broadcasting Tx") node.tryBroadcast(newTx) } utils.Logger().Debug().Int("totalPending", len(node.pendingTransactions)).Msg("Got ONE more transaction") } // AddPendingReceipts adds one receipt message to pending list. func (node *Node) AddPendingReceipts(receipts *types.CXReceiptsProof) { node.pendingCXMutex.Lock() defer node.pendingCXMutex.Unlock() if receipts.ContainsEmptyField() { utils.Logger().Info().Int("totalPendingReceipts", len(node.pendingCXReceipts)).Msg("CXReceiptsProof contains empty field") return } blockNum := receipts.Header.Number().Uint64() shardID := receipts.Header.ShardID() key := utils.GetPendingCXKey(shardID, blockNum) if _, ok := node.pendingCXReceipts[key]; ok { utils.Logger().Info().Int("totalPendingReceipts", len(node.pendingCXReceipts)).Msg("Already Got Same Receipt message") return } node.pendingCXReceipts[key] = receipts utils.Logger().Info().Int("totalPendingReceipts", len(node.pendingCXReceipts)).Msg("Got ONE more receipt message") } // Take out a subset of valid transactions from the pending transaction list // Note the pending transaction list will then contain the rest of the txs func (node *Node) getTransactionsForNewBlock(coinbase common.Address) (types.Transactions, staking.StakingTransactions) { txsThrottleConfig := core.ShardingSchedule.TxsThrottleConfig() // the next block number to be added in consensus protocol, which is always one more than current chain header block newBlockNum := node.Blockchain().CurrentBlock().NumberU64() + 1 // remove old (> txsThrottleConfigRecentTxDuration) blockNum keys from recentTxsStats and initiailize for the new block for blockNum := range node.recentTxsStats { recentTxsBlockNumGap := uint64(txsThrottleConfig.RecentTxDuration / node.BlockPeriod) if recentTxsBlockNumGap < newBlockNum-blockNum { delete(node.recentTxsStats, blockNum) } } node.recentTxsStats[newBlockNum] = make(types.BlockTxsCounts) // Must update to the correct current state before processing potential txns if err := node.Worker.UpdateCurrent(coinbase); err != nil { utils.Logger().Error(). Err(err). Msg("Failed updating worker's state before txn selection") return types.Transactions{}, staking.StakingTransactions{} } node.pendingTxMutex.Lock() defer node.pendingTxMutex.Unlock() node.pendingStakingTxMutex.Lock() defer node.pendingStakingTxMutex.Unlock() pendingTransactions := types.Transactions{} pendingStakingTransactions := staking.StakingTransactions{} for _, tx := range node.pendingTransactions { pendingTransactions = append(pendingTransactions, tx) } for _, tx := range node.pendingStakingTransactions { pendingStakingTransactions = append(pendingStakingTransactions, tx) } selected, unselected, invalid := node.Worker.SelectTransactionsForNewBlock(newBlockNum, pendingTransactions, node.recentTxsStats, txsThrottleConfig, coinbase) selectedStaking, unselectedStaking, invalidStaking := node.Worker.SelectStakingTransactionsForNewBlock(newBlockNum, pendingStakingTransactions, coinbase) node.pendingTransactions = make(map[common.Hash]*types.Transaction) for _, unselectedTx := range unselected { node.pendingTransactions[unselectedTx.Hash()] = unselectedTx } utils.Logger().Info(). Int("remainPending", len(node.pendingTransactions)). Int("selected", len(selected)). Int("invalidDiscarded", len(invalid)). Msg("Selecting Transactions") node.pendingStakingTransactions = make(map[common.Hash]*staking.StakingTransaction) for _, unselectedStakingTx := range unselectedStaking { node.pendingStakingTransactions[unselectedStakingTx.Hash()] = unselectedStakingTx } utils.Logger().Info(). Int("remainPending", len(node.pendingStakingTransactions)). Int("selected", len(unselectedStaking)). Int("invalidDiscarded", len(invalidStaking)). Msg("Selecting Transactions") return selected, selectedStaking } func (node *Node) startRxPipeline( receiver p2p.GroupReceiver, queue *msgq.Queue, numWorkers int, ) { // consumers for i := 0; i < numWorkers; i++ { go queue.HandleMessages(node) } // provider go node.receiveGroupMessage(receiver, queue) } // StartServer starts a server and process the requests by a handler. func (node *Node) StartServer() { // client messages are sent by clients, like txgen, wallet node.startRxPipeline(node.clientReceiver, node.clientRxQueue, ClientRxWorkers) // start the goroutine to receive group message node.startRxPipeline(node.shardGroupReceiver, node.shardRxQueue, ShardRxWorkers) // start the goroutine to receive global message, used for cross-shard TX // FIXME (leo): we use beacon client topic as the global topic for now node.startRxPipeline(node.globalGroupReceiver, node.globalRxQueue, GlobalRxWorkers) select {} } // Count the total number of transactions in the blockchain // Currently used for stats reporting purpose func (node *Node) countNumTransactionsInBlockchain() int { count := 0 for block := node.Blockchain().CurrentBlock(); block != nil; block = node.Blockchain().GetBlockByHash(block.Header().ParentHash()) { count += len(block.Transactions()) } return count } // GetSyncID returns the syncID of this node func (node *Node) GetSyncID() [SyncIDLength]byte { return node.syncID } // New creates a new node. func New(host p2p.Host, consensusObj *consensus.Consensus, chainDBFactory shardchain.DBFactory, isArchival bool) *Node { node := Node{} node.syncFreq = SyncFrequency node.beaconSyncFreq = SyncFrequency // Get the node config that's created in the harmony.go program. if consensusObj != nil { node.NodeConfig = nodeconfig.GetShardConfig(consensusObj.ShardID) } else { node.NodeConfig = nodeconfig.GetDefaultConfig() } copy(node.syncID[:], GenerateRandomString(SyncIDLength)) if host != nil { node.host = host node.SelfPeer = host.GetSelfPeer() } chainConfig := *params.TestnetChainConfig switch node.NodeConfig.GetNetworkType() { case nodeconfig.Mainnet: chainConfig = *params.MainnetChainConfig case nodeconfig.Pangaea: chainConfig = *params.PangaeaChainConfig } node.chainConfig = chainConfig collection := shardchain.NewCollection( chainDBFactory, &genesisInitializer{&node}, chain.Engine, &chainConfig) if isArchival { collection.DisableCache() } node.shardChains = collection if host != nil && consensusObj != nil { // Consensus and associated channel to communicate blocks node.Consensus = consensusObj // Load the chains. blockchain := node.Blockchain() // this also sets node.isFirstTime if the DB is fresh beaconChain := node.Beaconchain() node.BlockChannel = make(chan *types.Block) node.ConfirmedBlockChannel = make(chan *types.Block) node.BeaconBlockChannel = make(chan *types.Block) node.recentTxsStats = make(types.RecentTxsStats) node.TxPool = core.NewTxPool(core.DefaultTxPoolConfig, node.Blockchain().Config(), blockchain) node.CxPool = core.NewCxPool(core.CxPoolSize) node.Worker = worker.New(node.Blockchain().Config(), blockchain, chain.Engine) if node.Blockchain().ShardID() != values.BeaconChainShardID { node.BeaconWorker = worker.New(node.Beaconchain().Config(), beaconChain, chain.Engine) } node.pendingCXReceipts = make(map[string]*types.CXReceiptsProof) node.pendingTransactions = make(map[common.Hash]*types.Transaction) node.pendingStakingTransactions = make(map[common.Hash]*staking.StakingTransaction) node.Consensus.VerifiedNewBlock = make(chan *types.Block) // the sequence number is the next block number to be added in consensus protocol, which is always one more than current chain header block node.Consensus.SetBlockNum(blockchain.CurrentBlock().NumberU64() + 1) // Add Faucet contract to all shards, so that on testnet, we can demo wallet in explorer // TODO (leo): we need to have support of cross-shard tx later so that the token can be transferred from beacon chain shard to other tx shards. if node.NodeConfig.GetNetworkType() != nodeconfig.Mainnet { if node.isFirstTime { // Setup one time smart contracts node.AddFaucetContractToPendingTransactions() } else { node.AddContractKeyAndAddress(scFaucet) } node.ContractCaller = contracts.NewContractCaller(node.Blockchain(), node.Blockchain().Config()) // Create test keys. Genesis will later need this. var err error node.TestBankKeys, err = CreateTestBankKeys(TestAccountNumber) if err != nil { utils.Logger().Error().Err(err).Msg("Error while creating test keys") } } } utils.Logger().Info(). Interface("genesis block header", node.Blockchain().GetHeaderByNumber(0)). Msg("Genesis block hash") node.clientRxQueue = msgq.New(ClientRxQueueSize) node.shardRxQueue = msgq.New(ShardRxQueueSize) node.globalRxQueue = msgq.New(GlobalRxQueueSize) // Setup initial state of syncing. node.peerRegistrationRecord = make(map[string]*syncConfig) node.startConsensus = make(chan struct{}) go node.bootstrapConsensus() return &node } // CalculateInitShardState initialize shard state from latest epoch and update committee pub keys for consensus and drand func (node *Node) CalculateInitShardState() (err error) { if node.Consensus == nil { return ctxerror.New("[CalculateInitShardState] consenus is nil; Cannot figure out shardID") } shardID := node.Consensus.ShardID // Get genesis epoch shard state from chain blockNum := node.Blockchain().CurrentBlock().NumberU64() node.Consensus.SetMode(consensus.Listening) epoch := core.ShardingSchedule.CalcEpochNumber(blockNum) utils.Logger().Info(). Uint64("blockNum", blockNum). Uint32("shardID", shardID). Uint64("epoch", epoch.Uint64()). Msg("[CalculateInitShardState] Try To Get PublicKeys from database") pubKeys := core.CalculatePublicKeys(epoch, shardID) if len(pubKeys) == 0 { return ctxerror.New( "[CalculateInitShardState] PublicKeys is Empty, Cannot update public keys", "shardID", shardID, "blockNum", blockNum) } for _, key := range pubKeys { if key.IsEqual(node.Consensus.PubKey) { utils.Logger().Info(). Uint64("blockNum", blockNum). Int("numPubKeys", len(pubKeys)). Msg("[CalculateInitShardState] Successfully updated public keys") node.Consensus.UpdatePublicKeys(pubKeys) node.Consensus.SetMode(consensus.Normal) return nil } } // TODO: Disable drand. Currently drand isn't functioning but we want to compeletely turn it off for full protection. // node.DRand.UpdatePublicKeys(pubKeys) return nil } // AddPeers adds neighbors nodes func (node *Node) AddPeers(peers []*p2p.Peer) int { count := 0 for _, p := range peers { key := fmt.Sprintf("%s:%s:%s", p.IP, p.Port, p.PeerID) _, ok := node.Neighbors.LoadOrStore(key, *p) if !ok { // !ok means new peer is stored count++ node.host.AddPeer(p) node.numPeers++ continue } } return count } // AddBeaconPeer adds beacon chain neighbors nodes // Return false means new neighbor peer was added // Return true means redundant neighbor peer wasn't added func (node *Node) AddBeaconPeer(p *p2p.Peer) bool { key := fmt.Sprintf("%s:%s:%s", p.IP, p.Port, p.PeerID) _, ok := node.BeaconNeighbors.LoadOrStore(key, *p) return ok } // isBeacon = true if the node is beacon node // isClient = true if the node light client(wallet) func (node *Node) initNodeConfiguration() (service.NodeConfig, chan p2p.Peer) { chanPeer := make(chan p2p.Peer) nodeConfig := service.NodeConfig{ PushgatewayIP: node.NodeConfig.GetPushgatewayIP(), PushgatewayPort: node.NodeConfig.GetPushgatewayPort(), IsClient: node.NodeConfig.IsClient(), Beacon: nodeconfig.NewGroupIDByShardID(0), ShardGroupID: node.NodeConfig.GetShardGroupID(), Actions: make(map[nodeconfig.GroupID]nodeconfig.ActionType), } if nodeConfig.IsClient { nodeConfig.Actions[nodeconfig.NewClientGroupIDByShardID(0)] = nodeconfig.ActionStart } else { nodeConfig.Actions[node.NodeConfig.GetShardGroupID()] = nodeconfig.ActionStart } var err error node.shardGroupReceiver, err = node.host.GroupReceiver(node.NodeConfig.GetShardGroupID()) if err != nil { utils.Logger().Error().Err(err).Msg("Failed to create shard receiver") } node.globalGroupReceiver, err = node.host.GroupReceiver(nodeconfig.NewClientGroupIDByShardID(0)) if err != nil { utils.Logger().Error().Err(err).Msg("Failed to create global receiver") } node.clientReceiver, err = node.host.GroupReceiver(node.NodeConfig.GetClientGroupID()) if err != nil { utils.Logger().Error().Err(err).Msg("Failed to create client receiver") } return nodeConfig, chanPeer } // AccountManager ... func (node *Node) AccountManager() *accounts.Manager { return node.accountManager } // ServiceManager ... func (node *Node) ServiceManager() *service.Manager { return node.serviceManager } // SetSyncFreq sets the syncing frequency in the loop func (node *Node) SetSyncFreq(syncFreq int) { node.syncFreq = syncFreq } // SetBeaconSyncFreq sets the syncing frequency in the loop func (node *Node) SetBeaconSyncFreq(syncFreq int) { node.beaconSyncFreq = syncFreq }