package syncing import ( "bytes" "encoding/hex" "fmt" "reflect" "sort" "strconv" "sync" "time" "github.com/Workiva/go-datastructures/queue" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/rlp" "github.com/harmony-one/harmony/api/service/syncing/downloader" pb "github.com/harmony-one/harmony/api/service/syncing/downloader/proto" "github.com/harmony-one/harmony/core" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/internal/ctxerror" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/node/worker" "github.com/harmony-one/harmony/p2p" ) // Constants for syncing. const ( SleepTimeAfterNonConsensusBlockHashes = time.Second * 30 TimesToFail = 5 // Downloadblocks service retry limit RegistrationNumber = 3 SyncingPortDifference = 3000 inSyncThreshold = 0 // when peerBlockHeight - myBlockHeight <= inSyncThreshold, it's ready to join consensus BatchSize uint32 = 1000 //maximum size for one query of block hashes SyncLoopFrequency = 1 // unit in second LastMileBlocksSize = 10 ) // SyncPeerConfig is peer config to sync. type SyncPeerConfig struct { ip string port string peerHash []byte client *downloader.Client blockHashes [][]byte // block hashes before node doing sync newBlocks []*types.Block // blocks after node doing sync mux sync.Mutex } // GetClient returns client pointer of downloader.Client func (peerConfig *SyncPeerConfig) GetClient() *downloader.Client { return peerConfig.client } // SyncBlockTask is the task struct to sync a specific block. type SyncBlockTask struct { index int blockHash []byte } // SyncConfig contains an array of SyncPeerConfig. type SyncConfig struct { // mtx locks peers, and *SyncPeerConfig pointers in peers. // SyncPeerConfig itself is guarded by its own mutex. mtx sync.RWMutex peers []*SyncPeerConfig } // AddPeer adds the given sync peer. func (sc *SyncConfig) AddPeer(peer *SyncPeerConfig) { sc.mtx.Lock() defer sc.mtx.Unlock() sc.peers = append(sc.peers, peer) } // ForEachPeer calls the given function with each peer. // It breaks the iteration iff the function returns true. func (sc *SyncConfig) ForEachPeer(f func(peer *SyncPeerConfig) (brk bool)) { sc.mtx.RLock() defer sc.mtx.RUnlock() for _, peer := range sc.peers { if f(peer) { break } } } // CreateStateSync returns the implementation of StateSyncInterface interface. func CreateStateSync(ip string, port string, peerHash [20]byte) *StateSync { stateSync := &StateSync{} stateSync.selfip = ip stateSync.selfport = port stateSync.selfPeerHash = peerHash stateSync.commonBlocks = make(map[int]*types.Block) stateSync.lastMileBlocks = []*types.Block{} return stateSync } // StateSync is the struct that implements StateSyncInterface. type StateSync struct { selfip string selfport string selfPeerHash [20]byte // hash of ip and address combination commonBlocks map[int]*types.Block lastMileBlocks []*types.Block // last mile blocks to catch up with the consensus syncConfig *SyncConfig stateSyncTaskQueue *queue.Queue syncMux sync.Mutex lastMileMux sync.Mutex } func (ss *StateSync) purgeAllBlocksFromCache() { ss.syncMux.Lock() defer ss.syncMux.Unlock() ss.commonBlocks = make(map[int]*types.Block) ss.lastMileBlocks = nil ss.syncConfig.ForEachPeer(func(configPeer *SyncPeerConfig) (brk bool) { configPeer.blockHashes = nil configPeer.newBlocks = nil return }) } func (ss *StateSync) purgeOldBlocksFromCache() { ss.syncMux.Lock() defer ss.syncMux.Unlock() ss.commonBlocks = make(map[int]*types.Block) ss.syncConfig.ForEachPeer(func(configPeer *SyncPeerConfig) (brk bool) { configPeer.blockHashes = nil return }) } // AddLastMileBlock add the lastest a few block into queue for syncing // only keep the latest blocks with size capped by LastMileBlocksSize func (ss *StateSync) AddLastMileBlock(block *types.Block) { ss.lastMileMux.Lock() defer ss.lastMileMux.Unlock() if len(ss.lastMileBlocks) >= LastMileBlocksSize { ss.lastMileBlocks = ss.lastMileBlocks[1:] } ss.lastMileBlocks = append(ss.lastMileBlocks, block) } // CloseConnections close grpc connections for state sync clients func (sc *SyncConfig) CloseConnections() { sc.mtx.RLock() defer sc.mtx.RUnlock() for _, pc := range sc.peers { pc.client.Close() } } // FindPeerByHash returns the peer with the given hash, or nil if not found. func (sc *SyncConfig) FindPeerByHash(peerHash []byte) *SyncPeerConfig { sc.mtx.RLock() defer sc.mtx.RUnlock() for _, pc := range sc.peers { if bytes.Compare(pc.peerHash, peerHash) == 0 { return pc } } return nil } // AddNewBlock will add newly received block into state syncing queue func (ss *StateSync) AddNewBlock(peerHash []byte, block *types.Block) { pc := ss.syncConfig.FindPeerByHash(peerHash) if pc == nil { // Received a block with no active peer; just ignore. return } // TODO ek – we shouldn't mess with SyncPeerConfig's mutex. // Factor this into a method, like pc.AddNewBlock(block) pc.mux.Lock() defer pc.mux.Unlock() pc.newBlocks = append(pc.newBlocks, block) utils.Logger().Debug(). Int("total", len(pc.newBlocks)). Uint64("blockHeight", block.NumberU64()). Msg("[SYNC] new block received") } // CreateTestSyncPeerConfig used for testing. func CreateTestSyncPeerConfig(client *downloader.Client, blockHashes [][]byte) *SyncPeerConfig { return &SyncPeerConfig{ client: client, blockHashes: blockHashes, } } // CompareSyncPeerConfigByblockHashes compares two SyncPeerConfig by blockHashes. func CompareSyncPeerConfigByblockHashes(a *SyncPeerConfig, b *SyncPeerConfig) int { if len(a.blockHashes) != len(b.blockHashes) { if len(a.blockHashes) < len(b.blockHashes) { return -1 } return 1 } for id := range a.blockHashes { if !reflect.DeepEqual(a.blockHashes[id], b.blockHashes[id]) { return bytes.Compare(a.blockHashes[id], b.blockHashes[id]) } } return 0 } // GetBlocks gets blocks by calling grpc request to the corresponding peer. func (peerConfig *SyncPeerConfig) GetBlocks(hashes [][]byte) ([][]byte, error) { response := peerConfig.client.GetBlocks(hashes) if response == nil { return nil, ErrGetBlock } return response.Payload, nil } // CreateSyncConfig creates SyncConfig for StateSync object. func (ss *StateSync) CreateSyncConfig(peers []p2p.Peer, isBeacon bool) error { utils.Logger().Debug(). Int("len", len(peers)). Bool("isBeacon", isBeacon). Msg("[SYNC] CreateSyncConfig: len of peers") if len(peers) == 0 { return ctxerror.New("[SYNC] no peers to connect to") } if ss.syncConfig != nil { ss.syncConfig.CloseConnections() } ss.syncConfig = &SyncConfig{} var wg sync.WaitGroup for _, peer := range peers { wg.Add(1) go func(peer p2p.Peer) { defer wg.Done() client := downloader.ClientSetup(peer.IP, peer.Port) if client == nil { return } peerConfig := &SyncPeerConfig{ ip: peer.IP, port: peer.Port, client: client, } ss.syncConfig.AddPeer(peerConfig) }(peer) } wg.Wait() utils.Logger().Info(). Int("len", len(ss.syncConfig.peers)). Bool("isBeacon", isBeacon). Msg("[SYNC] Finished making connection to peers") return nil } // GetActivePeerNumber returns the number of active peers func (ss *StateSync) GetActivePeerNumber() int { if ss.syncConfig == nil { return 0 } // len() is atomic; no need to hold mutex. return len(ss.syncConfig.peers) } // getHowManyMaxConsensus returns max number of consensus nodes and the first ID of consensus group. // Assumption: all peers are sorted by CompareSyncPeerConfigByBlockHashes first. // Caller shall ensure mtx is locked for reading. func (sc *SyncConfig) getHowManyMaxConsensus() (int, int) { // As all peers are sorted by their blockHashes, all equal blockHashes should come together and consecutively. curCount := 0 curFirstID := -1 maxCount := 0 maxFirstID := -1 for i := range sc.peers { if curFirstID == -1 || CompareSyncPeerConfigByblockHashes(sc.peers[curFirstID], sc.peers[i]) != 0 { curCount = 1 curFirstID = i } else { curCount++ } if curCount > maxCount { maxCount = curCount maxFirstID = curFirstID } } return maxFirstID, maxCount } // InitForTesting used for testing. func (sc *SyncConfig) InitForTesting(client *downloader.Client, blockHashes [][]byte) { sc.mtx.RLock() defer sc.mtx.RUnlock() for i := range sc.peers { sc.peers[i].blockHashes = blockHashes sc.peers[i].client = client } } // cleanUpPeers cleans up all peers whose blockHashes are not equal to // consensus block hashes. Caller shall ensure mtx is locked for RW. func (sc *SyncConfig) cleanUpPeers(maxFirstID int) { fixedPeer := sc.peers[maxFirstID] for i := 0; i < len(sc.peers); i++ { if CompareSyncPeerConfigByblockHashes(fixedPeer, sc.peers[i]) != 0 { // TODO: move it into a util delete func. // See tip https://github.com/golang/go/wiki/SliceTricks // Close the client and remove the peer out of the sc.peers[i].client.Close() copy(sc.peers[i:], sc.peers[i+1:]) sc.peers[len(sc.peers)-1] = nil sc.peers = sc.peers[:len(sc.peers)-1] } } } // GetBlockHashesConsensusAndCleanUp chesk if all consensus hashes are equal. func (sc *SyncConfig) GetBlockHashesConsensusAndCleanUp() bool { sc.mtx.Lock() defer sc.mtx.Unlock() // Sort all peers by the blockHashes. sort.Slice(sc.peers, func(i, j int) bool { return CompareSyncPeerConfigByblockHashes(sc.peers[i], sc.peers[j]) == -1 }) maxFirstID, maxCount := sc.getHowManyMaxConsensus() utils.Logger().Info(). Int("maxFirstID", maxFirstID). Int("maxCount", maxCount). Msg("[SYNC] block consensus hashes") if float64(maxCount) >= core.ShardingSchedule.ConsensusRatio()*float64(len(sc.peers)) { sc.cleanUpPeers(maxFirstID) return true } return false } // GetConsensusHashes gets all hashes needed to download. func (ss *StateSync) GetConsensusHashes(startHash []byte, size uint32) bool { count := 0 for { var wg sync.WaitGroup ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) { wg.Add(1) go func() { defer wg.Done() response := peerConfig.client.GetBlockHashes(startHash, size, ss.selfip, ss.selfport) if response == nil { utils.Logger().Warn(). Str("peer IP", peerConfig.ip). Str("peer Port", peerConfig.port). Msg("[SYNC] GetConsensusHashes Nil Response") return } if len(response.Payload) > int(size+1) { utils.Logger().Warn(). Uint32("requestSize", size). Int("respondSize", len(response.Payload)). Msg("[SYNC] GetConsensusHashes: receive more blockHahses than request!") peerConfig.blockHashes = response.Payload[:size+1] } else { peerConfig.blockHashes = response.Payload } }() return }) wg.Wait() if ss.syncConfig.GetBlockHashesConsensusAndCleanUp() { break } if count > TimesToFail { utils.Logger().Info().Msg("[SYNC] GetConsensusHashes: reached retry limit") return false } count++ time.Sleep(SleepTimeAfterNonConsensusBlockHashes) } utils.Logger().Info().Msg("[SYNC] Finished getting consensus block hashes") return true } func (ss *StateSync) generateStateSyncTaskQueue(bc *core.BlockChain) { ss.stateSyncTaskQueue = queue.New(0) ss.syncConfig.ForEachPeer(func(configPeer *SyncPeerConfig) (brk bool) { for id, blockHash := range configPeer.blockHashes { if err := ss.stateSyncTaskQueue.Put(SyncBlockTask{index: id, blockHash: blockHash}); err != nil { utils.Logger().Warn(). Err(err). Int("taskIndex", id). Str("taskBlock", hex.EncodeToString(blockHash)). Msg("cannot add task") } } brk = true return }) utils.Logger().Info().Int64("length", ss.stateSyncTaskQueue.Len()).Msg("[SYNC] Finished generateStateSyncTaskQueue") } // downloadBlocks downloads blocks from state sync task queue. func (ss *StateSync) downloadBlocks(bc *core.BlockChain) { // Initialize blockchain var wg sync.WaitGroup count := 0 ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) { wg.Add(1) go func(stateSyncTaskQueue *queue.Queue, bc *core.BlockChain) { defer wg.Done() for !stateSyncTaskQueue.Empty() { task, err := ss.stateSyncTaskQueue.Poll(1, time.Millisecond) if err == queue.ErrTimeout || len(task) == 0 { utils.Logger().Error().Err(err).Msg("[SYNC] ss.stateSyncTaskQueue poll timeout") break } syncTask := task[0].(SyncBlockTask) //id := syncTask.index payload, err := peerConfig.GetBlocks([][]byte{syncTask.blockHash}) if err != nil || len(payload) == 0 { count++ utils.Logger().Error().Err(err).Int("failNumber", count).Msg("[SYNC] GetBlocks failed") if count > TimesToFail { break } if err := ss.stateSyncTaskQueue.Put(syncTask); err != nil { utils.Logger().Warn(). Err(err). Int("taskIndex", syncTask.index). Str("taskBlock", hex.EncodeToString(syncTask.blockHash)). Msg("cannot add task") } continue } var blockObj types.Block // currently only send one block a time err = rlp.DecodeBytes(payload[0], &blockObj) if err != nil { count++ utils.Logger().Error().Err(err).Msg("[SYNC] downloadBlocks: failed to DecodeBytes from received new block") if count > TimesToFail { break } if err := ss.stateSyncTaskQueue.Put(syncTask); err != nil { utils.Logger().Warn(). Err(err). Int("taskIndex", syncTask.index). Str("taskBlock", hex.EncodeToString(syncTask.blockHash)). Msg("cannot add task") } continue } ss.syncMux.Lock() ss.commonBlocks[syncTask.index] = &blockObj ss.syncMux.Unlock() } }(ss.stateSyncTaskQueue, bc) return }) wg.Wait() utils.Logger().Info().Msg("[SYNC] Finished downloadBlocks") } // CompareBlockByHash compares two block by hash, it will be used in sort the blocks func CompareBlockByHash(a *types.Block, b *types.Block) int { ha := a.Hash() hb := b.Hash() return bytes.Compare(ha[:], hb[:]) } // GetHowManyMaxConsensus will get the most common blocks and the first such blockID func GetHowManyMaxConsensus(blocks []*types.Block) (int, int) { // As all peers are sorted by their blockHashes, all equal blockHashes should come together and consecutively. curCount := 0 curFirstID := -1 maxCount := 0 maxFirstID := -1 for i := range blocks { if curFirstID == -1 || CompareBlockByHash(blocks[curFirstID], blocks[i]) != 0 { curCount = 1 curFirstID = i } else { curCount++ } if curCount > maxCount { maxCount = curCount maxFirstID = curFirstID } } return maxFirstID, maxCount } func (ss *StateSync) getMaxConsensusBlockFromParentHash(parentHash common.Hash) *types.Block { candidateBlocks := []*types.Block{} ss.syncMux.Lock() ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) { for _, block := range peerConfig.newBlocks { ph := block.ParentHash() if bytes.Compare(ph[:], parentHash[:]) == 0 { candidateBlocks = append(candidateBlocks, block) break } } return }) ss.syncMux.Unlock() if len(candidateBlocks) == 0 { return nil } // Sort by blockHashes. sort.Slice(candidateBlocks, func(i, j int) bool { return CompareBlockByHash(candidateBlocks[i], candidateBlocks[j]) == -1 }) maxFirstID, maxCount := GetHowManyMaxConsensus(candidateBlocks) hash := candidateBlocks[maxFirstID].Hash() utils.Logger().Debug(). Hex("parentHash", parentHash[:]). Hex("hash", hash[:]). Int("maxCount", maxCount). Msg("[SYNC] Find block with matching parenthash") return candidateBlocks[maxFirstID] } func (ss *StateSync) getBlockFromOldBlocksByParentHash(parentHash common.Hash) *types.Block { for _, block := range ss.commonBlocks { ph := block.ParentHash() if bytes.Compare(ph[:], parentHash[:]) == 0 { return block } } return nil } func (ss *StateSync) getBlockFromLastMileBlocksByParentHash(parentHash common.Hash) *types.Block { for _, block := range ss.lastMileBlocks { ph := block.ParentHash() if bytes.Compare(ph[:], parentHash[:]) == 0 { return block } } return nil } func (ss *StateSync) updateBlockAndStatus(block *types.Block, bc *core.BlockChain, worker *worker.Worker) bool { utils.Logger().Info().Str("blockHex", bc.CurrentBlock().Hash().Hex()).Msg("[SYNC] Current Block") // Verify block signatures // TODO chao: only when block is verified against last commit sigs, we can update the block and status if block.NumberU64() > 1 { err := bc.Engine().VerifyHeader(bc, block.Header(), true) if err != nil { utils.Logger().Error().Err(err).Msgf("[SYNC] failed verifying signatures for new block %d", block.NumberU64()) return false } } _, err := bc.InsertChain([]*types.Block{block}) if err != nil { utils.Logger().Error().Err(err).Msgf("[SYNC] Error adding new block to blockchain %d %d", block.NumberU64(), block.ShardID()) utils.Logger().Debug().Interface("block", bc.CurrentBlock()).Msg("[SYNC] Rolling back current block!") bc.Rollback([]common.Hash{bc.CurrentBlock().Hash()}) return false } ss.syncMux.Lock() if err := worker.UpdateCurrent(block.Header().Coinbase()); err != nil { utils.Logger().Warn().Err(err).Msg("[SYNC] (*Worker).UpdateCurrent failed") } ss.syncMux.Unlock() utils.Logger().Info(). Uint64("blockHeight", bc.CurrentBlock().NumberU64()). Str("blockHex", bc.CurrentBlock().Hash().Hex()). Msg("[SYNC] new block added to blockchain") return true } // generateNewState will construct most recent state from downloaded blocks func (ss *StateSync) generateNewState(bc *core.BlockChain, worker *worker.Worker) { // update blocks created before node start sync parentHash := bc.CurrentBlock().Hash() for { block := ss.getBlockFromOldBlocksByParentHash(parentHash) if block == nil { break } ok := ss.updateBlockAndStatus(block, bc, worker) if !ok { break } parentHash = block.Hash() } ss.syncMux.Lock() ss.commonBlocks = make(map[int]*types.Block) ss.syncMux.Unlock() // update blocks after node start sync parentHash = bc.CurrentBlock().Hash() for { block := ss.getMaxConsensusBlockFromParentHash(parentHash) if block == nil { break } ok := ss.updateBlockAndStatus(block, bc, worker) if !ok { break } parentHash = block.Hash() } // TODO ek – Do we need to hold syncMux now that syncConfig has its onw // mutex? ss.syncMux.Lock() ss.syncConfig.ForEachPeer(func(peer *SyncPeerConfig) (brk bool) { peer.newBlocks = []*types.Block{} return }) ss.syncMux.Unlock() // update last mile blocks if any parentHash = bc.CurrentBlock().Hash() for { block := ss.getBlockFromLastMileBlocksByParentHash(parentHash) if block == nil { break } ok := ss.updateBlockAndStatus(block, bc, worker) if !ok { break } parentHash = block.Hash() } } // ProcessStateSync processes state sync from the blocks received but not yet processed so far // TODO: return error func (ss *StateSync) ProcessStateSync(startHash []byte, size uint32, bc *core.BlockChain, worker *worker.Worker) { // Gets consensus hashes. if !ss.GetConsensusHashes(startHash, size) { utils.Logger().Debug().Msg("[SYNC] ProcessStateSync unable to reach consensus on ss.GetConsensusHashes") return } ss.generateStateSyncTaskQueue(bc) // Download blocks. if ss.stateSyncTaskQueue.Len() > 0 { ss.downloadBlocks(bc) } ss.generateNewState(bc, worker) } func (peerConfig *SyncPeerConfig) registerToBroadcast(peerHash []byte, ip, port string) error { response := peerConfig.client.Register(peerHash, ip, port) if response == nil || response.Type == pb.DownloaderResponse_FAIL { return ErrRegistrationFail } else if response.Type == pb.DownloaderResponse_SUCCESS { return nil } return ErrRegistrationFail } // RegisterNodeInfo will register node to peers to accept future new block broadcasting // return number of successful registration func (ss *StateSync) RegisterNodeInfo() int { registrationNumber := RegistrationNumber utils.Logger().Debug(). Int("registrationNumber", registrationNumber). Int("activePeerNumber", len(ss.syncConfig.peers)). Msg("[SYNC] node registration to peers") count := 0 ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) { logger := utils.Logger().With().Str("peerPort", peerConfig.port).Str("peerIP", peerConfig.ip).Logger() if count >= registrationNumber { brk = true return } if peerConfig.ip == ss.selfip && peerConfig.port == GetSyncingPort(ss.selfport) { logger.Debug(). Str("selfport", ss.selfport). Str("selfsyncport", GetSyncingPort(ss.selfport)). Msg("[SYNC] skip self") return } err := peerConfig.registerToBroadcast(ss.selfPeerHash[:], ss.selfip, ss.selfport) if err != nil { logger.Debug(). Hex("selfPeerHash", ss.selfPeerHash[:]). Msg("[SYNC] register failed to peer") return } logger.Debug().Msg("[SYNC] register success") count++ return }) return count } // getMaxPeerHeight gets the maximum blockchain heights from peers func (ss *StateSync) getMaxPeerHeight(isBeacon bool) uint64 { maxHeight := uint64(0) var wg sync.WaitGroup ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) { wg.Add(1) go func() { defer wg.Done() //debug // utils.Logger().Debug().Bool("isBeacon", isBeacon).Str("IP", peerConfig.ip).Str("Port", peerConfig.port).Msg("[Sync]getMaxPeerHeight") response, err := peerConfig.client.GetBlockChainHeight() if err != nil { utils.Logger().Warn().Err(err).Str("IP", peerConfig.ip).Str("Port", peerConfig.port).Msg("[Sync]GetBlockChainHeight failed") return } ss.syncMux.Lock() if response != nil && maxHeight < response.BlockHeight { maxHeight = response.BlockHeight } ss.syncMux.Unlock() }() return }) wg.Wait() return maxHeight } // IsSameBlockchainHeight checks whether the node is out of sync from other peers func (ss *StateSync) IsSameBlockchainHeight(bc *core.BlockChain) (uint64, bool) { otherHeight := ss.getMaxPeerHeight(false) currentHeight := bc.CurrentBlock().NumberU64() return otherHeight, currentHeight == otherHeight } // IsOutOfSync checks whether the node is out of sync from other peers func (ss *StateSync) IsOutOfSync(bc *core.BlockChain) bool { otherHeight := ss.getMaxPeerHeight(false) currentHeight := bc.CurrentBlock().NumberU64() utils.Logger().Debug(). Uint64("OtherHeight", otherHeight). Uint64("MyHeight", currentHeight). Bool("IsOutOfSync", currentHeight+inSyncThreshold < otherHeight). Msg("[SYNC] Checking sync status") return currentHeight+inSyncThreshold < otherHeight } // SyncLoop will keep syncing with peers until catches up func (ss *StateSync) SyncLoop(bc *core.BlockChain, worker *worker.Worker, willJoinConsensus bool, isBeacon bool) { if !isBeacon { ss.RegisterNodeInfo() } // remove SyncLoopFrequency ticker := time.NewTicker(SyncLoopFrequency * time.Second) Loop: for { select { case <-ticker.C: otherHeight := ss.getMaxPeerHeight(isBeacon) currentHeight := bc.CurrentBlock().NumberU64() if currentHeight >= otherHeight { utils.Logger().Info().Msgf("[SYNC] Node is now IN SYNC! (isBeacon: %t, ShardID: %d, otherHeight: %d, currentHeight: %d)", isBeacon, bc.ShardID(), otherHeight, currentHeight) break Loop } else { utils.Logger().Debug().Msgf("[SYNC] Node is Not in Sync (isBeacon: %t, ShardID: %d, otherHeight: %d, currentHeight: %d)", isBeacon, bc.ShardID(), otherHeight, currentHeight) } startHash := bc.CurrentBlock().Hash() size := uint32(otherHeight - currentHeight) if size > BatchSize { size = BatchSize } ss.ProcessStateSync(startHash[:], size, bc, worker) ss.purgeOldBlocksFromCache() } } ss.purgeAllBlocksFromCache() } // GetSyncingPort returns the syncing port. func GetSyncingPort(nodePort string) string { if port, err := strconv.Atoi(nodePort); err == nil { return fmt.Sprintf("%d", port-SyncingPortDifference) } return "" }