// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package state import ( "bytes" "fmt" "io" "math/big" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" "github.com/harmony-one/harmony/staking" ) var ( // EmptyRootHash is the known root hash of an empty trie. EmptyRootHash = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") // EmptyCodeHash is the known hash of the empty EVM bytecode. EmptyCodeHash = crypto.Keccak256Hash(nil) // c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 ) // Code ... type Code []byte func (c Code) String() string { return string(c) //strings.Join(Disassemble(c), " ") } // Storage ... type Storage map[common.Hash]common.Hash func (s Storage) String() (str string) { for key, value := range s { str += fmt.Sprintf("%X : %X\n", key, value) } return } // Copy ... func (s Storage) Copy() Storage { cpy := make(Storage, len(s)) for key, value := range s { cpy[key] = value } return cpy } // Object represents an Ethereum account which is being modified. // // The usage pattern is as follows: // First you need to obtain a state object. // Account values can be accessed and modified through the object. // Finally, call commitTrie to write the modified storage trie into a database. type Object struct { address common.Address addrHash common.Hash // hash of ethereum address of the account data types.StateAccount db *DB // DB error. // State objects are used by the consensus core and VM which are // unable to deal with database-level errors. Any error that occurs // during a database read is memoized here and will eventually be returned // by DB.Commit. dbErr error // Write caches. trie Trie // storage trie, which becomes non-nil on first access code Code // contract bytecode, which gets set when code is loaded originStorage Storage // Storage cache of original entries to dedup rewrites, reset for every transaction pendingStorage Storage // Storage entries that need to be flushed to disk, at the end of an entire block dirtyStorage Storage // Storage entries that have been modified in the current transaction execution fakeStorage Storage // Fake storage which constructed by caller for debugging purpose. // Cache flags. // When an object is marked suicided it will be delete from the trie // during the "update" phase of the state transition. validatorWrapper bool // true if the code belongs to validator wrapper dirtyCode bool // true if the code was updated suicided bool deleted bool } // empty returns whether the account is considered empty. func (s *Object) empty() bool { return s.data.Nonce == 0 && s.data.Balance.Sign() == 0 && bytes.Equal(s.data.CodeHash, EmptyCodeHash.Bytes()) } // Account is the Ethereum consensus representation of accounts. // These objects are stored in the main account trie. type Account struct { Nonce uint64 Balance *big.Int Root common.Hash // merkle root of the storage trie CodeHash []byte } // newObject creates a state object. func newObject(db *DB, address common.Address, data types.StateAccount) *Object { if data.Balance == nil { data.Balance = new(big.Int) } if data.CodeHash == nil { data.CodeHash = EmptyCodeHash.Bytes() } if data.Root == (common.Hash{}) { data.Root = EmptyRootHash } return &Object{ db: db, address: address, addrHash: crypto.Keccak256Hash(address[:]), data: data, originStorage: make(Storage), pendingStorage: make(Storage), dirtyStorage: make(Storage), } } // EncodeRLP implements rlp.Encoder. func (s *Object) EncodeRLP(w io.Writer) error { return rlp.Encode(w, &s.data) } // setError remembers the first non-nil error it is called with. func (s *Object) setError(err error) { if s.dbErr == nil { s.dbErr = err } } func (s *Object) markSuicided() { s.suicided = true } func (s *Object) touch() { s.db.journal.append(touchChange{ account: &s.address, }) if s.address == ripemd { // Explicitly put it in the dirty-cache, which is otherwise generated from // flattened journals. s.db.journal.dirty(s.address) } } // getTrie returns the associated storage trie. The trie will be opened // if it's not loaded previously. An error will be returned if trie can't // be loaded. func (s *Object) getTrie(db Database) (Trie, error) { if s.trie == nil { // Try fetching from prefetcher first // We don't prefetch empty tries if s.data.Root != EmptyRootHash && s.db.prefetcher != nil { // When the miner is creating the pending state, there is no // prefetcher s.trie = s.db.prefetcher.trie(s.addrHash, s.data.Root) } if s.trie == nil { tr, err := db.OpenStorageTrie(s.db.originalRoot, s.addrHash, s.data.Root) if err != nil { return nil, err } s.trie = tr } } return s.trie, nil } // GetState retrieves a value from the account storage trie. func (s *Object) GetState(db Database, key common.Hash) common.Hash { // If the fake storage is set, only lookup the state here(in the debugging mode) if s.fakeStorage != nil { return s.fakeStorage[key] } // If we have a dirty value for this state entry, return it value, dirty := s.dirtyStorage[key] if dirty { return value } // Otherwise return the entry's original value return s.GetCommittedState(db, key) } // GetCommittedState retrieves a value from the committed account storage trie. func (s *Object) GetCommittedState(db Database, key common.Hash) common.Hash { // If the fake storage is set, only lookup the state here(in the debugging mode) if s.fakeStorage != nil { return s.fakeStorage[key] } // If we have a pending write or clean cached, return that if value, pending := s.pendingStorage[key]; pending { return value } if value, cached := s.originStorage[key]; cached { return value } // If the object was destructed in *this* block (and potentially resurrected), // the storage has been cleared out, and we should *not* consult the previous // database about any storage values. The only possible alternatives are: // 1) resurrect happened, and new slot values were set -- those should // have been handles via pendingStorage above. // 2) we don't have new values, and can deliver empty response back if _, destructed := s.db.stateObjectsDestruct[s.address]; destructed { return common.Hash{} } // If no live objects are available, attempt to use snapshots var ( enc []byte err error ) if s.db.snap != nil { start := time.Now() enc, err = s.db.snap.Storage(s.addrHash, crypto.Keccak256Hash(key.Bytes())) if metrics.EnabledExpensive { s.db.SnapshotStorageReads += time.Since(start) } } // If the snapshot is unavailable or reading from it fails, load from the database. if s.db.snap == nil || err != nil { start := time.Now() tr, err := s.getTrie(db) if err != nil { s.setError(err) return common.Hash{} } enc, err = tr.TryGet(key.Bytes()) if metrics.EnabledExpensive { s.db.StorageReads += time.Since(start) } if err != nil { s.setError(err) return common.Hash{} } } var value common.Hash if len(enc) > 0 { _, content, _, err := rlp.Split(enc) if err != nil { s.setError(err) } value.SetBytes(content) } s.originStorage[key] = value return value } // SetState updates a value in account storage. func (s *Object) SetState(db Database, key, value common.Hash) { // If the fake storage is set, put the temporary state update here. if s.fakeStorage != nil { s.fakeStorage[key] = value return } // If the new value is the same as old, don't set prev := s.GetState(db, key) if prev == value { return } // New value is different, update and journal the change s.db.journal.append(storageChange{ account: &s.address, key: key, prevalue: prev, }) s.setState(key, value) } // SetStorage replaces the entire state storage with the given one. // // After this function is called, all original state will be ignored and state // lookup only happens in the fake state storage. // // Note this function should only be used for debugging purpose. func (s *Object) SetStorage(storage map[common.Hash]common.Hash) { // Allocate fake storage if it's nil. if s.fakeStorage == nil { s.fakeStorage = make(Storage) } for key, value := range storage { s.fakeStorage[key] = value } // Don't bother journal since this function should only be used for // debugging and the `fake` storage won't be committed to database. } func (s *Object) setState(key, value common.Hash) { s.dirtyStorage[key] = value } // finalise moves all dirty storage slots into the pending area to be hashed or // committed later. It is invoked at the end of every transaction. func (s *Object) finalise(prefetch bool) { slotsToPrefetch := make([][]byte, 0, len(s.dirtyStorage)) for key, value := range s.dirtyStorage { s.pendingStorage[key] = value if value != s.originStorage[key] { slotsToPrefetch = append(slotsToPrefetch, common.CopyBytes(key[:])) // Copy needed for closure } } if s.db.prefetcher != nil && prefetch && len(slotsToPrefetch) > 0 && s.data.Root != EmptyRootHash { s.db.prefetcher.prefetch(s.addrHash, s.data.Root, slotsToPrefetch) } if len(s.dirtyStorage) > 0 { s.dirtyStorage = make(Storage) } } // updateTrie writes cached storage modifications into the object's storage trie. // It will return nil if the trie has not been loaded and no changes have been // made. An error will be returned if the trie can't be loaded/updated correctly. func (s *Object) updateTrie(db Database) (Trie, error) { // Make sure all dirty slots are finalized into the pending storage area s.finalise(false) // Don't prefetch anymore, pull directly if need be if len(s.pendingStorage) == 0 { return s.trie, nil } // Track the amount of time wasted on updating the storage trie if metrics.EnabledExpensive { defer func(start time.Time) { s.db.StorageUpdates += time.Since(start) }(time.Now()) } // The snapshot storage map for the object var ( storage map[common.Hash][]byte hasher = s.db.hasher ) tr, err := s.getTrie(db) if err != nil { s.setError(err) return nil, err } // Insert all the pending updates into the trie usedStorage := make([][]byte, 0, len(s.pendingStorage)) for key, value := range s.pendingStorage { // Skip noop changes, persist actual changes if value == s.originStorage[key] { continue } s.originStorage[key] = value var v []byte if (value == common.Hash{}) { if err := tr.TryDelete(key[:]); err != nil { s.setError(err) return nil, err } s.db.StorageDeleted += 1 } else { // Encoding []byte cannot fail, ok to ignore the error. v, _ = rlp.EncodeToBytes(common.TrimLeftZeroes(value[:])) if err := tr.TryUpdate(key[:], v); err != nil { s.setError(err) return nil, err } s.db.StorageUpdated += 1 } // If state snapshotting is active, cache the data til commit if s.db.snap != nil { if storage == nil { // Retrieve the old storage map, if available, create a new one otherwise if storage = s.db.snapStorage[s.addrHash]; storage == nil { storage = make(map[common.Hash][]byte) s.db.snapStorage[s.addrHash] = storage } } storage[crypto.HashData(hasher, key[:])] = v // v will be nil if it's deleted } usedStorage = append(usedStorage, common.CopyBytes(key[:])) // Copy needed for closure } if s.db.prefetcher != nil { s.db.prefetcher.used(s.addrHash, s.data.Root, usedStorage) } if len(s.pendingStorage) > 0 { s.pendingStorage = make(Storage) } return tr, nil } // UpdateRoot sets the trie root to the current root hash of. An error // will be returned if trie root hash is not computed correctly. func (s *Object) updateRoot(db Database) { tr, err := s.updateTrie(db) if err != nil { s.setError(fmt.Errorf("updateRoot (%x) error: %w", s.address, err)) return } // If nothing changed, don't bother with hashing anything if tr == nil { return } // Track the amount of time wasted on hashing the storage trie if metrics.EnabledExpensive { defer func(start time.Time) { s.db.StorageHashes += time.Since(start) }(time.Now()) } s.data.Root = tr.Hash() } // commitTrie submits the storage changes into the storage trie and re-computes // the root. Besides, all trie changes will be collected in a nodeset and returned. func (s *Object) commitTrie(db Database) (*trie.NodeSet, error) { tr, err := s.updateTrie(db) if err != nil { return nil, err } if s.dbErr != nil { return nil, s.dbErr } // If nothing changed, don't bother with committing anything if tr == nil { return nil, nil } // Track the amount of time wasted on committing the storage trie if metrics.EnabledExpensive { defer func(start time.Time) { s.db.StorageCommits += time.Since(start) }(time.Now()) } root, nodes := tr.Commit(false) s.data.Root = root return nodes, err } // AddBalance adds amount to s's balance. // It is used to add funds to the destination account of a transfer. func (s *Object) AddBalance(amount *big.Int) { // EIP161: We must check emptiness for the objects such that the account // clearing (0,0,0 objects) can take effect. if amount.Sign() == 0 { if s.empty() { s.touch() } return } s.SetBalance(new(big.Int).Add(s.Balance(), amount)) } // SubBalance removes amount from s's balance. // It is used to remove funds from the origin account of a transfer. func (s *Object) SubBalance(amount *big.Int) { if amount.Sign() == 0 { return } s.SetBalance(new(big.Int).Sub(s.Balance(), amount)) } func (s *Object) SetBalance(amount *big.Int) { s.db.journal.append(balanceChange{ account: &s.address, prev: new(big.Int).Set(s.data.Balance), }) s.setBalance(amount) } func (s *Object) setBalance(amount *big.Int) { s.data.Balance = amount } // ReturnGas the gas back to the origin. Used by the Virtual machine or Closures func (s *Object) ReturnGas(gas *big.Int) {} func (s *Object) deepCopy(db *DB) *Object { stateObject := newObject(db, s.address, s.data) if s.trie != nil { stateObject.trie = db.db.CopyTrie(s.trie) } stateObject.code = s.code stateObject.dirtyStorage = s.dirtyStorage.Copy() stateObject.originStorage = s.originStorage.Copy() stateObject.pendingStorage = s.pendingStorage.Copy() stateObject.suicided = s.suicided stateObject.dirtyCode = s.dirtyCode stateObject.deleted = s.deleted return stateObject } // // Attribute accessors // // Address returns the address of the contract/account func (s *Object) Address() common.Address { return s.address } // Code returns the contract/validator code associated with this object, if any. func (s *Object) Code(db Database) []byte { if s.code != nil { return s.code } if bytes.Equal(s.CodeHash(), EmptyCodeHash.Bytes()) { return nil } var err error code := []byte{} // if it's not set for validator wrapper, then it may be either contract code or validator wrapper (old version of db // don't have any prefix to differentiate between them) // so, if it's not set for validator wrapper, we need to check contract code as well if !s.validatorWrapper { code, err = db.ContractCode(s.addrHash, common.BytesToHash(s.CodeHash())) } // if it couldn't load contract code or it is set to validator wrapper, then it tries to fetch validator wrapper code if s.validatorWrapper || err != nil { vCode, errVCode := db.ValidatorCode(s.addrHash, common.BytesToHash(s.CodeHash())) if errVCode == nil && vCode != nil { s.code = vCode return vCode } if s.validatorWrapper { s.setError(fmt.Errorf("can't load validator code hash %x for account address hash %x : %v", s.CodeHash(), s.addrHash, err)) } else { s.setError(fmt.Errorf("can't load contract/validator code hash %x for account address hash %x : contract code error: %v, validator code error: %v", s.CodeHash(), s.addrHash, err, errVCode)) } } s.code = code return code } // CodeSize returns the size of the contract/validator code associated with this object, // or zero if none. This method is an almost mirror of Code, but uses a cache // inside the database to avoid loading codes seen recently. func (s *Object) CodeSize(db Database) int { if s.code != nil { return len(s.code) } if bytes.Equal(s.CodeHash(), EmptyCodeHash.Bytes()) { return 0 } var err error size := int(0) // if it's not set for validator wrapper, then it may be either contract code or validator wrapper (old version of db // don't have any prefix to differentiate between them) // so, if it's not set for validator wrapper, we need to check contract code as well if !s.validatorWrapper { size, err = db.ContractCodeSize(s.addrHash, common.BytesToHash(s.CodeHash())) } // if it couldn't get contract code or it is set to validator wrapper, then it tries to retrieve validator wrapper code if s.validatorWrapper || err != nil { vcSize, errVCSize := db.ValidatorCodeSize(s.addrHash, common.BytesToHash(s.CodeHash())) if errVCSize == nil && vcSize > 0 { return vcSize } if s.validatorWrapper { s.setError(fmt.Errorf("can't load validator code size %x for account address hash %x : %v", s.CodeHash(), s.addrHash, err)) } else { s.setError(fmt.Errorf("can't load contract/validator code size %x for account address hash %x : contract code size error: %v, validator code size error: %v", s.CodeHash(), s.addrHash, err, errVCSize)) } s.setError(fmt.Errorf("can't load code size %x (validator wrapper: %t): %v", s.CodeHash(), s.validatorWrapper, err)) } return size } func (s *Object) SetCode(codeHash common.Hash, code []byte, isValidatorCode bool) { prevcode := s.Code(s.db.db) s.db.journal.append(codeChange{ account: &s.address, prevhash: s.CodeHash(), prevcode: prevcode, }) s.setCode(codeHash, code, isValidatorCode) } func (s *Object) setCode(codeHash common.Hash, code []byte, isValidatorCode bool) { s.code = code s.data.CodeHash = codeHash[:] s.dirtyCode = true s.validatorWrapper = isValidatorCode } func (s *Object) SetNonce(nonce uint64) { s.db.journal.append(nonceChange{ account: &s.address, prev: s.data.Nonce, }) s.setNonce(nonce) } func (s *Object) setNonce(nonce uint64) { s.data.Nonce = nonce } func (s *Object) CodeHash() []byte { return s.data.CodeHash } func (s *Object) Balance() *big.Int { return s.data.Balance } func (s *Object) Nonce() uint64 { return s.data.Nonce } // Value is never called, but must be present to allow Object to be used // as a vm.Account interface that also satisfies the vm.ContractRef // interface. Interfaces are awesome. func (s *Object) Value() *big.Int { panic("Value on state object should never be called") } // IsValidator checks whether it is a validator object func (s *Object) IsValidator(db Database) bool { value := s.GetState(db, staking.IsValidatorKey) return value != (common.Hash{}) }