package syncing import ( "bytes" "encoding/hex" "fmt" "math/rand" "reflect" "sort" "strconv" "sync" "time" "github.com/Workiva/go-datastructures/queue" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/rlp" "github.com/harmony-one/harmony/api/service/syncing/downloader" pb "github.com/harmony-one/harmony/api/service/syncing/downloader/proto" "github.com/harmony-one/harmony/consensus" "github.com/harmony-one/harmony/consensus/engine" "github.com/harmony-one/harmony/core" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/node/worker" "github.com/harmony-one/harmony/p2p" "github.com/pkg/errors" ) // Constants for syncing. const ( downloadBlocksRetryLimit = 5 // downloadBlocks service retry limit TimesToFail = 5 // downloadBlocks service retry limit RegistrationNumber = 3 SyncingPortDifference = 3000 inSyncThreshold = 0 // when peerBlockHeight - myBlockHeight <= inSyncThreshold, it's ready to join consensus SyncLoopBatchSize uint32 = 1000 // maximum size for one query of block hashes verifyHeaderBatchSize uint64 = 100 // block chain header verification batch size SyncLoopFrequency = 1 // unit in second LastMileBlocksSize = 50 // after cutting off a number of connected peers, the result number of peers // shall be between numPeersLowBound and numPeersHighBound NumPeersLowBound = 3 numPeersHighBound = 5 downloadTaskBatch = 30 ) // SyncPeerConfig is peer config to sync. type SyncPeerConfig struct { ip string port string peerHash []byte client *downloader.Client blockHashes [][]byte // block hashes before node doing sync newBlocks []*types.Block // blocks after node doing sync mux sync.Mutex } // GetClient returns client pointer of downloader.Client func (peerConfig *SyncPeerConfig) GetClient() *downloader.Client { return peerConfig.client } // SyncBlockTask is the task struct to sync a specific block. type SyncBlockTask struct { index int blockHash []byte } type syncBlockTasks []SyncBlockTask func (tasks syncBlockTasks) blockHashes() [][]byte { hashes := make([][]byte, 0, len(tasks)) for _, task := range tasks { hash := make([]byte, len(task.blockHash)) copy(hash, task.blockHash) hashes = append(hashes, task.blockHash) } return hashes } func (tasks syncBlockTasks) blockHashesStr() []string { hashes := make([]string, 0, len(tasks)) for _, task := range tasks { hash := hex.EncodeToString(task.blockHash) hashes = append(hashes, hash) } return hashes } func (tasks syncBlockTasks) indexes() []int { indexes := make([]int, 0, len(tasks)) for _, task := range tasks { indexes = append(indexes, task.index) } return indexes } // SyncConfig contains an array of SyncPeerConfig. type SyncConfig struct { // mtx locks peers, and *SyncPeerConfig pointers in peers. // SyncPeerConfig itself is guarded by its own mutex. mtx sync.RWMutex peers []*SyncPeerConfig } // AddPeer adds the given sync peer. func (sc *SyncConfig) AddPeer(peer *SyncPeerConfig) { sc.mtx.Lock() defer sc.mtx.Unlock() sc.peers = append(sc.peers, peer) } // ForEachPeer calls the given function with each peer. // It breaks the iteration iff the function returns true. func (sc *SyncConfig) ForEachPeer(f func(peer *SyncPeerConfig) (brk bool)) { sc.mtx.RLock() defer sc.mtx.RUnlock() for _, peer := range sc.peers { if f(peer) { break } } } // CreateStateSync returns the implementation of StateSyncInterface interface. func CreateStateSync(ip string, port string, peerHash [20]byte) *StateSync { stateSync := &StateSync{} stateSync.selfip = ip stateSync.selfport = port stateSync.selfPeerHash = peerHash stateSync.commonBlocks = make(map[int]*types.Block) stateSync.lastMileBlocks = []*types.Block{} stateSync.syncConfig = &SyncConfig{} return stateSync } // StateSync is the struct that implements StateSyncInterface. type StateSync struct { selfip string selfport string selfPeerHash [20]byte // hash of ip and address combination commonBlocks map[int]*types.Block lastMileBlocks []*types.Block // last mile blocks to catch up with the consensus syncConfig *SyncConfig stateSyncTaskQueue *queue.Queue syncMux sync.Mutex lastMileMux sync.Mutex } func (ss *StateSync) purgeAllBlocksFromCache() { ss.lastMileMux.Lock() ss.lastMileBlocks = nil ss.lastMileMux.Unlock() ss.syncMux.Lock() defer ss.syncMux.Unlock() ss.commonBlocks = make(map[int]*types.Block) ss.syncConfig.ForEachPeer(func(configPeer *SyncPeerConfig) (brk bool) { configPeer.blockHashes = nil configPeer.newBlocks = nil return }) } func (ss *StateSync) purgeOldBlocksFromCache() { ss.syncMux.Lock() defer ss.syncMux.Unlock() ss.commonBlocks = make(map[int]*types.Block) ss.syncConfig.ForEachPeer(func(configPeer *SyncPeerConfig) (brk bool) { configPeer.blockHashes = nil return }) } // AddLastMileBlock add the latest a few block into queue for syncing // only keep the latest blocks with size capped by LastMileBlocksSize func (ss *StateSync) AddLastMileBlock(block *types.Block) { ss.lastMileMux.Lock() defer ss.lastMileMux.Unlock() if ss.lastMileBlocks != nil { if len(ss.lastMileBlocks) >= LastMileBlocksSize { ss.lastMileBlocks = ss.lastMileBlocks[1:] } ss.lastMileBlocks = append(ss.lastMileBlocks, block) } } // CloseConnections close grpc connections for state sync clients func (sc *SyncConfig) CloseConnections() { sc.mtx.RLock() defer sc.mtx.RUnlock() for _, pc := range sc.peers { pc.client.Close() } } // FindPeerByHash returns the peer with the given hash, or nil if not found. func (sc *SyncConfig) FindPeerByHash(peerHash []byte) *SyncPeerConfig { sc.mtx.RLock() defer sc.mtx.RUnlock() for _, pc := range sc.peers { if bytes.Equal(pc.peerHash, peerHash) { return pc } } return nil } // AddNewBlock will add newly received block into state syncing queue func (ss *StateSync) AddNewBlock(peerHash []byte, block *types.Block) { pc := ss.syncConfig.FindPeerByHash(peerHash) if pc == nil { // Received a block with no active peer; just ignore. return } // TODO ek – we shouldn't mess with SyncPeerConfig's mutex. // Factor this into a method, like pc.AddNewBlock(block) pc.mux.Lock() defer pc.mux.Unlock() pc.newBlocks = append(pc.newBlocks, block) utils.Logger().Debug(). Int("total", len(pc.newBlocks)). Uint64("blockHeight", block.NumberU64()). Msg("[SYNC] new block received") } // CreateTestSyncPeerConfig used for testing. func CreateTestSyncPeerConfig(client *downloader.Client, blockHashes [][]byte) *SyncPeerConfig { return &SyncPeerConfig{ client: client, blockHashes: blockHashes, } } // CompareSyncPeerConfigByblockHashes compares two SyncPeerConfig by blockHashes. func CompareSyncPeerConfigByblockHashes(a *SyncPeerConfig, b *SyncPeerConfig) int { if len(a.blockHashes) != len(b.blockHashes) { if len(a.blockHashes) < len(b.blockHashes) { return -1 } return 1 } for id := range a.blockHashes { if !reflect.DeepEqual(a.blockHashes[id], b.blockHashes[id]) { return bytes.Compare(a.blockHashes[id], b.blockHashes[id]) } } return 0 } // GetBlocks gets blocks by calling grpc request to the corresponding peer. func (peerConfig *SyncPeerConfig) GetBlocks(hashes [][]byte) ([][]byte, error) { response := peerConfig.client.GetBlocks(hashes) if response == nil { return nil, ErrGetBlock } return response.Payload, nil } // CreateSyncConfig creates SyncConfig for StateSync object. func (ss *StateSync) CreateSyncConfig(peers []p2p.Peer, isBeacon bool) error { // limit the number of dns peers to connect randSeed := time.Now().UnixNano() peers = limitNumPeers(peers, randSeed) utils.Logger().Debug(). Int("len", len(peers)). Bool("isBeacon", isBeacon). Msg("[SYNC] CreateSyncConfig: len of peers") if len(peers) == 0 { return errors.New("[SYNC] no peers to connect to") } if ss.syncConfig != nil { ss.syncConfig.CloseConnections() } ss.syncConfig = &SyncConfig{} var wg sync.WaitGroup for _, peer := range peers { wg.Add(1) go func(peer p2p.Peer) { defer wg.Done() client := downloader.ClientSetup(peer.IP, peer.Port) if client == nil { return } peerConfig := &SyncPeerConfig{ ip: peer.IP, port: peer.Port, client: client, } ss.syncConfig.AddPeer(peerConfig) }(peer) } wg.Wait() utils.Logger().Info(). Int("len", len(ss.syncConfig.peers)). Bool("isBeacon", isBeacon). Msg("[SYNC] Finished making connection to peers") return nil } // limitNumPeers limits number of peers to release some server end sources. func limitNumPeers(ps []p2p.Peer, randSeed int64) []p2p.Peer { targetSize := calcNumPeersWithBound(len(ps), NumPeersLowBound, numPeersHighBound) if len(ps) <= targetSize { return ps } r := rand.New(rand.NewSource(randSeed)) r.Shuffle(len(ps), func(i, j int) { ps[i], ps[j] = ps[j], ps[i] }) return ps[:targetSize] } // Peers are expected to limited at half of the size, capped between lowBound and highBound. func calcNumPeersWithBound(size int, lowBound, highBound int) int { if size < lowBound { return size } expLen := size / 2 if expLen < lowBound { expLen = lowBound } if expLen > highBound { expLen = highBound } return expLen } // GetActivePeerNumber returns the number of active peers func (ss *StateSync) GetActivePeerNumber() int { if ss.syncConfig == nil { return 0 } // len() is atomic; no need to hold mutex. return len(ss.syncConfig.peers) } // getHowManyMaxConsensus returns max number of consensus nodes and the first ID of consensus group. // Assumption: all peers are sorted by CompareSyncPeerConfigByBlockHashes first. // Caller shall ensure mtx is locked for reading. func (sc *SyncConfig) getHowManyMaxConsensus() (int, int) { // As all peers are sorted by their blockHashes, all equal blockHashes should come together and consecutively. curCount := 0 curFirstID := -1 maxCount := 0 maxFirstID := -1 for i := range sc.peers { if curFirstID == -1 || CompareSyncPeerConfigByblockHashes(sc.peers[curFirstID], sc.peers[i]) != 0 { curCount = 1 curFirstID = i } else { curCount++ } if curCount >= maxCount { maxCount = curCount maxFirstID = curFirstID } } return maxFirstID, maxCount } // InitForTesting used for testing. func (sc *SyncConfig) InitForTesting(client *downloader.Client, blockHashes [][]byte) { sc.mtx.RLock() defer sc.mtx.RUnlock() for i := range sc.peers { sc.peers[i].blockHashes = blockHashes sc.peers[i].client = client } } // cleanUpPeers cleans up all peers whose blockHashes are not equal to // consensus block hashes. Caller shall ensure mtx is locked for RW. func (sc *SyncConfig) cleanUpPeers(maxFirstID int) { fixedPeer := sc.peers[maxFirstID] for i := 0; i < len(sc.peers); i++ { if CompareSyncPeerConfigByblockHashes(fixedPeer, sc.peers[i]) != 0 { // TODO: move it into a util delete func. // See tip https://github.com/golang/go/wiki/SliceTricks // Close the client and remove the peer out of the sc.peers[i].client.Close() copy(sc.peers[i:], sc.peers[i+1:]) sc.peers[len(sc.peers)-1] = nil sc.peers = sc.peers[:len(sc.peers)-1] } } } // GetBlockHashesConsensusAndCleanUp selects the most common peer config based on their block hashes to download/sync. // Note that choosing the most common peer config does not guarantee that the blocks to be downloaded are the correct ones. // The subsequent node syncing steps of verifying the block header chain will give such confirmation later. // If later block header verification fails with the sync peer config chosen here, the entire sync loop gets retried with a new peer set. func (sc *SyncConfig) GetBlockHashesConsensusAndCleanUp() { sc.mtx.Lock() defer sc.mtx.Unlock() // Sort all peers by the blockHashes. sort.Slice(sc.peers, func(i, j int) bool { return CompareSyncPeerConfigByblockHashes(sc.peers[i], sc.peers[j]) == -1 }) maxFirstID, maxCount := sc.getHowManyMaxConsensus() utils.Logger().Info(). Int("maxFirstID", maxFirstID). Int("maxCount", maxCount). Msg("[SYNC] block consensus hashes") sc.cleanUpPeers(maxFirstID) } // getConsensusHashes gets all hashes needed to download. func (ss *StateSync) getConsensusHashes(startHash []byte, size uint32) { var wg sync.WaitGroup ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) { wg.Add(1) go func() { defer wg.Done() response := peerConfig.client.GetBlockHashes(startHash, size, ss.selfip, ss.selfport) if response == nil { utils.Logger().Warn(). Str("peerIP", peerConfig.ip). Str("peerPort", peerConfig.port). Msg("[SYNC] getConsensusHashes Nil Response") return } if len(response.Payload) > int(size+1) { utils.Logger().Warn(). Uint32("requestSize", size). Int("respondSize", len(response.Payload)). Msg("[SYNC] getConsensusHashes: receive more blockHashes than requested!") peerConfig.blockHashes = response.Payload[:size+1] } else { peerConfig.blockHashes = response.Payload } }() return }) wg.Wait() ss.syncConfig.GetBlockHashesConsensusAndCleanUp() utils.Logger().Info().Msg("[SYNC] Finished getting consensus block hashes") } func (ss *StateSync) generateStateSyncTaskQueue(bc *core.BlockChain) { ss.stateSyncTaskQueue = queue.New(0) ss.syncConfig.ForEachPeer(func(configPeer *SyncPeerConfig) (brk bool) { for id, blockHash := range configPeer.blockHashes { if err := ss.stateSyncTaskQueue.Put(SyncBlockTask{index: id, blockHash: blockHash}); err != nil { utils.Logger().Warn(). Err(err). Int("taskIndex", id). Str("taskBlock", hex.EncodeToString(blockHash)). Msg("[SYNC] generateStateSyncTaskQueue: cannot add task") } } brk = true return }) utils.Logger().Info().Int64("length", ss.stateSyncTaskQueue.Len()).Msg("[SYNC] generateStateSyncTaskQueue: finished") } // downloadBlocks downloads blocks from state sync task queue. func (ss *StateSync) downloadBlocks(bc *core.BlockChain) { // Initialize blockchain var wg sync.WaitGroup count := 0 taskQueue := downloadTaskQueue{ss.stateSyncTaskQueue} ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) { wg.Add(1) go func() { defer wg.Done() for !taskQueue.empty() { tasks, err := taskQueue.poll(downloadTaskBatch, time.Millisecond) if err != nil || len(tasks) == 0 { if err == queue.ErrDisposed { continue } utils.Logger().Error().Err(err).Msg("[SYNC] downloadBlocks: ss.stateSyncTaskQueue poll timeout") break } payload, err := peerConfig.GetBlocks(tasks.blockHashes()) if err != nil || len(payload) == 0 { count++ utils.Logger().Error().Err(err).Int("failNumber", count).Msg("[SYNC] downloadBlocks: GetBlocks failed") if count > downloadBlocksRetryLimit { break } if err := taskQueue.put(tasks); err != nil { utils.Logger().Warn(). Err(err). Interface("taskIndexes", tasks.indexes()). Interface("taskBlockes", tasks.blockHashesStr()). Msg("downloadBlocks: cannot add task") } continue } failedTasks := ss.handleBlockSyncResult(payload, tasks) if len(failedTasks) != 0 { count++ if count > downloadBlocksRetryLimit { break } if err := ss.stateSyncTaskQueue.Put(failedTasks); err != nil { utils.Logger().Warn(). Err(err). Interface("taskIndexes", failedTasks.indexes()). Interface("taskBlockes", tasks.blockHashesStr()). Msg("cannot add task") } continue } } }() return }) wg.Wait() utils.Logger().Info().Msg("[SYNC] downloadBlocks: finished") } func (ss *StateSync) handleBlockSyncResult(payload [][]byte, tasks syncBlockTasks) syncBlockTasks { if len(payload) > len(tasks) { utils.Logger().Warn(). Err(errors.New("unexpected number of block delivered")). Int("expect", len(tasks)). Int("got", len(payload)) return tasks } var failedTasks syncBlockTasks if len(payload) < len(tasks) { utils.Logger().Warn(). Err(errors.New("unexpected number of block delivered")). Int("expect", len(tasks)). Int("got", len(payload)) failedTasks = append(failedTasks, tasks[len(payload):]...) } for i, blockBytes := range payload { var blockObj types.Block if err := rlp.DecodeBytes(blockBytes, &blockObj); err != nil { utils.Logger().Warn(). Err(err). Int("taskIndex", tasks[i].index). Str("taskBlock", hex.EncodeToString(tasks[i].blockHash)). Msg("download block") failedTasks = append(failedTasks, tasks[i]) continue } gotHash := blockObj.Hash() if !bytes.Equal(gotHash[:], tasks[i].blockHash) { utils.Logger().Warn(). Err(errors.New("wrong block delivery")). Str("expectHash", hex.EncodeToString(tasks[i].blockHash)). Str("gotHash", hex.EncodeToString(gotHash[:])) failedTasks = append(failedTasks, tasks[i]) continue } ss.syncMux.Lock() ss.commonBlocks[tasks[i].index] = &blockObj ss.syncMux.Unlock() } return failedTasks } // downloadTaskQueue is wrapper around Queue with item to be SyncBlockTask type downloadTaskQueue struct { q *queue.Queue } func (queue downloadTaskQueue) poll(num int64, timeOut time.Duration) (syncBlockTasks, error) { items, err := queue.q.Poll(num, timeOut) if err != nil { return nil, err } tasks := make(syncBlockTasks, 0, len(items)) for _, item := range items { task := item.(SyncBlockTask) tasks = append(tasks, task) } return tasks, nil } func (queue downloadTaskQueue) put(tasks syncBlockTasks) error { for _, task := range tasks { if err := queue.q.Put(task); err != nil { return err } } return nil } func (queue downloadTaskQueue) empty() bool { return queue.q.Empty() } // CompareBlockByHash compares two block by hash, it will be used in sort the blocks func CompareBlockByHash(a *types.Block, b *types.Block) int { ha := a.Hash() hb := b.Hash() return bytes.Compare(ha[:], hb[:]) } // GetHowManyMaxConsensus will get the most common blocks and the first such blockID func GetHowManyMaxConsensus(blocks []*types.Block) (int, int) { // As all peers are sorted by their blockHashes, all equal blockHashes should come together and consecutively. curCount := 0 curFirstID := -1 maxCount := 0 maxFirstID := -1 for i := range blocks { if curFirstID == -1 || CompareBlockByHash(blocks[curFirstID], blocks[i]) != 0 { curCount = 1 curFirstID = i } else { curCount++ } if curCount > maxCount { maxCount = curCount maxFirstID = curFirstID } } return maxFirstID, maxCount } func (ss *StateSync) getMaxConsensusBlockFromParentHash(parentHash common.Hash) *types.Block { candidateBlocks := []*types.Block{} ss.syncMux.Lock() ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) { for _, block := range peerConfig.newBlocks { ph := block.ParentHash() if bytes.Equal(ph[:], parentHash[:]) { candidateBlocks = append(candidateBlocks, block) break } } return }) ss.syncMux.Unlock() if len(candidateBlocks) == 0 { return nil } // Sort by blockHashes. sort.Slice(candidateBlocks, func(i, j int) bool { return CompareBlockByHash(candidateBlocks[i], candidateBlocks[j]) == -1 }) maxFirstID, maxCount := GetHowManyMaxConsensus(candidateBlocks) hash := candidateBlocks[maxFirstID].Hash() utils.Logger().Debug(). Hex("parentHash", parentHash[:]). Hex("hash", hash[:]). Int("maxCount", maxCount). Msg("[SYNC] Find block with matching parenthash") return candidateBlocks[maxFirstID] } func (ss *StateSync) getBlockFromOldBlocksByParentHash(parentHash common.Hash) *types.Block { for _, block := range ss.commonBlocks { ph := block.ParentHash() if bytes.Equal(ph[:], parentHash[:]) { return block } } return nil } func (ss *StateSync) getBlockFromLastMileBlocksByParentHash(parentHash common.Hash) *types.Block { for _, block := range ss.lastMileBlocks { ph := block.ParentHash() if bytes.Equal(ph[:], parentHash[:]) { return block } } return nil } // UpdateBlockAndStatus ... func (ss *StateSync) UpdateBlockAndStatus(block *types.Block, bc *core.BlockChain, worker *worker.Worker, verifyAllSig bool) error { if block.NumberU64() != bc.CurrentBlock().NumberU64()+1 { utils.Logger().Info().Uint64("curBlockNum", bc.CurrentBlock().NumberU64()).Uint64("receivedBlockNum", block.NumberU64()).Msg("[SYNC] Inappropriate block number, ignore!") return nil } // Verify block signatures if block.NumberU64() > 1 { // Verify signature every 100 blocks verifySig := block.NumberU64()%verifyHeaderBatchSize == 0 if verifyAllSig { verifySig = true } err := bc.Engine().VerifyHeader(bc, block.Header(), verifySig) if err == engine.ErrUnknownAncestor { return err } else if err != nil { utils.Logger().Error().Err(err).Msgf("[SYNC] UpdateBlockAndStatus: failed verifying signatures for new block %d", block.NumberU64()) if !verifyAllSig { utils.Logger().Info().Interface("block", bc.CurrentBlock()).Msg("[SYNC] UpdateBlockAndStatus: Rolling back last 99 blocks!") for i := uint64(0); i < verifyHeaderBatchSize-1; i++ { bc.Rollback([]common.Hash{bc.CurrentBlock().Hash()}) } } return err } } _, err := bc.InsertChain([]*types.Block{block}, false /* verifyHeaders */) if err != nil { utils.Logger().Error(). Err(err). Msgf( "[SYNC] UpdateBlockAndStatus: Error adding new block to blockchain %d %d", block.NumberU64(), block.ShardID(), ) return err } utils.Logger().Info(). Uint64("blockHeight", block.NumberU64()). Uint64("blockEpoch", block.Epoch().Uint64()). Str("blockHex", block.Hash().Hex()). Uint32("ShardID", block.ShardID()). Msg("[SYNC] UpdateBlockAndStatus: New Block Added to Blockchain") for i, tx := range block.StakingTransactions() { utils.Logger().Info(). Msgf( "StakingTxn %d: %s, %v", i, tx.StakingType().String(), tx.StakingMessage(), ) } return nil } // generateNewState will construct most recent state from downloaded blocks func (ss *StateSync) generateNewState(bc *core.BlockChain, worker *worker.Worker) error { // update blocks created before node start sync parentHash := bc.CurrentBlock().Hash() var err error for { block := ss.getBlockFromOldBlocksByParentHash(parentHash) if block == nil { break } err = ss.UpdateBlockAndStatus(block, bc, worker, false) if err != nil { break } parentHash = block.Hash() } ss.syncMux.Lock() ss.commonBlocks = make(map[int]*types.Block) ss.syncMux.Unlock() // update blocks after node start sync parentHash = bc.CurrentBlock().Hash() for { block := ss.getMaxConsensusBlockFromParentHash(parentHash) if block == nil { break } err = ss.UpdateBlockAndStatus(block, bc, worker, false) if err != nil { break } parentHash = block.Hash() } // TODO ek – Do we need to hold syncMux now that syncConfig has its own mutex? ss.syncMux.Lock() ss.syncConfig.ForEachPeer(func(peer *SyncPeerConfig) (brk bool) { peer.newBlocks = []*types.Block{} return }) ss.syncMux.Unlock() // update last mile blocks if any parentHash = bc.CurrentBlock().Hash() for { block := ss.getBlockFromLastMileBlocksByParentHash(parentHash) if block == nil { break } err = ss.UpdateBlockAndStatus(block, bc, worker, false) if err != nil { break } parentHash = block.Hash() } return err } // ProcessStateSync processes state sync from the blocks received but not yet processed so far func (ss *StateSync) ProcessStateSync(startHash []byte, size uint32, bc *core.BlockChain, worker *worker.Worker) error { // Gets consensus hashes. ss.getConsensusHashes(startHash, size) ss.generateStateSyncTaskQueue(bc) // Download blocks. if ss.stateSyncTaskQueue.Len() > 0 { ss.downloadBlocks(bc) } return ss.generateNewState(bc, worker) } func (peerConfig *SyncPeerConfig) registerToBroadcast(peerHash []byte, ip, port string) error { response := peerConfig.client.Register(peerHash, ip, port) if response == nil || response.Type == pb.DownloaderResponse_FAIL { return ErrRegistrationFail } else if response.Type == pb.DownloaderResponse_SUCCESS { return nil } return ErrRegistrationFail } // RegisterNodeInfo will register node to peers to accept future new block broadcasting // return number of successful registration func (ss *StateSync) RegisterNodeInfo() int { registrationNumber := RegistrationNumber utils.Logger().Debug(). Int("registrationNumber", registrationNumber). Int("activePeerNumber", len(ss.syncConfig.peers)). Msg("[SYNC] node registration to peers") count := 0 ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) { logger := utils.Logger().With().Str("peerPort", peerConfig.port).Str("peerIP", peerConfig.ip).Logger() if count >= registrationNumber { brk = true return } if peerConfig.ip == ss.selfip && peerConfig.port == GetSyncingPort(ss.selfport) { logger.Debug(). Str("selfport", ss.selfport). Str("selfsyncport", GetSyncingPort(ss.selfport)). Msg("[SYNC] skip self") return } err := peerConfig.registerToBroadcast(ss.selfPeerHash[:], ss.selfip, ss.selfport) if err != nil { logger.Debug(). Hex("selfPeerHash", ss.selfPeerHash[:]). Msg("[SYNC] register failed to peer") return } logger.Debug().Msg("[SYNC] register success") count++ return }) return count } // getMaxPeerHeight gets the maximum blockchain heights from peers func (ss *StateSync) getMaxPeerHeight(isBeacon bool) uint64 { maxHeight := uint64(0) var wg sync.WaitGroup ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) { wg.Add(1) go func() { defer wg.Done() //debug // utils.Logger().Debug().Bool("isBeacon", isBeacon).Str("peerIP", peerConfig.ip).Str("peerPort", peerConfig.port).Msg("[Sync]getMaxPeerHeight") response, err := peerConfig.client.GetBlockChainHeight() if err != nil { utils.Logger().Warn().Err(err).Str("peerIP", peerConfig.ip).Str("peerPort", peerConfig.port).Msg("[Sync]GetBlockChainHeight failed") return } ss.syncMux.Lock() if response != nil && maxHeight < response.BlockHeight { maxHeight = response.BlockHeight } ss.syncMux.Unlock() }() return }) wg.Wait() return maxHeight } // IsSameBlockchainHeight checks whether the node is out of sync from other peers func (ss *StateSync) IsSameBlockchainHeight(bc *core.BlockChain) (uint64, bool) { otherHeight := ss.getMaxPeerHeight(false) currentHeight := bc.CurrentBlock().NumberU64() return otherHeight, currentHeight == otherHeight } // GetMaxPeerHeight .. func (ss *StateSync) GetMaxPeerHeight() uint64 { return ss.getMaxPeerHeight(false) } // IsOutOfSync checks whether the node is out of sync from other peers func (ss *StateSync) IsOutOfSync(bc *core.BlockChain) bool { if ss.syncConfig == nil { return true // If syncConfig is not instantiated, return not in sync } otherHeight := ss.getMaxPeerHeight(false) currentHeight := bc.CurrentBlock().NumberU64() utils.Logger().Debug(). Uint64("OtherHeight", otherHeight). Uint64("MyHeight", currentHeight). Bool("IsOutOfSync", currentHeight+inSyncThreshold < otherHeight). Msg("[SYNC] Checking sync status") return currentHeight+inSyncThreshold < otherHeight } // SyncLoop will keep syncing with peers until catches up func (ss *StateSync) SyncLoop(bc *core.BlockChain, worker *worker.Worker, isBeacon bool, consensus *consensus.Consensus) { if !isBeacon { ss.RegisterNodeInfo() } // remove SyncLoopFrequency ticker := time.NewTicker(SyncLoopFrequency * time.Second) defer ticker.Stop() for range ticker.C { otherHeight := ss.getMaxPeerHeight(isBeacon) currentHeight := bc.CurrentBlock().NumberU64() if currentHeight >= otherHeight { utils.Logger().Info(). Msgf("[SYNC] Node is now IN SYNC! (isBeacon: %t, ShardID: %d, otherHeight: %d, currentHeight: %d)", isBeacon, bc.ShardID(), otherHeight, currentHeight) return } utils.Logger().Info(). Msgf("[SYNC] Node is OUT OF SYNC (isBeacon: %t, ShardID: %d, otherHeight: %d, currentHeight: %d)", isBeacon, bc.ShardID(), otherHeight, currentHeight) startHash := bc.CurrentBlock().Hash() size := uint32(otherHeight - currentHeight) if size > SyncLoopBatchSize { size = SyncLoopBatchSize } err := ss.ProcessStateSync(startHash[:], size, bc, worker) if err != nil { utils.Logger().Error().Err(err). Msgf("[SYNC] ProcessStateSync failed (isBeacon: %t, ShardID: %d, otherHeight: %d, currentHeight: %d)", isBeacon, bc.ShardID(), otherHeight, currentHeight) } ss.purgeOldBlocksFromCache() if consensus != nil { consensus.SetMode(consensus.UpdateConsensusInformation()) } } ss.purgeAllBlocksFromCache() } // GetSyncingPort returns the syncing port. func GetSyncingPort(nodePort string) string { if port, err := strconv.Atoi(nodePort); err == nil { return fmt.Sprintf("%d", port-SyncingPortDifference) } return "" }