// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "encoding/binary" "fmt" "github.com/harmony-one/bls/ffi/go/bls" bls2 "github.com/harmony-one/harmony/crypto/bls" "github.com/harmony-one/harmony/internal/ctxerror" consensus_engine "github.com/harmony-one/harmony/consensus/engine" "github.com/harmony-one/harmony/core/state" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/internal/params" ) // BlockValidator is responsible for validating block headers, uncles and // processed state. // // BlockValidator implements Validator. type BlockValidator struct { config *params.ChainConfig // Chain configuration options bc *BlockChain // Canonical block chain engine consensus_engine.Engine // Consensus engine used for validating } // NewBlockValidator returns a new block validator which is safe for re-use func NewBlockValidator(config *params.ChainConfig, blockchain *BlockChain, engine consensus_engine.Engine) *BlockValidator { validator := &BlockValidator{ config: config, engine: engine, bc: blockchain, } return validator } // ValidateBody validates the given block's uncles and verifies the block // header's transaction and uncle roots. The headers are assumed to be already // validated at this point. func (v *BlockValidator) ValidateBody(block *types.Block) error { // Check whether the block's known, and if not, that it's linkable if v.bc.HasBlockAndState(block.Hash(), block.NumberU64()) { return ErrKnownBlock } if !v.bc.HasBlockAndState(block.ParentHash(), block.NumberU64()-1) { if !v.bc.HasBlock(block.ParentHash(), block.NumberU64()-1) { return consensus_engine.ErrUnknownAncestor } return consensus_engine.ErrPrunedAncestor } // Header validity is known at this point, check the uncles and transactions header := block.Header() //if err := v.engine.VerifyUncles(v.bc, block); err != nil { // return err //} if hash := types.DeriveSha(block.Transactions()); hash != header.TxHash() { return fmt.Errorf("transaction root hash mismatch: have %x, want %x", hash, header.TxHash()) } return nil } // ValidateState validates the various changes that happen after a state // transition, such as amount of used gas, the receipt roots and the state root // itself. ValidateState returns a database batch if the validation was a success // otherwise nil and an error is returned. func (v *BlockValidator) ValidateState(block, parent *types.Block, statedb *state.DB, receipts types.Receipts, cxReceipts types.CXReceipts, usedGas uint64) error { header := block.Header() if block.GasUsed() != usedGas { return fmt.Errorf("invalid gas used (remote: %d local: %d)", block.GasUsed(), usedGas) } // Validate the received block's bloom with the one derived from the generated receipts. // For valid blocks this should always validate to true. rbloom := types.CreateBloom(receipts) if rbloom != header.Bloom() { return fmt.Errorf("invalid bloom (remote: %x local: %x)", header.Bloom(), rbloom) } // Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, R1]])) receiptSha := types.DeriveSha(receipts) if receiptSha != header.ReceiptHash() { return fmt.Errorf("invalid receipt root hash (remote: %x local: %x)", header.ReceiptHash(), receiptSha) } cxsSha := types.DeriveMultipleShardsSha(cxReceipts) if cxsSha != header.OutgoingReceiptHash() { return fmt.Errorf("invalid cross shard receipt root hash (remote: %x local: %x)", header.OutgoingReceiptHash(), cxsSha) } // Validate the state root against the received state root and throw // an error if they don't match. if root := statedb.IntermediateRoot(v.config.IsEIP158(header.Number())); header.Root() != root { return fmt.Errorf("invalid merkle root (remote: %x local: %x)", header.Root(), root) } return nil } // VerifyBlockLastCommitSigs verifies the last commit sigs of the block func VerifyBlockLastCommitSigs(bc *BlockChain, block *types.Block) error { header := block.Header() parentBlock := bc.GetBlockByNumber(block.NumberU64() - 1) if parentBlock == nil { return ctxerror.New("[VerifyNewBlock] Failed to get parent block", "shardID", header.ShardID(), "blockNum", header.Number()) } parentHeader := parentBlock.Header() shardState, err := bc.ReadShardState(parentHeader.Epoch()) committee := shardState.FindCommitteeByID(parentHeader.ShardID()) if err != nil || committee == nil { return ctxerror.New("[VerifyNewBlock] Failed to read shard state for cross link header", "shardID", header.ShardID(), "blockNum", header.Number()).WithCause(err) } var committerKeys []*bls.PublicKey parseKeysSuccess := true for _, member := range committee.NodeList { committerKey := new(bls.PublicKey) err = member.BlsPublicKey.ToLibBLSPublicKey(committerKey) if err != nil { parseKeysSuccess = false break } committerKeys = append(committerKeys, committerKey) } if !parseKeysSuccess { return ctxerror.New("[VerifyNewBlock] cannot convert BLS public key", "shardID", header.ShardID(), "blockNum", header.Number()).WithCause(err) } mask, err := bls2.NewMask(committerKeys, nil) if err != nil { return ctxerror.New("[VerifyNewBlock] cannot create group sig mask", "shardID", header.ShardID(), "blockNum", header.Number()).WithCause(err) } if err := mask.SetMask(header.LastCommitBitmap()); err != nil { return ctxerror.New("[VerifyNewBlock] cannot set group sig mask bits", "shardID", header.ShardID(), "blockNum", header.Number()).WithCause(err) } aggSig := bls.Sign{} lastCommitSig := header.LastCommitSignature() err = aggSig.Deserialize(lastCommitSig[:]) if err != nil { return ctxerror.New("[VerifyNewBlock] unable to deserialize multi-signature from payload").WithCause(err) } blockNumBytes := make([]byte, 8) binary.LittleEndian.PutUint64(blockNumBytes, header.Number().Uint64()-1) parentHash := header.ParentHash() commitPayload := append(blockNumBytes, parentHash[:]...) if !aggSig.VerifyHash(mask.AggregatePublic, commitPayload) { return ctxerror.New("[VerifyNewBlock] Failed to verify the signature for last commit sig", "shardID", header.ShardID(), "blockNum", header.Number()) } return nil } // CalcGasLimit computes the gas limit of the next block after parent. It aims // to keep the baseline gas above the provided floor, and increase it towards the // ceil if the blocks are full. If the ceil is exceeded, it will always decrease // the gas allowance. func CalcGasLimit(parent *types.Block, gasFloor, gasCeil uint64) uint64 { // contrib = (parentGasUsed * 3 / 2) / 1024 contrib := (parent.GasUsed() + parent.GasUsed()/2) / params.GasLimitBoundDivisor // decay = parentGasLimit / 1024 -1 decay := parent.GasLimit()/params.GasLimitBoundDivisor - 1 /* strategy: gasLimit of block-to-mine is set based on parent's gasUsed value. if parentGasUsed > parentGasLimit * (2/3) then we increase it, otherwise lower it (or leave it unchanged if it's right at that usage) the amount increased/decreased depends on how far away from parentGasLimit * (2/3) parentGasUsed is. */ limit := parent.GasLimit() - decay + contrib if limit < params.MinGasLimit { limit = params.MinGasLimit } // If we're outside our allowed gas range, we try to hone towards them if limit < gasFloor { limit = parent.GasLimit() + decay if limit > gasFloor { limit = gasFloor } } else if limit > gasCeil { limit = parent.GasLimit() - decay if limit < gasCeil { limit = gasCeil } } return limit }