package consensus import ( "encoding/binary" "encoding/hex" "errors" "fmt" "math/big" "time" "github.com/harmony-one/harmony/crypto/hash" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/rlp" protobuf "github.com/golang/protobuf/proto" "github.com/harmony-one/bls/ffi/go/bls" libp2p_peer "github.com/libp2p/go-libp2p-peer" "github.com/rs/zerolog" "golang.org/x/crypto/sha3" msg_pb "github.com/harmony-one/harmony/api/proto/message" consensus_engine "github.com/harmony-one/harmony/consensus/engine" "github.com/harmony-one/harmony/core" "github.com/harmony-one/harmony/core/state" "github.com/harmony-one/harmony/core/types" bls_cosi "github.com/harmony-one/harmony/crypto/bls" "github.com/harmony-one/harmony/internal/ctxerror" "github.com/harmony-one/harmony/internal/profiler" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/p2p" ) // WaitForNewRandomness listens to the RndChannel to receive new VDF randomness. func (consensus *Consensus) WaitForNewRandomness() { go func() { for { vdfOutput := <-consensus.RndChannel consensus.pendingRnds = append(consensus.pendingRnds, vdfOutput) } }() } // GetNextRnd returns the oldest available randomness along with the hash of the block there randomness preimage is committed. func (consensus *Consensus) GetNextRnd() ([32]byte, [32]byte, error) { if len(consensus.pendingRnds) == 0 { return [32]byte{}, [32]byte{}, errors.New("No available randomness") } vdfOutput := consensus.pendingRnds[0] //pop the first vdfOutput from the list consensus.pendingRnds = consensus.pendingRnds[1:] rnd := [32]byte{} blockHash := [32]byte{} copy(rnd[:], vdfOutput[:32]) copy(blockHash[:], vdfOutput[32:]) return rnd, blockHash, nil } // SealHash returns the hash of a block prior to it being sealed. func (consensus *Consensus) SealHash(header *types.Header) (hash common.Hash) { hasher := sha3.NewLegacyKeccak256() // TODO: update with new fields if err := rlp.Encode(hasher, []interface{}{ header.ParentHash, header.Coinbase, header.Root, header.TxHash, header.ReceiptHash, header.Bloom, header.Number, header.GasLimit, header.GasUsed, header.Time, header.Extra, }); err != nil { utils.Logger().Warn().Err(err).Msg("rlp.Encode failed") } hasher.Sum(hash[:0]) return hash } // Seal is to seal final block. func (consensus *Consensus) Seal(chain consensus_engine.ChainReader, block *types.Block, results chan<- *types.Block, stop <-chan struct{}) error { // TODO: implement final block sealing return nil } // Author returns the author of the block header. func (consensus *Consensus) Author(header *types.Header) (common.Address, error) { // TODO: implement this return common.Address{}, nil } // Prepare is to prepare ... // TODO(RJ): fix it. func (consensus *Consensus) Prepare(chain consensus_engine.ChainReader, header *types.Header) error { // TODO: implement prepare method return nil } // Populates the common basic fields for all consensus message. func (consensus *Consensus) populateMessageFields(request *msg_pb.ConsensusRequest) { request.ViewId = consensus.viewID request.BlockNum = consensus.blockNum request.ShardId = consensus.ShardID // 32 byte block hash request.BlockHash = consensus.blockHash[:] // sender address request.SenderPubkey = consensus.PubKey.Serialize() consensus.getLogger().Debug(). Str("senderKey", consensus.PubKey.SerializeToHexStr()). Msg("[populateMessageFields]") } // Signs the consensus message and returns the marshaled message. func (consensus *Consensus) signAndMarshalConsensusMessage(message *msg_pb.Message) ([]byte, error) { err := consensus.signConsensusMessage(message) if err != nil { return []byte{}, err } marshaledMessage, err := protobuf.Marshal(message) if err != nil { return []byte{}, err } return marshaledMessage, nil } // SetLeaderPubKey deserialize the public key of consensus leader func (consensus *Consensus) SetLeaderPubKey(k []byte) error { consensus.leader.ConsensusPubKey = &bls.PublicKey{} return consensus.leader.ConsensusPubKey.Deserialize(k) } // GetLeaderPubKey returns the public key of consensus leader func (consensus *Consensus) GetLeaderPubKey() *bls.PublicKey { return consensus.leader.ConsensusPubKey } // GetNodeIDs returns Node IDs of all nodes in the same shard func (consensus *Consensus) GetNodeIDs() []libp2p_peer.ID { nodes := make([]libp2p_peer.ID, 0) nodes = append(nodes, consensus.host.GetID()) consensus.validators.Range(func(k, v interface{}) bool { if peer, ok := v.(p2p.Peer); ok { nodes = append(nodes, peer.PeerID) return true } return false }) return nodes } // GetViewID returns the consensus ID func (consensus *Consensus) GetViewID() uint64 { return consensus.viewID } // DebugPrintPublicKeys print all the PublicKeys in string format in Consensus func (consensus *Consensus) DebugPrintPublicKeys() { var keys []string for _, k := range consensus.PublicKeys { keys = append(keys, hex.EncodeToString(k.Serialize())) } utils.Logger().Debug().Strs("PublicKeys", keys).Int("count", len(keys)).Msgf("Debug Public Keys") } // UpdatePublicKeys updates the PublicKeys variable, protected by a mutex func (consensus *Consensus) UpdatePublicKeys(pubKeys []*bls.PublicKey) int { consensus.pubKeyLock.Lock() consensus.PublicKeys = append(pubKeys[:0:0], pubKeys...) consensus.CommitteePublicKeys = map[string]bool{} utils.Logger().Info().Msg("My Committee updated") for i, pubKey := range consensus.PublicKeys { utils.Logger().Info().Int("index", i).Str("BlsPubKey", pubKey.SerializeToHexStr()).Msg("Member") consensus.CommitteePublicKeys[pubKey.SerializeToHexStr()] = true } // TODO: use pubkey to identify leader rather than p2p.Peer. consensus.leader = p2p.Peer{ConsensusPubKey: pubKeys[0]} consensus.LeaderPubKey = pubKeys[0] utils.Logger().Info().Str("info", consensus.LeaderPubKey.SerializeToHexStr()).Msg("My Leader") consensus.pubKeyLock.Unlock() // reset states after update public keys consensus.ResetState() consensus.ResetViewChangeState() return len(consensus.PublicKeys) } // NewFaker returns a faker consensus. func NewFaker() *Consensus { return &Consensus{} } // VerifyHeader checks whether a header conforms to the consensus rules of the bft engine. func (consensus *Consensus) VerifyHeader(chain consensus_engine.ChainReader, header *types.Header, seal bool) error { parentHeader := chain.GetHeader(header.ParentHash, header.Number.Uint64()-1) if parentHeader == nil { return consensus_engine.ErrUnknownAncestor } if seal { if err := consensus.VerifySeal(chain, header); err != nil { return err } } return nil } // VerifyHeaders is similar to VerifyHeader, but verifies a batch of headers // concurrently. The method returns a quit channel to abort the operations and // a results channel to retrieve the async verifications. func (consensus *Consensus) VerifyHeaders(chain consensus_engine.ChainReader, headers []*types.Header, seals []bool) (chan<- struct{}, <-chan error) { abort, results := make(chan struct{}), make(chan error, len(headers)) for i := 0; i < len(headers); i++ { results <- nil } return abort, results } // retrievePublicKeysFromLastBlock finds the public keys of last block's committee func retrievePublicKeysFromLastBlock(bc consensus_engine.ChainReader, header *types.Header) ([]*bls.PublicKey, error) { parentHeader := bc.GetHeaderByHash(header.ParentHash) if parentHeader == nil { return nil, ctxerror.New("cannot find parent block header in DB", "parentHash", header.ParentHash) } parentShardState, err := bc.ReadShardState(parentHeader.Epoch) if err != nil { return nil, ctxerror.New("cannot read shard state", "epoch", parentHeader.Epoch, ).WithCause(err) } parentCommittee := parentShardState.FindCommitteeByID(parentHeader.ShardID) if parentCommittee == nil { return nil, ctxerror.New("cannot find shard in the shard state", "parentBlockNumber", parentHeader.Number, "shardID", parentHeader.ShardID, ) } var committerKeys []*bls.PublicKey for _, member := range parentCommittee.NodeList { committerKey := new(bls.PublicKey) err := member.BlsPublicKey.ToLibBLSPublicKey(committerKey) if err != nil { return nil, ctxerror.New("cannot convert BLS public key", "blsPublicKey", member.BlsPublicKey).WithCause(err) } committerKeys = append(committerKeys, committerKey) } return committerKeys, nil } // VerifySeal implements consensus.Engine, checking whether the given block satisfies // the PoS difficulty requirements, i.e. >= 2f+1 valid signatures from the committee func (consensus *Consensus) VerifySeal(chain consensus_engine.ChainReader, header *types.Header) error { if chain.CurrentHeader().Number.Uint64() <= uint64(1) { return nil } publicKeys, err := retrievePublicKeysFromLastBlock(chain, header) if err != nil { return ctxerror.New("[VerifySeal] Cannot retrieve publickeys from last block").WithCause(err) } payload := append(header.LastCommitSignature[:], header.LastCommitBitmap...) aggSig, mask, err := readSignatureBitmapByPublicKeys(payload, publicKeys) if err != nil { return ctxerror.New("[VerifySeal] Unable to deserialize the LastCommitSignature and LastCommitBitmap in Block Header").WithCause(err) } if count := utils.CountOneBits(mask.Bitmap); count < consensus.PreviousQuorum() { return ctxerror.New("[VerifySeal] Not enough signature in LastCommitSignature from Block Header", "need", consensus.Quorum(), "got", count) } blockNumHash := make([]byte, 8) binary.LittleEndian.PutUint64(blockNumHash, header.Number.Uint64()-1) lastCommitPayload := append(blockNumHash, header.ParentHash[:]...) if !aggSig.VerifyHash(mask.AggregatePublic, lastCommitPayload) { return ctxerror.New("[VerifySeal] Unable to verify aggregated signature from last block", "lastBlockNum", header.Number.Uint64()-1, "lastBlockHash", header.ParentHash) } return nil } // Finalize implements consensus.Engine, accumulating the block and uncle rewards, // setting the final state and assembling the block. func (consensus *Consensus) Finalize(chain consensus_engine.ChainReader, header *types.Header, state *state.DB, txs []*types.Transaction, receipts []*types.Receipt) (*types.Block, error) { // Accumulate any block and uncle rewards and commit the final state root // Header seems complete, assemble into a block and return if err := accumulateRewards(chain, state, header); err != nil { return nil, ctxerror.New("cannot pay block reward").WithCause(err) } header.Root = state.IntermediateRoot(false) return types.NewBlock(header, txs, receipts), nil } // Sign on the hash of the message func (consensus *Consensus) signMessage(message []byte) []byte { hash := hash.Keccak256(message) signature := consensus.priKey.SignHash(hash[:]) return signature.Serialize() } // Sign on the consensus message signature field. func (consensus *Consensus) signConsensusMessage(message *msg_pb.Message) error { message.Signature = nil // TODO: use custom serialization method rather than protobuf marshaledMessage, err := protobuf.Marshal(message) if err != nil { return err } // 64 byte of signature on previous data signature := consensus.signMessage(marshaledMessage) message.Signature = signature return nil } // GetValidatorPeers returns list of validator peers. func (consensus *Consensus) GetValidatorPeers() []p2p.Peer { validatorPeers := make([]p2p.Peer, 0) consensus.validators.Range(func(k, v interface{}) bool { if peer, ok := v.(p2p.Peer); ok { validatorPeers = append(validatorPeers, peer) return true } return false }) return validatorPeers } // GetPrepareSigsArray returns the signatures for prepare as a array func (consensus *Consensus) GetPrepareSigsArray() []*bls.Sign { sigs := []*bls.Sign{} for _, sig := range consensus.prepareSigs { sigs = append(sigs, sig) } return sigs } // GetCommitSigsArray returns the signatures for commit as a array func (consensus *Consensus) GetCommitSigsArray() []*bls.Sign { sigs := []*bls.Sign{} for _, sig := range consensus.commitSigs { sigs = append(sigs, sig) } return sigs } // GetBhpSigsArray returns the signatures for prepared message in viewchange func (consensus *Consensus) GetBhpSigsArray() []*bls.Sign { sigs := []*bls.Sign{} for _, sig := range consensus.bhpSigs { sigs = append(sigs, sig) } return sigs } // GetNilSigsArray returns the signatures for nil prepared message in viewchange func (consensus *Consensus) GetNilSigsArray() []*bls.Sign { sigs := []*bls.Sign{} for _, sig := range consensus.nilSigs { sigs = append(sigs, sig) } return sigs } // GetViewIDSigsArray returns the signatures for viewID in viewchange func (consensus *Consensus) GetViewIDSigsArray() []*bls.Sign { sigs := []*bls.Sign{} for _, sig := range consensus.viewIDSigs { sigs = append(sigs, sig) } return sigs } // ResetState resets the state of the consensus func (consensus *Consensus) ResetState() { consensus.getLogger().Debug(). Str("Phase", consensus.phase.String()). Msg("[ResetState] Resetting consensus state") consensus.switchPhase(Announce, true) consensus.blockHash = [32]byte{} consensus.blockHeader = []byte{} consensus.block = []byte{} consensus.prepareSigs = map[string]*bls.Sign{} consensus.commitSigs = map[string]*bls.Sign{} prepareBitmap, _ := bls_cosi.NewMask(consensus.PublicKeys, nil) commitBitmap, _ := bls_cosi.NewMask(consensus.PublicKeys, nil) consensus.prepareBitmap = prepareBitmap consensus.commitBitmap = commitBitmap consensus.aggregatedPrepareSig = nil consensus.aggregatedCommitSig = nil } // Returns a string representation of this consensus func (consensus *Consensus) String() string { var duty string if consensus.IsLeader() { duty = "LDR" // leader } else { duty = "VLD" // validator } return fmt.Sprintf("[duty:%s, PubKey:%s, ShardID:%v]", duty, consensus.PubKey.SerializeToHexStr(), consensus.ShardID) } // ToggleConsensusCheck flip the flag of whether ignore viewID check during consensus process func (consensus *Consensus) ToggleConsensusCheck() { consensus.infoMutex.Lock() defer consensus.infoMutex.Unlock() consensus.ignoreViewIDCheck = !consensus.ignoreViewIDCheck } // IsValidatorInCommittee returns whether the given validator BLS address is part of my committee func (consensus *Consensus) IsValidatorInCommittee(pubKey *bls.PublicKey) bool { _, ok := consensus.CommitteePublicKeys[pubKey.SerializeToHexStr()] return ok } // Verify the signature of the message are valid from the signer's public key. func verifyMessageSig(signerPubKey *bls.PublicKey, message *msg_pb.Message) error { signature := message.Signature message.Signature = nil messageBytes, err := protobuf.Marshal(message) if err != nil { return err } msgSig := bls.Sign{} err = msgSig.Deserialize(signature) if err != nil { return err } msgHash := hash.Keccak256(messageBytes) if !msgSig.VerifyHash(signerPubKey, msgHash[:]) { return errors.New("failed to verify the signature") } message.Signature = signature return nil } // verifySenderKey verifys the message senderKey is properly signed and senderAddr is valid func (consensus *Consensus) verifySenderKey(msg *msg_pb.Message) (*bls.PublicKey, error) { consensusMsg := msg.GetConsensus() senderKey, err := bls_cosi.BytesToBlsPublicKey(consensusMsg.SenderPubkey) if err != nil { return nil, err } if !consensus.IsValidatorInCommittee(senderKey) { return nil, fmt.Errorf("Validator %s is not in committee", senderKey.SerializeToHexStr()) } return senderKey, nil } func (consensus *Consensus) verifyViewChangeSenderKey(msg *msg_pb.Message) (*bls.PublicKey, error) { vcMsg := msg.GetViewchange() senderKey, err := bls_cosi.BytesToBlsPublicKey(vcMsg.SenderPubkey) if err != nil { return nil, err } if !consensus.IsValidatorInCommittee(senderKey) { return nil, fmt.Errorf("Validator %s is not in committee", senderKey.SerializeToHexStr()) } return senderKey, nil } // SetViewID set the viewID to the height of the blockchain func (consensus *Consensus) SetViewID(height uint64) { consensus.viewID = height } // SetMode sets the mode of consensus func (consensus *Consensus) SetMode(mode Mode) { consensus.mode.SetMode(mode) } // Mode returns the mode of consensus func (consensus *Consensus) Mode() Mode { return consensus.mode.Mode() } // RegisterPRndChannel registers the channel for receiving randomness preimage from DRG protocol func (consensus *Consensus) RegisterPRndChannel(pRndChannel chan []byte) { consensus.PRndChannel = pRndChannel } // RegisterRndChannel registers the channel for receiving final randomness from DRG protocol func (consensus *Consensus) RegisterRndChannel(rndChannel chan [64]byte) { consensus.RndChannel = rndChannel } // Check viewID, caller's responsibility to hold lock when change ignoreViewIDCheck func (consensus *Consensus) checkViewID(msg *PbftMessage) error { // just ignore consensus check for the first time when node join if consensus.ignoreViewIDCheck { //in syncing mode, node accepts incoming messages without viewID/leaderKey checking //so only set mode to normal when new node enters consensus and need checking viewID consensus.mode.SetMode(Normal) consensus.viewID = msg.ViewID consensus.mode.SetViewID(msg.ViewID) consensus.LeaderPubKey = msg.SenderPubkey consensus.ignoreViewIDCheck = false consensus.consensusTimeout[timeoutConsensus].Start() utils.Logger().Debug(). Uint64("viewID", consensus.viewID). Str("leaderKey", consensus.LeaderPubKey.SerializeToHexStr()[:20]). Msg("viewID and leaderKey override") utils.Logger().Debug(). Uint64("viewID", consensus.viewID). Uint64("block", consensus.blockNum). Msg("Start consensus timer") return nil } else if msg.ViewID > consensus.viewID { return consensus_engine.ErrViewIDNotMatch } else if msg.ViewID < consensus.viewID { return errors.New("view ID belongs to the past") } return nil } // SetBlockNum sets the blockNum in consensus object, called at node bootstrap func (consensus *Consensus) SetBlockNum(blockNum uint64) { consensus.infoMutex.Lock() defer consensus.infoMutex.Unlock() consensus.blockNum = blockNum } // SetEpochNum sets the epoch in consensus object func (consensus *Consensus) SetEpochNum(epoch uint64) { consensus.infoMutex.Lock() defer consensus.infoMutex.Unlock() consensus.epoch = epoch } // ReadSignatureBitmapPayload read the payload for signature and bitmap; offset is the beginning position of reading func (consensus *Consensus) ReadSignatureBitmapPayload(recvPayload []byte, offset int) (*bls.Sign, *bls_cosi.Mask, error) { if offset+96 > len(recvPayload) { return nil, nil, errors.New("payload not have enough length") } sigAndBitmapPayload := recvPayload[offset:] return readSignatureBitmapByPublicKeys(sigAndBitmapPayload, consensus.PublicKeys) } // readSignatureBitmapByPublicKeys read the payload of signature and bitmap based on public keys func readSignatureBitmapByPublicKeys(recvPayload []byte, publicKeys []*bls.PublicKey) (*bls.Sign, *bls_cosi.Mask, error) { if len(recvPayload) < 96 { return nil, nil, errors.New("payload not have enough length") } payload := append(recvPayload[:0:0], recvPayload...) //#### Read payload data // 96 byte of multi-sig offset := 0 multiSig := payload[offset : offset+96] offset += 96 // bitmap bitmap := payload[offset:] //#### END Read payload data aggSig := bls.Sign{} err := aggSig.Deserialize(multiSig) if err != nil { return nil, nil, errors.New("unable to deserialize multi-signature from payload") } mask, err := bls_cosi.NewMask(publicKeys, nil) if err != nil { utils.Logger().Warn().Err(err).Msg("onNewView unable to setup mask for prepared message") return nil, nil, errors.New("unable to setup mask from payload") } if err := mask.SetMask(bitmap); err != nil { utils.Logger().Warn().Err(err).Msg("mask.SetMask failed") } return &aggSig, mask, nil } func (consensus *Consensus) reportMetrics(block types.Block) { endTime := time.Now() timeElapsed := endTime.Sub(startTime) numOfTxs := len(block.Transactions()) tps := float64(numOfTxs) / timeElapsed.Seconds() utils.Logger().Info(). Int("numOfTXs", numOfTxs). Time("startTime", startTime). Time("endTime", endTime). Dur("timeElapsed", endTime.Sub(startTime)). Float64("TPS", tps). Interface("consensus", consensus). Msg("TPS Report") // Post metrics profiler := profiler.GetProfiler() if profiler.MetricsReportURL == "" { return } txHashes := []string{} for i, end := 0, len(block.Transactions()); i < 3 && i < end; i++ { txHash := block.Transactions()[end-1-i].Hash() txHashes = append(txHashes, hex.EncodeToString(txHash[:])) } metrics := map[string]interface{}{ "key": hex.EncodeToString(consensus.PubKey.Serialize()), "tps": tps, "txCount": numOfTxs, "nodeCount": len(consensus.PublicKeys) + 1, "latestBlockHash": hex.EncodeToString(consensus.blockHash[:]), "latestTxHashes": txHashes, "blockLatency": int(timeElapsed / time.Millisecond), } profiler.LogMetrics(metrics) } // getLogger returns logger for consensus contexts added func (consensus *Consensus) getLogger() *zerolog.Logger { logger := utils.Logger().With(). Uint64("myEpoch", consensus.epoch). Uint64("myBlock", consensus.blockNum). Uint64("myViewID", consensus.viewID). Interface("phase", consensus.phase). Str("mode", consensus.mode.Mode().String()). Logger() return &logger } // retrieve corresponding blsPublicKey from Coinbase Address func (consensus *Consensus) getLeaderPubKeyFromCoinbase(header *types.Header) (*bls.PublicKey, error) { shardState, err := consensus.ChainReader.ReadShardState(header.Epoch) if err != nil { return nil, ctxerror.New("cannot read shard state", "epoch", header.Epoch, "coinbaseAddr", header.Coinbase, ).WithCause(err) } committee := shardState.FindCommitteeByID(header.ShardID) if committee == nil { return nil, ctxerror.New("cannot find shard in the shard state", "blockNum", header.Number, "shardID", header.ShardID, "coinbaseAddr", header.Coinbase, ) } committerKey := new(bls.PublicKey) for _, member := range committee.NodeList { if member.EcdsaAddress == header.Coinbase { err := member.BlsPublicKey.ToLibBLSPublicKey(committerKey) if err != nil { return nil, ctxerror.New("cannot convert BLS public key", "blsPublicKey", member.BlsPublicKey, "coinbaseAddr", header.Coinbase).WithCause(err) } return committerKey, nil } } return nil, ctxerror.New("cannot find corresponding BLS Public Key", "coinbaseAddr", header.Coinbase) } // UpdateConsensusInformation will update shard information (epoch, publicKeys, blockNum, viewID) // based on the local blockchain. It is called in two cases for now: // 1. consensus object initialization. because of current dependency where chainreader is only available // after node is initialized; node is only available after consensus is initialized // we need call this function separately after create consensus object // 2. after state syncing is finished // It will return the mode: // (a) node not in committed: Listening mode // (b) node in committed but has any err during processing: Syncing mode // (c) node in committed and everything looks good: Normal mode func (consensus *Consensus) UpdateConsensusInformation() Mode { var pubKeys []*bls.PublicKey var hasError bool header := consensus.ChainReader.CurrentHeader() epoch := header.Epoch curPubKeys := core.GetPublicKeys(epoch, header.ShardID) consensus.numPrevPubKeys = len(curPubKeys) consensus.getLogger().Info().Msg("[UpdateConsensusInformation] Updating.....") if core.IsEpochLastBlockByHeader(header) { // increase epoch by one if it's the last block consensus.SetEpochNum(epoch.Uint64() + 1) consensus.getLogger().Info().Uint64("headerNum", header.Number.Uint64()).Msg("[UpdateConsensusInformation] Epoch updated for next epoch") nextEpoch := new(big.Int).Add(epoch, common.Big1) pubKeys = core.GetPublicKeys(nextEpoch, header.ShardID) } else { consensus.SetEpochNum(epoch.Uint64()) pubKeys = curPubKeys } if len(pubKeys) == 0 { consensus.getLogger().Warn().Msg("[UpdateConsensusInformation] PublicKeys is Nil") hasError = true } // update public keys committee consensus.getLogger().Info(). Int("numPubKeys", len(pubKeys)). Msg("[UpdateConsensusInformation] Successfully updated public keys") consensus.UpdatePublicKeys(pubKeys) // take care of possible leader change during the epoch if !core.IsEpochLastBlockByHeader(header) && header.Number.Uint64() != 0 { leaderPubKey, err := consensus.getLeaderPubKeyFromCoinbase(header) if err != nil || leaderPubKey == nil { consensus.getLogger().Debug().Err(err).Msg("[SYNC] Unable to get leaderPubKey from coinbase") consensus.ignoreViewIDCheck = true hasError = true } else { consensus.getLogger().Debug(). Str("leaderPubKey", leaderPubKey.SerializeToHexStr()). Msg("[SYNC] Most Recent LeaderPubKey Updated Based on BlockChain") consensus.LeaderPubKey = leaderPubKey } } for _, key := range pubKeys { // in committee if key.IsEqual(consensus.PubKey) { if hasError { return Syncing } return Normal } } // not in committee return Listening } // IsLeader check if the node is a leader or not by comparing the public key of // the node with the leader public key func (consensus *Consensus) IsLeader() bool { if consensus.PubKey != nil && consensus.LeaderPubKey != nil { return consensus.PubKey.IsEqual(consensus.LeaderPubKey) } return false }