package consensus import ( "encoding/hex" "errors" "fmt" "math/big" "time" "github.com/ethereum/go-ethereum/common" protobuf "github.com/golang/protobuf/proto" "github.com/harmony-one/bls/ffi/go/bls" msg_pb "github.com/harmony-one/harmony/api/proto/message" "github.com/harmony-one/harmony/block" consensus_engine "github.com/harmony-one/harmony/consensus/engine" "github.com/harmony-one/harmony/consensus/quorum" "github.com/harmony-one/harmony/core/types" bls_cosi "github.com/harmony-one/harmony/crypto/bls" "github.com/harmony-one/harmony/crypto/hash" "github.com/harmony-one/harmony/internal/chain" "github.com/harmony-one/harmony/internal/ctxerror" "github.com/harmony-one/harmony/internal/profiler" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/p2p" "github.com/harmony-one/harmony/shard" "github.com/harmony-one/harmony/shard/committee" libp2p_peer "github.com/libp2p/go-libp2p-peer" "github.com/rs/zerolog" ) // WaitForNewRandomness listens to the RndChannel to receive new VDF randomness. func (consensus *Consensus) WaitForNewRandomness() { go func() { for { vdfOutput := <-consensus.RndChannel consensus.pendingRnds = append(consensus.pendingRnds, vdfOutput) } }() } // GetNextRnd returns the oldest available randomness along with the hash of the block there randomness preimage is committed. func (consensus *Consensus) GetNextRnd() ([vdFAndProofSize]byte, [32]byte, error) { if len(consensus.pendingRnds) == 0 { return [vdFAndProofSize]byte{}, [32]byte{}, errors.New("No available randomness") } vdfOutput := consensus.pendingRnds[0] vdfBytes := [vdFAndProofSize]byte{} seed := [32]byte{} copy(vdfBytes[:], vdfOutput[:vdFAndProofSize]) copy(seed[:], vdfOutput[vdFAndProofSize:]) //pop the first vdfOutput from the list consensus.pendingRnds = consensus.pendingRnds[1:] return vdfBytes, seed, nil } // Populates the common basic fields for all consensus message. func (consensus *Consensus) populateMessageFields(request *msg_pb.ConsensusRequest) { request.ViewId = consensus.viewID request.BlockNum = consensus.blockNum request.ShardId = consensus.ShardID // 32 byte block hash request.BlockHash = consensus.blockHash[:] // sender address request.SenderPubkey = consensus.PubKey.Serialize() consensus.getLogger().Debug(). Str("senderKey", consensus.PubKey.SerializeToHexStr()). Msg("[populateMessageFields]") } // Signs the consensus message and returns the marshaled message. func (consensus *Consensus) signAndMarshalConsensusMessage(message *msg_pb.Message) ([]byte, error) { err := consensus.signConsensusMessage(message) if err != nil { return []byte{}, err } marshaledMessage, err := protobuf.Marshal(message) if err != nil { return []byte{}, err } return marshaledMessage, nil } // GetNodeIDs returns Node IDs of all nodes in the same shard func (consensus *Consensus) GetNodeIDs() []libp2p_peer.ID { nodes := make([]libp2p_peer.ID, 0) nodes = append(nodes, consensus.host.GetID()) consensus.validators.Range(func(k, v interface{}) bool { if peer, ok := v.(p2p.Peer); ok { nodes = append(nodes, peer.PeerID) return true } return false }) return nodes } // GetViewID returns the consensus ID func (consensus *Consensus) GetViewID() uint64 { return consensus.viewID } // DebugPrintPublicKeys print all the PublicKeys in string format in Consensus func (consensus *Consensus) DebugPrintPublicKeys() { keys := consensus.Decider.DumpParticipants() utils.Logger().Debug().Strs("PublicKeys", keys).Int("count", len(keys)).Msgf("Debug Public Keys") } // UpdatePublicKeys updates the PublicKeys for quorum on current subcommittee, protected by a mutex func (consensus *Consensus) UpdatePublicKeys(pubKeys []*bls.PublicKey) int64 { consensus.pubKeyLock.Lock() consensus.Decider.UpdateParticipants(pubKeys) utils.Logger().Info().Msg("My Committee updated") for i := range pubKeys { utils.Logger().Info().Int("index", i).Str("BLSPubKey", pubKeys[i].SerializeToHexStr()).Msg("Member") } consensus.LeaderPubKey = pubKeys[0] utils.Logger().Info(). Str("info", consensus.LeaderPubKey.SerializeToHexStr()).Msg("My Leader") consensus.pubKeyLock.Unlock() // reset states after update public keys consensus.ResetState() consensus.ResetViewChangeState() return consensus.Decider.ParticipantsCount() } // NewFaker returns a faker consensus. func NewFaker() *Consensus { return &Consensus{} } // Sign on the hash of the message func (consensus *Consensus) signMessage(message []byte) []byte { hash := hash.Keccak256(message) signature := consensus.priKey.SignHash(hash[:]) return signature.Serialize() } // Sign on the consensus message signature field. func (consensus *Consensus) signConsensusMessage(message *msg_pb.Message) error { message.Signature = nil // TODO: use custom serialization method rather than protobuf marshaledMessage, err := protobuf.Marshal(message) if err != nil { return err } // 64 byte of signature on previous data signature := consensus.signMessage(marshaledMessage) message.Signature = signature return nil } // GetValidatorPeers returns list of validator peers. func (consensus *Consensus) GetValidatorPeers() []p2p.Peer { validatorPeers := make([]p2p.Peer, 0) consensus.validators.Range(func(k, v interface{}) bool { if peer, ok := v.(p2p.Peer); ok { validatorPeers = append(validatorPeers, peer) return true } return false }) return validatorPeers } // GetBhpSigsArray returns the signatures for prepared message in viewchange func (consensus *Consensus) GetBhpSigsArray() []*bls.Sign { sigs := []*bls.Sign{} for _, sig := range consensus.bhpSigs { sigs = append(sigs, sig) } return sigs } // GetNilSigsArray returns the signatures for nil prepared message in viewchange func (consensus *Consensus) GetNilSigsArray() []*bls.Sign { sigs := []*bls.Sign{} for _, sig := range consensus.nilSigs { sigs = append(sigs, sig) } return sigs } // ResetState resets the state of the consensus func (consensus *Consensus) ResetState() { consensus.getLogger().Debug(). Str("Phase", consensus.phase.String()). Msg("[ResetState] Resetting consensus state") consensus.switchPhase(FBFTAnnounce, true) consensus.blockHash = [32]byte{} consensus.blockHeader = []byte{} consensus.block = []byte{} consensus.Decider.Reset([]quorum.Phase{quorum.Prepare, quorum.Commit}) members := consensus.Decider.Participants() prepareBitmap, _ := bls_cosi.NewMask(members, nil) commitBitmap, _ := bls_cosi.NewMask(members, nil) consensus.prepareBitmap = prepareBitmap consensus.commitBitmap = commitBitmap consensus.aggregatedPrepareSig = nil consensus.aggregatedCommitSig = nil } // Returns a string representation of this consensus func (consensus *Consensus) String() string { var duty string if consensus.IsLeader() { duty = "LDR" // leader } else { duty = "VLD" // validator } return fmt.Sprintf("[duty:%s, PubKey:%s, ShardID:%v]", duty, consensus.PubKey.SerializeToHexStr(), consensus.ShardID) } // ToggleConsensusCheck flip the flag of whether ignore viewID check during consensus process func (consensus *Consensus) ToggleConsensusCheck() { consensus.infoMutex.Lock() defer consensus.infoMutex.Unlock() consensus.ignoreViewIDCheck = !consensus.ignoreViewIDCheck } // IsValidatorInCommittee returns whether the given validator BLS address is part of my committee func (consensus *Consensus) IsValidatorInCommittee(pubKey *bls.PublicKey) bool { return consensus.Decider.IndexOf(pubKey) != -1 } // Verify the signature of the message are valid from the signer's public key. func verifyMessageSig(signerPubKey *bls.PublicKey, message *msg_pb.Message) error { signature := message.Signature message.Signature = nil messageBytes, err := protobuf.Marshal(message) if err != nil { return err } msgSig := bls.Sign{} err = msgSig.Deserialize(signature) if err != nil { return err } msgHash := hash.Keccak256(messageBytes) if !msgSig.VerifyHash(signerPubKey, msgHash[:]) { return errors.New("failed to verify the signature") } message.Signature = signature return nil } // verifySenderKey verifys the message senderKey is properly signed and senderAddr is valid func (consensus *Consensus) verifySenderKey(msg *msg_pb.Message) (*bls.PublicKey, error) { consensusMsg := msg.GetConsensus() senderKey, err := bls_cosi.BytesToBlsPublicKey(consensusMsg.SenderPubkey) if err != nil { return nil, err } if !consensus.IsValidatorInCommittee(senderKey) { return nil, fmt.Errorf("Validator %s is not in committee", senderKey.SerializeToHexStr()) } return senderKey, nil } func (consensus *Consensus) verifyViewChangeSenderKey(msg *msg_pb.Message) (*bls.PublicKey, error) { vcMsg := msg.GetViewchange() senderKey, err := bls_cosi.BytesToBlsPublicKey(vcMsg.SenderPubkey) if err != nil { return nil, err } if !consensus.IsValidatorInCommittee(senderKey) { return nil, fmt.Errorf("Validator %s is not in committee", senderKey.SerializeToHexStr()) } return senderKey, nil } // SetViewID set the viewID to the height of the blockchain func (consensus *Consensus) SetViewID(height uint64) { consensus.viewID = height } // SetMode sets the mode of consensus func (consensus *Consensus) SetMode(m Mode) { consensus.current.SetMode(m) } // Mode returns the mode of consensus func (consensus *Consensus) Mode() Mode { return consensus.current.Mode() } // RegisterPRndChannel registers the channel for receiving randomness preimage from DRG protocol func (consensus *Consensus) RegisterPRndChannel(pRndChannel chan []byte) { consensus.PRndChannel = pRndChannel } // RegisterRndChannel registers the channel for receiving final randomness from DRG protocol func (consensus *Consensus) RegisterRndChannel(rndChannel chan [548]byte) { consensus.RndChannel = rndChannel } // Check viewID, caller's responsibility to hold lock when change ignoreViewIDCheck func (consensus *Consensus) checkViewID(msg *FBFTMessage) error { // just ignore consensus check for the first time when node join if consensus.ignoreViewIDCheck { //in syncing mode, node accepts incoming messages without viewID/leaderKey checking //so only set mode to normal when new node enters consensus and need checking viewID consensus.current.SetMode(Normal) consensus.viewID = msg.ViewID consensus.current.SetViewID(msg.ViewID) consensus.LeaderPubKey = msg.SenderPubkey consensus.ignoreViewIDCheck = false consensus.consensusTimeout[timeoutConsensus].Start() utils.Logger().Debug(). Uint64("viewID", consensus.viewID). Str("leaderKey", consensus.LeaderPubKey.SerializeToHexStr()[:20]). Msg("viewID and leaderKey override") utils.Logger().Debug(). Uint64("viewID", consensus.viewID). Uint64("block", consensus.blockNum). Msg("Start consensus timer") return nil } else if msg.ViewID > consensus.viewID { return consensus_engine.ErrViewIDNotMatch } else if msg.ViewID < consensus.viewID { return errors.New("view ID belongs to the past") } return nil } // SetBlockNum sets the blockNum in consensus object, called at node bootstrap func (consensus *Consensus) SetBlockNum(blockNum uint64) { consensus.infoMutex.Lock() defer consensus.infoMutex.Unlock() consensus.blockNum = blockNum } // SetEpochNum sets the epoch in consensus object func (consensus *Consensus) SetEpochNum(epoch uint64) { consensus.infoMutex.Lock() defer consensus.infoMutex.Unlock() consensus.epoch = epoch } // ReadSignatureBitmapPayload read the payload for signature and bitmap; offset is the beginning position of reading func (consensus *Consensus) ReadSignatureBitmapPayload( recvPayload []byte, offset int, ) (*bls.Sign, *bls_cosi.Mask, error) { if offset+96 > len(recvPayload) { return nil, nil, errors.New("payload not have enough length") } sigAndBitmapPayload := recvPayload[offset:] return chain.ReadSignatureBitmapByPublicKeys( sigAndBitmapPayload, consensus.Decider.Participants(), ) } func (consensus *Consensus) reportMetrics(block types.Block) { endTime := time.Now() timeElapsed := endTime.Sub(startTime) numOfTxs := len(block.Transactions()) tps := float64(numOfTxs) / timeElapsed.Seconds() consensus.getLogger().Info(). Int("numOfTXs", numOfTxs). Time("startTime", startTime). Time("endTime", endTime). Dur("timeElapsed", endTime.Sub(startTime)). Float64("TPS", tps). Msg("TPS Report") // Post metrics profiler := profiler.GetProfiler() if profiler.MetricsReportURL == "" { return } txHashes := []string{} for i, end := 0, len(block.Transactions()); i < 3 && i < end; i++ { txHash := block.Transactions()[end-1-i].Hash() txHashes = append(txHashes, hex.EncodeToString(txHash[:])) } metrics := map[string]interface{}{ "key": hex.EncodeToString(consensus.PubKey.Serialize()), "tps": tps, "txCount": numOfTxs, "nodeCount": consensus.Decider.ParticipantsCount() + 1, "latestBlockHash": hex.EncodeToString(consensus.blockHash[:]), "latestTxHashes": txHashes, "blockLatency": int(timeElapsed / time.Millisecond), } profiler.LogMetrics(metrics) } // getLogger returns logger for consensus contexts added func (consensus *Consensus) getLogger() *zerolog.Logger { logger := utils.Logger().With(). Uint64("myEpoch", consensus.epoch). Uint64("myBlock", consensus.blockNum). Uint64("myViewID", consensus.viewID). Interface("phase", consensus.phase). Str("mode", consensus.current.Mode().String()). Logger() return &logger } // retrieve corresponding blsPublicKey from Coinbase Address func (consensus *Consensus) getLeaderPubKeyFromCoinbase(header *block.Header) (*bls.PublicKey, error) { shardState, err := consensus.ChainReader.ReadShardState(header.Epoch()) if err != nil { return nil, ctxerror.New("cannot read shard state", "epoch", header.Epoch(), "coinbaseAddr", header.Coinbase(), ).WithCause(err) } committee := shardState.FindCommitteeByID(header.ShardID()) if committee == nil { return nil, ctxerror.New("cannot find shard in the shard state", "blockNum", header.Number(), "shardID", header.ShardID(), "coinbaseAddr", header.Coinbase(), ) } committerKey := new(bls.PublicKey) for _, member := range committee.NodeList { if member.EcdsaAddress == header.Coinbase() { err := member.BlsPublicKey.ToLibBLSPublicKey(committerKey) if err != nil { return nil, ctxerror.New("cannot convert BLS public key", "blsPublicKey", member.BlsPublicKey, "coinbaseAddr", header.Coinbase()).WithCause(err) } return committerKey, nil } } return nil, ctxerror.New("cannot find corresponding BLS Public Key", "coinbaseAddr", header.Coinbase()) } // UpdateConsensusInformation will update shard information (epoch, publicKeys, blockNum, viewID) // based on the local blockchain. It is called in two cases for now: // 1. consensus object initialization. because of current dependency where chainreader is only available // after node is initialized; node is only available after consensus is initialized // we need call this function separately after create consensus object // 2. after state syncing is finished // It will return the mode: // (a) node not in committed: Listening mode // (b) node in committed but has any err during processing: Syncing mode // (c) node in committed and everything looks good: Normal mode func (consensus *Consensus) UpdateConsensusInformation() Mode { pubKeys := []*bls.PublicKey{} hasError := false header := consensus.ChainReader.CurrentHeader() epoch := header.Epoch() _, curPubKeys := committee.WithStakingEnabled.ComputePublicKeys( epoch, consensus.ChainReader, int(header.ShardID()), ) consensus.numPrevPubKeys = len(curPubKeys) consensus.getLogger().Info().Msg("[UpdateConsensusInformation] Updating.....") if shard.Schedule.IsLastBlock(header.Number().Uint64()) { // increase epoch by one if it's the last block consensus.SetEpochNum(epoch.Uint64() + 1) consensus.getLogger().Info().Uint64("headerNum", header.Number().Uint64()). Msg("[UpdateConsensusInformation] Epoch updated for next epoch") _, pubKeys = committee.WithStakingEnabled.ComputePublicKeys( new(big.Int).Add(epoch, common.Big1), consensus.ChainReader, int(header.ShardID()), ) } else { consensus.SetEpochNum(epoch.Uint64()) pubKeys = curPubKeys } if len(pubKeys) == 0 { consensus.getLogger().Warn(). Msg("[UpdateConsensusInformation] PublicKeys is Nil") hasError = true } // update public keys committee oldLeader := consensus.LeaderPubKey consensus.getLogger().Info(). Int("numPubKeys", len(pubKeys)). Msg("[UpdateConsensusInformation] Successfully updated public keys") consensus.UpdatePublicKeys(pubKeys) // take care of possible leader change during the epoch if !shard.Schedule.IsLastBlock(header.Number().Uint64()) && header.Number().Uint64() != 0 { leaderPubKey, err := consensus.getLeaderPubKeyFromCoinbase(header) if err != nil || leaderPubKey == nil { consensus.getLogger().Debug().Err(err). Msg("[SYNC] Unable to get leaderPubKey from coinbase") consensus.ignoreViewIDCheck = true hasError = true } else { consensus.getLogger().Debug(). Str("leaderPubKey", leaderPubKey.SerializeToHexStr()). Msg("[SYNC] Most Recent LeaderPubKey Updated Based on BlockChain") consensus.LeaderPubKey = leaderPubKey } } for i := range pubKeys { // in committee if pubKeys[i].IsEqual(consensus.PubKey) { if hasError { return Syncing } // If the leader changed and I myself become the leader if !consensus.LeaderPubKey.IsEqual(oldLeader) && consensus.LeaderPubKey.IsEqual(consensus.PubKey) { go func() { utils.Logger().Debug(). Str("myKey", consensus.PubKey.SerializeToHexStr()). Uint64("viewID", consensus.viewID). Uint64("block", consensus.blockNum). Msg("[onEpochChange] I am the New Leader") consensus.ReadySignal <- struct{}{} }() } return Normal } } // not in committee return Listening } // IsLeader check if the node is a leader or not by comparing the public key of // the node with the leader public key func (consensus *Consensus) IsLeader() bool { if consensus.PubKey != nil && consensus.LeaderPubKey != nil { return consensus.PubKey.IsEqual(consensus.LeaderPubKey) } return false } // NeedsRandomNumberGeneration returns true if the current epoch needs random number generation func (consensus *Consensus) NeedsRandomNumberGeneration(epoch *big.Int) bool { if consensus.ShardID == 0 && epoch.Uint64() >= shard.Schedule.RandomnessStartingEpoch() { return true } return false }