package node import ( "bytes" "context" "math/big" "math/rand" "sync/atomic" "time" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/rlp" "github.com/harmony-one/bls/ffi/go/bls" libp2p_peer "github.com/libp2p/go-libp2p-core/peer" "github.com/harmony-one/harmony/api/proto" proto_discovery "github.com/harmony-one/harmony/api/proto/discovery" proto_node "github.com/harmony-one/harmony/api/proto/node" "github.com/harmony-one/harmony/block" "github.com/harmony-one/harmony/core/types" nodeconfig "github.com/harmony-one/harmony/internal/configs/node" "github.com/harmony-one/harmony/internal/ctxerror" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/msgq" "github.com/harmony-one/harmony/p2p" "github.com/harmony-one/harmony/p2p/host" "github.com/harmony-one/harmony/shard" staking "github.com/harmony-one/harmony/staking/types" ) const ( consensusTimeout = 30 * time.Second crossLinkBatchSize = 7 ) // receiveGroupMessage use libp2p pubsub mechanism to receive broadcast messages func (node *Node) receiveGroupMessage( receiver p2p.GroupReceiver, rxQueue msgq.MessageAdder, ) { ctx := context.Background() // TODO ek – infinite loop; add shutdown/cleanup logic for { msg, sender, err := receiver.Receive(ctx) if err != nil { utils.Logger().Warn().Err(err). Msg("cannot receive from group") continue } if sender == node.host.GetID() { continue } //utils.Logger().Info("[PUBSUB]", "received group msg", len(msg), "sender", sender) // skip the first 5 bytes, 1 byte is p2p type, 4 bytes are message size if err := rxQueue.AddMessage(msg[5:], sender); err != nil { utils.Logger().Warn().Err(err). Str("sender", sender.Pretty()). Msg("cannot enqueue incoming message for processing") } } } // HandleMessage parses the message and dispatch the actions. func (node *Node) HandleMessage(content []byte, sender libp2p_peer.ID) { msgCategory, err := proto.GetMessageCategory(content) if err != nil { utils.Logger().Error(). Err(err). Msg("HandleMessage get message category failed") return } msgType, err := proto.GetMessageType(content) if err != nil { utils.Logger().Error(). Err(err). Msg("HandleMessage get message type failed") return } msgPayload, err := proto.GetMessagePayload(content) if err != nil { utils.Logger().Error(). Err(err). Msg("HandleMessage get message payload failed") return } switch msgCategory { case proto.Consensus: msgPayload, _ := proto.GetConsensusMessagePayload(content) if node.NodeConfig.Role() == nodeconfig.ExplorerNode { node.ExplorerMessageHandler(msgPayload) } else { node.ConsensusMessageHandler(msgPayload) } case proto.DRand: msgPayload, _ := proto.GetDRandMessagePayload(content) if node.DRand != nil { if node.DRand.IsLeader { node.DRand.ProcessMessageLeader(msgPayload) } else { node.DRand.ProcessMessageValidator(msgPayload) } } case proto.Node: actionType := proto_node.MessageType(msgType) switch actionType { case proto_node.Transaction: utils.Logger().Debug().Msg("NET: received message: Node/Transaction") node.transactionMessageHandler(msgPayload) case proto_node.Staking: utils.Logger().Debug().Msg("NET: received message: Node/Staking") node.stakingMessageHandler(msgPayload) case proto_node.Block: utils.Logger().Debug().Msg("NET: received message: Node/Block") blockMsgType := proto_node.BlockMessageType(msgPayload[0]) switch blockMsgType { case proto_node.Sync: utils.Logger().Debug().Msg("NET: received message: Node/Sync") var blocks []*types.Block err := rlp.DecodeBytes(msgPayload[1:], &blocks) if err != nil { utils.Logger().Error(). Err(err). Msg("block sync") } else { // for non-beaconchain node, subscribe to beacon block broadcast if node.Blockchain().ShardID() != 0 { for _, block := range blocks { if block.ShardID() == 0 { utils.Logger().Info(). Uint64("block", blocks[0].NumberU64()). Msgf("Block being handled by block channel %d %d", block.NumberU64(), block.ShardID()) node.BeaconBlockChannel <- block } } } if node.Client != nil && node.Client.UpdateBlocks != nil && blocks != nil { utils.Logger().Info().Msg("Block being handled by client") node.Client.UpdateBlocks(blocks) } } case proto_node.Header: // only beacon chain will accept the header from other shards utils.Logger().Debug().Uint32("shardID", node.NodeConfig.ShardID).Msg("NET: received message: Node/Header") if node.NodeConfig.ShardID != 0 { return } node.ProcessHeaderMessage(msgPayload[1:]) // skip first byte which is blockMsgType case proto_node.Receipt: utils.Logger().Debug().Msg("NET: received message: Node/Receipt") node.ProcessReceiptMessage(msgPayload[1:]) // skip first byte which is blockMsgType } case proto_node.PING: node.pingMessageHandler(msgPayload, sender) case proto_node.ShardState: if err := node.epochShardStateMessageHandler(msgPayload); err != nil { utils.Logger().Warn().Err(err) } } default: utils.Logger().Error(). Str("Unknown MsgCateogry", string(msgCategory)) } } func (node *Node) transactionMessageHandler(msgPayload []byte) { txMessageType := proto_node.TransactionMessageType(msgPayload[0]) switch txMessageType { case proto_node.Send: txs := types.Transactions{} err := rlp.Decode(bytes.NewReader(msgPayload[1:]), &txs) // skip the Send messge type if err != nil { utils.Logger().Error(). Err(err). Msg("Failed to deserialize transaction list") return } node.addPendingTransactions(txs) } } func (node *Node) stakingMessageHandler(msgPayload []byte) { txs := staking.StakingTransactions{} err := rlp.Decode(bytes.NewReader(msgPayload[:]), &txs) if err != nil { utils.Logger().Error(). Err(err). Msg("Failed to deserialize staking transaction list") return } node.addPendingStakingTransactions(txs) } // BroadcastNewBlock is called by consensus leader to sync new blocks with other clients/nodes. // NOTE: For now, just send to the client (basically not broadcasting) // TODO (lc): broadcast the new blocks to new nodes doing state sync func (node *Node) BroadcastNewBlock(newBlock *types.Block) { groups := []nodeconfig.GroupID{node.NodeConfig.GetClientGroupID()} utils.Logger().Info().Msgf("broadcasting new block %d, group %s", newBlock.NumberU64(), groups[0]) msg := host.ConstructP2pMessage(byte(0), proto_node.ConstructBlocksSyncMessage([]*types.Block{newBlock})) if err := node.host.SendMessageToGroups(groups, msg); err != nil { utils.Logger().Warn().Err(err).Msg("cannot broadcast new block") } } // BroadcastCrossLinkHeader is called by consensus leader to send the new header as cross link to beacon chain. func (node *Node) BroadcastCrossLinkHeader(newBlock *types.Block) { utils.Logger().Info().Msgf("Broadcasting new header to beacon chain groupID %s", nodeconfig.NewGroupIDByShardID(0)) headers := []*block.Header{} lastLink, err := node.Beaconchain().ReadShardLastCrossLink(newBlock.ShardID()) var latestBlockNum uint64 // if cannot find latest crosslink header, broadcast latest 3 block headers if err != nil { utils.Logger().Debug().Err(err).Msg("[BroadcastCrossLinkHeader] ReadShardLastCrossLink Failed") header := node.Blockchain().GetHeaderByNumber(newBlock.NumberU64() - 2) if header != nil { headers = append(headers, header) } header = node.Blockchain().GetHeaderByNumber(newBlock.NumberU64() - 1) if header != nil { headers = append(headers, header) } headers = append(headers, newBlock.Header()) } else { latestBlockNum = lastLink.BlockNum().Uint64() for blockNum := latestBlockNum + 1; blockNum <= newBlock.NumberU64(); blockNum++ { if blockNum > latestBlockNum+crossLinkBatchSize { break } header := node.Blockchain().GetHeaderByNumber(blockNum) if header != nil { headers = append(headers, header) } } } utils.Logger().Info().Msgf("[BroadcastCrossLinkHeader] Broadcasting Block Headers, latestBlockNum %d, currentBlockNum %d, Number of Headers %d", latestBlockNum, newBlock.NumberU64(), len(headers)) for _, header := range headers { utils.Logger().Debug().Msgf("[BroadcastCrossLinkHeader] Broadcasting %d", header.Number().Uint64()) } node.host.SendMessageToGroups([]nodeconfig.GroupID{nodeconfig.NewGroupIDByShardID(0)}, host.ConstructP2pMessage(byte(0), proto_node.ConstructCrossLinkHeadersMessage(headers))) } // VerifyNewBlock is called by consensus participants to verify the block (account model) they are running consensus on func (node *Node) VerifyNewBlock(newBlock *types.Block) error { // TODO ek – where do we verify parent-child invariants, // e.g. "child.Number == child.IsGenesis() ? 0 : parent.Number+1"? err := node.Blockchain().Validator().ValidateHeader(newBlock, true) if err != nil { utils.Logger().Error(). Str("blockHash", newBlock.Hash().Hex()). Err(err). Msg("cannot ValidateHeader for the new block") return ctxerror.New("cannot ValidateHeader for the new block", "blockHash", newBlock.Hash()).WithCause(err) } if newBlock.ShardID() != node.Blockchain().ShardID() { utils.Logger().Error(). Uint32("my shard ID", node.Blockchain().ShardID()). Uint32("new block's shard ID", newBlock.ShardID()). Msg("wrong shard ID") return ctxerror.New("wrong shard ID", "my shard ID", node.Blockchain().ShardID(), "new block's shard ID", newBlock.ShardID()) } err = node.Blockchain().ValidateNewBlock(newBlock) if err != nil { utils.Logger().Error(). Str("blockHash", newBlock.Hash().Hex()). Int("numTx", len(newBlock.Transactions())). Err(err). Msg("cannot ValidateNewBlock") return ctxerror.New("cannot ValidateNewBlock", "blockHash", newBlock.Hash(), "numTx", len(newBlock.Transactions()), ).WithCause(err) } // Verify cross links // TODO: move into ValidateNewBlock if node.NodeConfig.ShardID == 0 { err := node.VerifyBlockCrossLinks(newBlock) if err != nil { utils.Logger().Debug().Err(err).Msg("ops2 VerifyBlockCrossLinks Failed") return err } } // TODO: move into ValidateNewBlock err = node.verifyIncomingReceipts(newBlock) if err != nil { utils.Logger().Error(). Str("blockHash", newBlock.Hash().Hex()). Int("numIncomingReceipts", len(newBlock.IncomingReceipts())). Err(err). Msg("[VerifyNewBlock] Cannot ValidateNewBlock") return ctxerror.New("[VerifyNewBlock] Cannot ValidateNewBlock", "blockHash", newBlock.Hash(), "numIncomingReceipts", len(newBlock.IncomingReceipts())).WithCause(err) } // TODO: verify the vrf randomness // _ = newBlock.Header().Vrf // TODO: uncomment 4 lines after we finish staking mechanism //err = node.validateNewShardState(newBlock, &node.CurrentStakes) // if err != nil { // return ctxerror.New("failed to verify sharding state").WithCause(err) // } return nil } // BigMaxUint64 is maximum possible uint64 value, that is, (1**64)-1. var BigMaxUint64 = new(big.Int).SetBytes([]byte{ 255, 255, 255, 255, 255, 255, 255, 255, }) // PostConsensusProcessing is called by consensus participants, after consensus is done, to: // 1. add the new block to blockchain // 2. [leader] send new block to the client // 3. [leader] send cross shard tx receipts to destination shard func (node *Node) PostConsensusProcessing(newBlock *types.Block, commitSigAndBitmap []byte) { if err := node.AddNewBlock(newBlock); err != nil { utils.Logger().Error(). Err(err). Msg("Error when adding new block") return } // Update last consensus time for metrics // TODO: randomly selected a few validators to broadcast messages instead of only leader broadcast // TODO: refactor the asynchronous calls to separate go routine. node.lastConsensusTime = time.Now().Unix() if node.Consensus.PubKey.IsEqual(node.Consensus.LeaderPubKey) { if node.NodeConfig.ShardID == 0 { node.BroadcastNewBlock(newBlock) } if node.NodeConfig.ShardID != shard.BeaconChainShardID && newBlock.Epoch().Cmp(node.Blockchain().Config().CrossLinkEpoch) >= 0 { node.BroadcastCrossLinkHeader(newBlock) } node.BroadcastCXReceipts(newBlock, commitSigAndBitmap) } else { utils.Logger().Info(). Uint64("BlockNum", newBlock.NumberU64()). Msg("BINGO !!! Reached Consensus") // 15% of the validator also need to do broadcasting rand.Seed(time.Now().UTC().UnixNano()) rnd := rand.Intn(100) if rnd < 15 { node.BroadcastCXReceipts(newBlock, commitSigAndBitmap) } } // Broadcast client requested missing cross shard receipts if there is any node.BroadcastMissingCXReceipts() // Update consensus keys at last so the change of leader status doesn't mess up normal flow if shard.Schedule.IsLastBlock(newBlock.Number().Uint64()) { node.Consensus.UpdateConsensusInformation() } // TODO chao: uncomment this after beacon syncing is stable // node.Blockchain().UpdateCXReceiptsCheckpointsByBlock(newBlock) if node.NodeConfig.GetNetworkType() != nodeconfig.Mainnet { // Update contract deployer's nonce so default contract like faucet can issue transaction with current nonce nonce := node.GetNonceOfAddress(crypto.PubkeyToAddress(node.ContractDeployerKey.PublicKey)) atomic.StoreUint64(&node.ContractDeployerCurrentNonce, nonce) for _, tx := range newBlock.Transactions() { msg, err := tx.AsMessage(types.HomesteadSigner{}) if err != nil { utils.Logger().Error().Msg("Error when parsing tx into message") } if _, ok := node.AddressNonce.Load(msg.From()); ok { nonce := node.GetNonceOfAddress(msg.From()) node.AddressNonce.Store(msg.From(), nonce) } } // TODO: Enable the following after v0 if node.Consensus.ShardID == 0 { // TODO: enable drand only for beacon chain // ConfirmedBlockChannel which is listened by drand leader who will initiate DRG if its a epoch block (first block of a epoch) //if node.DRand != nil { // go func() { // node.ConfirmedBlockChannel <- newBlock // }() //} } } } // AddNewBlock is usedd to add new block into the blockchain. func (node *Node) AddNewBlock(newBlock *types.Block) error { _, err := node.Blockchain().InsertChain([]*types.Block{newBlock}, true /* verifyHeaders */) /* // Debug only addrs, err := node.Blockchain().ReadValidatorList() utils.Logger().Debug().Msgf("validator list updated, err=%v, len(addrs)=%v", err, len(addrs)) for i, addr := range addrs { val, err := node.Blockchain().ValidatorInformation(addr) if err != nil { utils.Logger().Debug().Msgf("ValidatorInformation Error %v: err %v", i, err) } utils.Logger().Debug().Msgf("ValidatorInformation %v: %v", i, val) } currAddrs := node.Blockchain().CurrentValidatorAddresses() utils.Logger().Debug().Msgf("CurrentValidators : %v", currAddrs) candidates := node.Blockchain().ValidatorCandidates() utils.Logger().Debug().Msgf("CandidateValidators : %v", candidates) // Finish debug */ if err != nil { utils.Logger().Error(). Err(err). Uint64("blockNum", newBlock.NumberU64()). Str("parentHash", newBlock.Header().ParentHash().Hex()). Str("hash", newBlock.Header().Hash().Hex()). Msg("Error Adding new block to blockchain") } else { utils.Logger().Info(). Uint64("blockNum", newBlock.NumberU64()). Str("hash", newBlock.Header().Hash().Hex()). Msg("Added New Block to Blockchain!!!") } return err } func (node *Node) pingMessageHandler(msgPayload []byte, sender libp2p_peer.ID) int { ping, err := proto_discovery.GetPingMessage(msgPayload) if err != nil { utils.Logger().Error(). Err(err). Msg("Can't get Ping Message") return -1 } peer := new(p2p.Peer) peer.IP = ping.Node.IP peer.Port = ping.Node.Port peer.PeerID = ping.Node.PeerID peer.ConsensusPubKey = nil if ping.Node.PubKey != nil { peer.ConsensusPubKey = &bls.PublicKey{} if err := peer.ConsensusPubKey.Deserialize(ping.Node.PubKey[:]); err != nil { utils.Logger().Error(). Err(err). Msg("UnmarshalBinary Failed") return -1 } } utils.Logger().Debug(). Str("Version", ping.NodeVer). Str("BlsKey", peer.ConsensusPubKey.SerializeToHexStr()). Str("IP", peer.IP). Str("Port", peer.Port). Interface("PeerID", peer.PeerID). Msg("[PING] PeerInfo") senderStr := string(sender) if senderStr != "" { _, ok := node.duplicatedPing.LoadOrStore(senderStr, true) if ok { // duplicated ping message return return 0 } } // add to incoming peer list //node.host.AddIncomingPeer(*peer) node.host.ConnectHostPeer(*peer) if ping.Node.Role != proto_node.ClientRole { node.AddPeers([]*p2p.Peer{peer}) utils.Logger().Info(). Str("Peer", peer.String()). Int("# Peers", node.numPeers). Msg("Add Peer to Node") } return 1 } // bootstrapConsensus is the a goroutine to check number of peers and start the consensus func (node *Node) bootstrapConsensus() { tick := time.NewTicker(5 * time.Second) defer tick.Stop() lastPeerNum := node.numPeers for { select { case <-tick.C: numPeersNow := node.numPeers // no peers, wait for another tick if numPeersNow == 0 { utils.Logger().Info(). Int("numPeersNow", numPeersNow). Msg("No peers, continue") continue } else if numPeersNow > lastPeerNum { utils.Logger().Info(). Int("previousNumPeers", lastPeerNum). Int("numPeersNow", numPeersNow). Int("targetNumPeers", node.Consensus.MinPeers). Msg("New peers increased") lastPeerNum = numPeersNow } if numPeersNow >= node.Consensus.MinPeers { utils.Logger().Info().Msg("[bootstrap] StartConsensus") node.startConsensus <- struct{}{} return } } } } // ConsensusMessageHandler passes received message in node_handler to consensus func (node *Node) ConsensusMessageHandler(msgPayload []byte) { node.Consensus.MsgChan <- msgPayload }