// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package core implements the Ethereum consensus protocol. package core import ( "bytes" "errors" "fmt" "io" "math/big" "sync" "sync/atomic" "time" "github.com/harmony-one/harmony/crypto/bls" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/common/prque" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" "github.com/harmony-one/harmony/block" consensus_engine "github.com/harmony-one/harmony/consensus/engine" "github.com/harmony-one/harmony/core/rawdb" "github.com/harmony-one/harmony/core/state" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/core/vm" "github.com/harmony-one/harmony/internal/ctxerror" "github.com/harmony-one/harmony/internal/params" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/shard" "github.com/harmony-one/harmony/shard/committee" staking "github.com/harmony-one/harmony/staking/types" lru "github.com/hashicorp/golang-lru" ) var ( // blockInsertTimer blockInsertTimer = metrics.NewRegisteredTimer("chain/inserts", nil) // ErrNoGenesis is the error when there is no genesis. ErrNoGenesis = errors.New("Genesis not found in chain") ) const ( bodyCacheLimit = 256 blockCacheLimit = 256 receiptsCacheLimit = 32 maxFutureBlocks = 256 maxTimeFutureBlocks = 30 badBlockLimit = 10 triesInMemory = 128 shardCacheLimit = 2 commitsCacheLimit = 10 epochCacheLimit = 10 randomnessCacheLimit = 10 validatorCacheLimit = 1024 validatorStatsCacheLimit = 1024 validatorListCacheLimit = 10 validatorListByDelegatorCacheLimit = 1024 // BlockChainVersion ensures that an incompatible database forces a resync from scratch. BlockChainVersion = 3 ) // CacheConfig contains the configuration values for the trie caching/pruning // that's resident in a blockchain. type CacheConfig struct { Disabled bool // Whether to disable trie write caching (archive node) TrieNodeLimit int // Memory limit (MB) at which to flush the current in-memory trie to disk TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk } // BlockChain represents the canonical chain given a database with a genesis // block. The Blockchain manages chain imports, reverts, chain reorganisations. // // Importing blocks in to the block chain happens according to the set of rules // defined by the two stage Validator. Processing of blocks is done using the // Processor which processes the included transaction. The validation of the state // is done in the second part of the Validator. Failing results in aborting of // the import. // // The BlockChain also helps in returning blocks from **any** chain included // in the database as well as blocks that represents the canonical chain. It's // important to note that GetBlock can return any block and does not need to be // included in the canonical one where as GetBlockByNumber always represents the // canonical chain. type BlockChain struct { chainConfig *params.ChainConfig // Chain & network configuration cacheConfig *CacheConfig // Cache configuration for pruning db ethdb.Database // Low level persistent database to store final content in triegc *prque.Prque // Priority queue mapping block numbers to tries to gc gcproc time.Duration // Accumulates canonical block processing for trie dumping hc *HeaderChain rmLogsFeed event.Feed chainFeed event.Feed chainSideFeed event.Feed chainHeadFeed event.Feed logsFeed event.Feed scope event.SubscriptionScope genesisBlock *types.Block mu sync.RWMutex // global mutex for locking chain operations chainmu sync.RWMutex // blockchain insertion lock procmu sync.RWMutex // block processor lock checkpoint int // checkpoint counts towards the new checkpoint currentBlock atomic.Value // Current head of the block chain currentFastBlock atomic.Value // Current head of the fast-sync chain (may be above the block chain!) stateCache state.Database // State database to reuse between imports (contains state cache) bodyCache *lru.Cache // Cache for the most recent block bodies bodyRLPCache *lru.Cache // Cache for the most recent block bodies in RLP encoded format receiptsCache *lru.Cache // Cache for the most recent receipts per block blockCache *lru.Cache // Cache for the most recent entire blocks futureBlocks *lru.Cache // future blocks are blocks added for later processing shardStateCache *lru.Cache lastCommitsCache *lru.Cache epochCache *lru.Cache // Cache epoch number → first block number randomnessCache *lru.Cache // Cache for vrf/vdf validatorCache *lru.Cache // Cache for validator info validatorStatsCache *lru.Cache // Cache for validator stats validatorListCache *lru.Cache // Cache of validator list validatorListByDelegatorCache *lru.Cache // Cache of validator list by delegator quit chan struct{} // blockchain quit channel running int32 // running must be called atomically // procInterrupt must be atomically called procInterrupt int32 // interrupt signaler for block processing wg sync.WaitGroup // chain processing wait group for shutting down engine consensus_engine.Engine processor Processor // block processor interface validator Validator // block and state validator interface vmConfig vm.Config badBlocks *lru.Cache // Bad block cache shouldPreserve func(*types.Block) bool // Function used to determine whether should preserve the given block. } // NewBlockChain returns a fully initialised block chain using information // available in the database. It initialises the default Ethereum Validator and // Processor. func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *params.ChainConfig, engine consensus_engine.Engine, vmConfig vm.Config, shouldPreserve func(block *types.Block) bool) (*BlockChain, error) { if cacheConfig == nil { cacheConfig = &CacheConfig{ TrieNodeLimit: 256 * 1024 * 1024, TrieTimeLimit: 5 * time.Minute, } } bodyCache, _ := lru.New(bodyCacheLimit) bodyRLPCache, _ := lru.New(bodyCacheLimit) receiptsCache, _ := lru.New(receiptsCacheLimit) blockCache, _ := lru.New(blockCacheLimit) futureBlocks, _ := lru.New(maxFutureBlocks) badBlocks, _ := lru.New(badBlockLimit) shardCache, _ := lru.New(shardCacheLimit) commitsCache, _ := lru.New(commitsCacheLimit) epochCache, _ := lru.New(epochCacheLimit) randomnessCache, _ := lru.New(randomnessCacheLimit) validatorCache, _ := lru.New(validatorCacheLimit) validatorStatsCache, _ := lru.New(validatorStatsCacheLimit) validatorListCache, _ := lru.New(validatorListCacheLimit) validatorListByDelegatorCache, _ := lru.New(validatorListByDelegatorCacheLimit) bc := &BlockChain{ chainConfig: chainConfig, cacheConfig: cacheConfig, db: db, triegc: prque.New(nil), stateCache: state.NewDatabase(db), quit: make(chan struct{}), shouldPreserve: shouldPreserve, bodyCache: bodyCache, bodyRLPCache: bodyRLPCache, receiptsCache: receiptsCache, blockCache: blockCache, futureBlocks: futureBlocks, shardStateCache: shardCache, lastCommitsCache: commitsCache, epochCache: epochCache, randomnessCache: randomnessCache, validatorCache: validatorCache, validatorStatsCache: validatorStatsCache, validatorListCache: validatorListCache, validatorListByDelegatorCache: validatorListByDelegatorCache, engine: engine, vmConfig: vmConfig, badBlocks: badBlocks, } bc.SetValidator(NewBlockValidator(chainConfig, bc, engine)) bc.SetProcessor(NewStateProcessor(chainConfig, bc, engine)) var err error bc.hc, err = NewHeaderChain(db, chainConfig, engine, bc.getProcInterrupt) if err != nil { return nil, err } bc.genesisBlock = bc.GetBlockByNumber(0) if bc.genesisBlock == nil { return nil, ErrNoGenesis } if err := bc.loadLastState(); err != nil { return nil, err } // Take ownership of this particular state go bc.update() return bc, nil } // ValidateNewBlock validates new block. func (bc *BlockChain) ValidateNewBlock(block *types.Block) error { state, err := state.New(bc.CurrentBlock().Root(), bc.stateCache) if err != nil { return err } // Process block using the parent state as reference point. receipts, cxReceipts, _, usedGas, err := bc.processor.Process(block, state, bc.vmConfig) if err != nil { bc.reportBlock(block, receipts, err) return err } err = bc.Validator().ValidateState(block, bc.CurrentBlock(), state, receipts, cxReceipts, usedGas) if err != nil { bc.reportBlock(block, receipts, err) return err } return nil } // IsEpochBlock returns whether this block is the first block of an epoch. // by checking if the previous block is the last block of the previous epoch func IsEpochBlock(block *types.Block) bool { if block.NumberU64() == 0 { // genesis block is the first epoch block return true } return shard.Schedule.IsLastBlock(block.NumberU64() - 1) } // EpochFirstBlock returns the block number of the first block of an epoch. // TODO: instead of using fixed epoch schedules, determine the first block by epoch changes. func EpochFirstBlock(epoch *big.Int) *big.Int { if epoch.Cmp(big.NewInt(GenesisEpoch)) == 0 { return big.NewInt(GenesisEpoch) } return big.NewInt(int64(shard.Schedule.EpochLastBlock(epoch.Uint64()-1) + 1)) } func (bc *BlockChain) getProcInterrupt() bool { return atomic.LoadInt32(&bc.procInterrupt) == 1 } // loadLastState loads the last known chain state from the database. This method // assumes that the chain manager mutex is held. func (bc *BlockChain) loadLastState() error { // Restore the last known head block head := rawdb.ReadHeadBlockHash(bc.db) if head == (common.Hash{}) { // Corrupt or empty database, init from scratch utils.Logger().Warn().Msg("Empty database, resetting chain") return bc.Reset() } // Make sure the entire head block is available currentBlock := bc.GetBlockByHash(head) if currentBlock == nil { // Corrupt or empty database, init from scratch utils.Logger().Warn().Str("hash", head.Hex()).Msg("Head block missing, resetting chain") return bc.Reset() } // Make sure the state associated with the block is available if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil { // Dangling block without a state associated, init from scratch utils.Logger().Warn(). Str("number", currentBlock.Number().String()). Str("hash", currentBlock.Hash().Hex()). Msg("Head state missing, repairing chain") if err := bc.repair(¤tBlock); err != nil { return err } } // Everything seems to be fine, set as the head block bc.currentBlock.Store(currentBlock) // Restore the last known head header currentHeader := currentBlock.Header() if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) { if header := bc.GetHeaderByHash(head); header != nil { currentHeader = header } } bc.hc.SetCurrentHeader(currentHeader) // Restore the last known head fast block bc.currentFastBlock.Store(currentBlock) if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) { if block := bc.GetBlockByHash(head); block != nil { bc.currentFastBlock.Store(block) } } // Issue a status log for the user currentFastBlock := bc.CurrentFastBlock() headerTd := bc.GetTd(currentHeader.Hash(), currentHeader.Number().Uint64()) blockTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64()) fastTd := bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()) utils.Logger().Info(). Str("number", currentHeader.Number().String()). Str("hash", currentHeader.Hash().Hex()). Str("td", headerTd.String()). Str("age", common.PrettyAge(time.Unix(currentHeader.Time().Int64(), 0)).String()). Msg("Loaded most recent local header") utils.Logger().Info(). Str("number", currentBlock.Number().String()). Str("hash", currentBlock.Hash().Hex()). Str("td", blockTd.String()). Str("age", common.PrettyAge(time.Unix(currentBlock.Time().Int64(), 0)).String()). Msg("Loaded most recent local full block") utils.Logger().Info(). Str("number", currentFastBlock.Number().String()). Str("hash", currentFastBlock.Hash().Hex()). Str("td", fastTd.String()). Str("age", common.PrettyAge(time.Unix(currentFastBlock.Time().Int64(), 0)).String()). Msg("Loaded most recent local fast block") return nil } // SetHead rewinds the local chain to a new head. In the case of headers, everything // above the new head will be deleted and the new one set. In the case of blocks // though, the head may be further rewound if block bodies are missing (non-archive // nodes after a fast sync). func (bc *BlockChain) SetHead(head uint64) error { utils.Logger().Warn().Uint64("target", head).Msg("Rewinding blockchain") bc.mu.Lock() defer bc.mu.Unlock() // Rewind the header chain, deleting all block bodies until then delFn := func(db rawdb.DatabaseDeleter, hash common.Hash, num uint64) { rawdb.DeleteBody(db, hash, num) } bc.hc.SetHead(head, delFn) currentHeader := bc.hc.CurrentHeader() // Clear out any stale content from the caches bc.bodyCache.Purge() bc.bodyRLPCache.Purge() bc.receiptsCache.Purge() bc.blockCache.Purge() bc.futureBlocks.Purge() bc.shardStateCache.Purge() // Rewind the block chain, ensuring we don't end up with a stateless head block if currentBlock := bc.CurrentBlock(); currentBlock != nil && currentHeader.Number().Uint64() < currentBlock.NumberU64() { bc.currentBlock.Store(bc.GetBlock(currentHeader.Hash(), currentHeader.Number().Uint64())) } if currentBlock := bc.CurrentBlock(); currentBlock != nil { if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil { // Rewound state missing, rolled back to before pivot, reset to genesis bc.currentBlock.Store(bc.genesisBlock) } } // Rewind the fast block in a simpleton way to the target head if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && currentHeader.Number().Uint64() < currentFastBlock.NumberU64() { bc.currentFastBlock.Store(bc.GetBlock(currentHeader.Hash(), currentHeader.Number().Uint64())) } // If either blocks reached nil, reset to the genesis state if currentBlock := bc.CurrentBlock(); currentBlock == nil { bc.currentBlock.Store(bc.genesisBlock) } if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock == nil { bc.currentFastBlock.Store(bc.genesisBlock) } currentBlock := bc.CurrentBlock() currentFastBlock := bc.CurrentFastBlock() rawdb.WriteHeadBlockHash(bc.db, currentBlock.Hash()) rawdb.WriteHeadFastBlockHash(bc.db, currentFastBlock.Hash()) return bc.loadLastState() } // FastSyncCommitHead sets the current head block to the one defined by the hash // irrelevant what the chain contents were prior. func (bc *BlockChain) FastSyncCommitHead(hash common.Hash) error { // Make sure that both the block as well at its state trie exists block := bc.GetBlockByHash(hash) if block == nil { return fmt.Errorf("non existent block [%x…]", hash[:4]) } if _, err := trie.NewSecure(block.Root(), bc.stateCache.TrieDB(), 0); err != nil { return err } // If all checks out, manually set the head block bc.mu.Lock() bc.currentBlock.Store(block) bc.mu.Unlock() utils.Logger().Info(). Str("number", block.Number().String()). Str("hash", hash.Hex()). Msg("Committed new head block") return nil } // ShardID returns the shard Id of the blockchain. // TODO: use a better solution before resharding shuffle nodes to different shards func (bc *BlockChain) ShardID() uint32 { return bc.CurrentBlock().ShardID() } // GasLimit returns the gas limit of the current HEAD block. func (bc *BlockChain) GasLimit() uint64 { return bc.CurrentBlock().GasLimit() } // CurrentBlock retrieves the current head block of the canonical chain. The // block is retrieved from the blockchain's internal cache. func (bc *BlockChain) CurrentBlock() *types.Block { return bc.currentBlock.Load().(*types.Block) } // CurrentFastBlock retrieves the current fast-sync head block of the canonical // chain. The block is retrieved from the blockchain's internal cache. func (bc *BlockChain) CurrentFastBlock() *types.Block { return bc.currentFastBlock.Load().(*types.Block) } // SetProcessor sets the processor required for making state modifications. func (bc *BlockChain) SetProcessor(processor Processor) { bc.procmu.Lock() defer bc.procmu.Unlock() bc.processor = processor } // SetValidator sets the validator which is used to validate incoming blocks. func (bc *BlockChain) SetValidator(validator Validator) { bc.procmu.Lock() defer bc.procmu.Unlock() bc.validator = validator } // Validator returns the current validator. func (bc *BlockChain) Validator() Validator { bc.procmu.RLock() defer bc.procmu.RUnlock() return bc.validator } // Processor returns the current processor. func (bc *BlockChain) Processor() Processor { bc.procmu.RLock() defer bc.procmu.RUnlock() return bc.processor } // State returns a new mutable state based on the current HEAD block. func (bc *BlockChain) State() (*state.DB, error) { return bc.StateAt(bc.CurrentBlock().Root()) } // StateAt returns a new mutable state based on a particular point in time. func (bc *BlockChain) StateAt(root common.Hash) (*state.DB, error) { return state.New(root, bc.stateCache) } // Reset purges the entire blockchain, restoring it to its genesis state. func (bc *BlockChain) Reset() error { return bc.ResetWithGenesisBlock(bc.genesisBlock) } // ResetWithGenesisBlock purges the entire blockchain, restoring it to the // specified genesis state. func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error { // Dump the entire block chain and purge the caches if err := bc.SetHead(0); err != nil { return err } bc.mu.Lock() defer bc.mu.Unlock() // Prepare the genesis block and reinitialise the chain rawdb.WriteBlock(bc.db, genesis) bc.genesisBlock = genesis bc.insert(bc.genesisBlock) bc.currentBlock.Store(bc.genesisBlock) bc.hc.SetGenesis(bc.genesisBlock.Header()) bc.hc.SetCurrentHeader(bc.genesisBlock.Header()) bc.currentFastBlock.Store(bc.genesisBlock) return nil } // repair tries to repair the current blockchain by rolling back the current block // until one with associated state is found. This is needed to fix incomplete db // writes caused either by crashes/power outages, or simply non-committed tries. // // This method only rolls back the current block. The current header and current // fast block are left intact. func (bc *BlockChain) repair(head **types.Block) error { for { // Abort if we've rewound to a head block that does have associated state if _, err := state.New((*head).Root(), bc.stateCache); err == nil { utils.Logger().Info(). Str("number", (*head).Number().String()). Str("hash", (*head).Hash().Hex()). Msg("Rewound blockchain to past state") return nil } // Otherwise rewind one block and recheck state availability there (*head) = bc.GetBlock((*head).ParentHash(), (*head).NumberU64()-1) } } // Export writes the active chain to the given writer. func (bc *BlockChain) Export(w io.Writer) error { return bc.ExportN(w, uint64(0), bc.CurrentBlock().NumberU64()) } // ExportN writes a subset of the active chain to the given writer. func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error { bc.mu.RLock() defer bc.mu.RUnlock() if first > last { return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last) } utils.Logger().Info().Uint64("count", last-first+1).Msg("Exporting batch of blocks") start, reported := time.Now(), time.Now() for nr := first; nr <= last; nr++ { block := bc.GetBlockByNumber(nr) if block == nil { return fmt.Errorf("export failed on #%d: not found", nr) } if err := block.EncodeRLP(w); err != nil { return err } if time.Since(reported) >= statsReportLimit { utils.Logger().Info(). Uint64("exported", block.NumberU64()-first). Str("elapsed", common.PrettyDuration(time.Since(start)).String()). Msg("Exporting blocks") reported = time.Now() } } return nil } // insert injects a new head block into the current block chain. This method // assumes that the block is indeed a true head. It will also reset the head // header and the head fast sync block to this very same block if they are older // or if they are on a different side chain. // // Note, this function assumes that the `mu` mutex is held! func (bc *BlockChain) insert(block *types.Block) { // If the block is on a side chain or an unknown one, force other heads onto it too updateHeads := rawdb.ReadCanonicalHash(bc.db, block.NumberU64()) != block.Hash() // Add the block to the canonical chain number scheme and mark as the head rawdb.WriteCanonicalHash(bc.db, block.Hash(), block.NumberU64()) rawdb.WriteHeadBlockHash(bc.db, block.Hash()) bc.currentBlock.Store(block) // If the block is better than our head or is on a different chain, force update heads if updateHeads { bc.hc.SetCurrentHeader(block.Header()) rawdb.WriteHeadFastBlockHash(bc.db, block.Hash()) bc.currentFastBlock.Store(block) } } // Genesis retrieves the chain's genesis block. func (bc *BlockChain) Genesis() *types.Block { return bc.genesisBlock } // GetBody retrieves a block body (transactions and uncles) from the database by // hash, caching it if found. func (bc *BlockChain) GetBody(hash common.Hash) *types.Body { // Short circuit if the body's already in the cache, retrieve otherwise if cached, ok := bc.bodyCache.Get(hash); ok { body := cached.(*types.Body) return body } number := bc.hc.GetBlockNumber(hash) if number == nil { return nil } body := rawdb.ReadBody(bc.db, hash, *number) if body == nil { return nil } // Cache the found body for next time and return bc.bodyCache.Add(hash, body) return body } // GetBodyRLP retrieves a block body in RLP encoding from the database by hash, // caching it if found. func (bc *BlockChain) GetBodyRLP(hash common.Hash) rlp.RawValue { // Short circuit if the body's already in the cache, retrieve otherwise if cached, ok := bc.bodyRLPCache.Get(hash); ok { return cached.(rlp.RawValue) } number := bc.hc.GetBlockNumber(hash) if number == nil { return nil } body := rawdb.ReadBodyRLP(bc.db, hash, *number) if len(body) == 0 { return nil } // Cache the found body for next time and return bc.bodyRLPCache.Add(hash, body) return body } // HasBlock checks if a block is fully present in the database or not. func (bc *BlockChain) HasBlock(hash common.Hash, number uint64) bool { if bc.blockCache.Contains(hash) { return true } return rawdb.HasBody(bc.db, hash, number) } // HasState checks if state trie is fully present in the database or not. func (bc *BlockChain) HasState(hash common.Hash) bool { _, err := bc.stateCache.OpenTrie(hash) return err == nil } // HasBlockAndState checks if a block and associated state trie is fully present // in the database or not, caching it if present. func (bc *BlockChain) HasBlockAndState(hash common.Hash, number uint64) bool { // Check first that the block itself is known block := bc.GetBlock(hash, number) if block == nil { return false } return bc.HasState(block.Root()) } // GetBlock retrieves a block from the database by hash and number, // caching it if found. func (bc *BlockChain) GetBlock(hash common.Hash, number uint64) *types.Block { // Short circuit if the block's already in the cache, retrieve otherwise if block, ok := bc.blockCache.Get(hash); ok { return block.(*types.Block) } block := rawdb.ReadBlock(bc.db, hash, number) if block == nil { return nil } // Cache the found block for next time and return bc.blockCache.Add(block.Hash(), block) return block } // GetBlockByHash retrieves a block from the database by hash, caching it if found. func (bc *BlockChain) GetBlockByHash(hash common.Hash) *types.Block { number := bc.hc.GetBlockNumber(hash) if number == nil { return nil } return bc.GetBlock(hash, *number) } // GetBlockByNumber retrieves a block from the database by number, caching it // (associated with its hash) if found. func (bc *BlockChain) GetBlockByNumber(number uint64) *types.Block { hash := rawdb.ReadCanonicalHash(bc.db, number) if hash == (common.Hash{}) { return nil } return bc.GetBlock(hash, number) } // GetReceiptsByHash retrieves the receipts for all transactions in a given block. func (bc *BlockChain) GetReceiptsByHash(hash common.Hash) types.Receipts { if receipts, ok := bc.receiptsCache.Get(hash); ok { return receipts.(types.Receipts) } number := rawdb.ReadHeaderNumber(bc.db, hash) if number == nil { return nil } receipts := rawdb.ReadReceipts(bc.db, hash, *number) bc.receiptsCache.Add(hash, receipts) return receipts } // GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors. // [deprecated by eth/62] func (bc *BlockChain) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) { number := bc.hc.GetBlockNumber(hash) if number == nil { return nil } for i := 0; i < n; i++ { block := bc.GetBlock(hash, *number) if block == nil { break } blocks = append(blocks, block) hash = block.ParentHash() *number-- } return } // GetUnclesInChain retrieves all the uncles from a given block backwards until // a specific distance is reached. func (bc *BlockChain) GetUnclesInChain(b *types.Block, length int) []*block.Header { uncles := []*block.Header{} for i := 0; b != nil && i < length; i++ { uncles = append(uncles, b.Uncles()...) b = bc.GetBlock(b.ParentHash(), b.NumberU64()-1) } return uncles } // TrieNode retrieves a blob of data associated with a trie node (or code hash) // either from ephemeral in-memory cache, or from persistent storage. func (bc *BlockChain) TrieNode(hash common.Hash) ([]byte, error) { return bc.stateCache.TrieDB().Node(hash) } // Stop stops the blockchain service. If any imports are currently in progress // it will abort them using the procInterrupt. func (bc *BlockChain) Stop() { if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) { return } // Unsubscribe all subscriptions registered from blockchain bc.scope.Close() close(bc.quit) atomic.StoreInt32(&bc.procInterrupt, 1) bc.wg.Wait() // Ensure the state of a recent block is also stored to disk before exiting. // We're writing three different states to catch different restart scenarios: // - HEAD: So we don't need to reprocess any blocks in the general case // - HEAD-1: So we don't do large reorgs if our HEAD becomes an uncle // - HEAD-127: So we have a hard limit on the number of blocks reexecuted if !bc.cacheConfig.Disabled { triedb := bc.stateCache.TrieDB() for _, offset := range []uint64{0, 1, triesInMemory - 1} { if number := bc.CurrentBlock().NumberU64(); number > offset { recent := bc.GetHeaderByNumber(number - offset) utils.Logger().Info(). Str("block", recent.Number().String()). Str("hash", recent.Hash().Hex()). Str("root", recent.Root().Hex()). Msg("Writing cached state to disk") if err := triedb.Commit(recent.Root(), true); err != nil { utils.Logger().Error().Err(err).Msg("Failed to commit recent state trie") } } } for !bc.triegc.Empty() { triedb.Dereference(bc.triegc.PopItem().(common.Hash)) } if size, _ := triedb.Size(); size != 0 { utils.Logger().Error().Msg("Dangling trie nodes after full cleanup") } } utils.Logger().Info().Msg("Blockchain manager stopped") } func (bc *BlockChain) procFutureBlocks() { blocks := make([]*types.Block, 0, bc.futureBlocks.Len()) for _, hash := range bc.futureBlocks.Keys() { if block, exist := bc.futureBlocks.Peek(hash); exist { blocks = append(blocks, block.(*types.Block)) } } if len(blocks) > 0 { types.BlockBy(types.Number).Sort(blocks) // Insert one by one as chain insertion needs contiguous ancestry between blocks for i := range blocks { bc.InsertChain(blocks[i:i+1], true /* verifyHeaders */) } } } // WriteStatus status of write type WriteStatus byte // Constants for WriteStatus const ( NonStatTy WriteStatus = iota CanonStatTy SideStatTy ) // Rollback is designed to remove a chain of links from the database that aren't // certain enough to be valid. func (bc *BlockChain) Rollback(chain []common.Hash) { bc.mu.Lock() defer bc.mu.Unlock() for i := len(chain) - 1; i >= 0; i-- { hash := chain[i] currentHeader := bc.hc.CurrentHeader() if currentHeader != nil && currentHeader.Hash() == hash { bc.hc.SetCurrentHeader(bc.GetHeader(currentHeader.ParentHash(), currentHeader.Number().Uint64()-1)) } if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && currentFastBlock.Hash() == hash { newFastBlock := bc.GetBlock(currentFastBlock.ParentHash(), currentFastBlock.NumberU64()-1) if newFastBlock != nil { bc.currentFastBlock.Store(newFastBlock) rawdb.WriteHeadFastBlockHash(bc.db, newFastBlock.Hash()) } } if currentBlock := bc.CurrentBlock(); currentBlock != nil && currentBlock.Hash() == hash { newBlock := bc.GetBlock(currentBlock.ParentHash(), currentBlock.NumberU64()-1) if newBlock != nil { bc.currentBlock.Store(newBlock) rawdb.WriteHeadBlockHash(bc.db, newBlock.Hash()) } } } } // SetReceiptsData computes all the non-consensus fields of the receipts func SetReceiptsData(config *params.ChainConfig, block *types.Block, receipts types.Receipts) error { signer := types.MakeSigner(config, block.Epoch()) transactions, logIndex := block.Transactions(), uint(0) if len(transactions) != len(receipts) { return errors.New("transaction and receipt count mismatch") } for j := 0; j < len(receipts); j++ { // The transaction hash can be retrieved from the transaction itself receipts[j].TxHash = transactions[j].Hash() // The contract address can be derived from the transaction itself if transactions[j].To() == nil { // Deriving the signer is expensive, only do if it's actually needed from, _ := types.Sender(signer, transactions[j]) receipts[j].ContractAddress = crypto.CreateAddress(from, transactions[j].Nonce()) } // The used gas can be calculated based on previous receipts if j == 0 { receipts[j].GasUsed = receipts[j].CumulativeGasUsed } else { receipts[j].GasUsed = receipts[j].CumulativeGasUsed - receipts[j-1].CumulativeGasUsed } // The derived log fields can simply be set from the block and transaction for k := 0; k < len(receipts[j].Logs); k++ { receipts[j].Logs[k].BlockNumber = block.NumberU64() receipts[j].Logs[k].BlockHash = block.Hash() receipts[j].Logs[k].TxHash = receipts[j].TxHash receipts[j].Logs[k].TxIndex = uint(j) receipts[j].Logs[k].Index = logIndex logIndex++ } } return nil } // InsertReceiptChain attempts to complete an already existing header chain with // transaction and receipt data. func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) { bc.wg.Add(1) defer bc.wg.Done() // Do a sanity check that the provided chain is actually ordered and linked for i := 1; i < len(blockChain); i++ { if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() { utils.Logger().Error(). Str("number", blockChain[i].Number().String()). Str("hash", blockChain[i].Hash().Hex()). Str("parent", blockChain[i].ParentHash().Hex()). Str("prevnumber", blockChain[i-1].Number().String()). Str("prevhash", blockChain[i-1].Hash().Hex()). Msg("Non contiguous receipt insert") return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, blockChain[i-1].NumberU64(), blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4]) } } var ( stats = struct{ processed, ignored int32 }{} start = time.Now() bytes = 0 batch = bc.db.NewBatch() ) for i, block := range blockChain { receipts := receiptChain[i] // Short circuit insertion if shutting down or processing failed if atomic.LoadInt32(&bc.procInterrupt) == 1 { return 0, nil } // Short circuit if the owner header is unknown if !bc.HasHeader(block.Hash(), block.NumberU64()) { return i, fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4]) } // Skip if the entire data is already known if bc.HasBlock(block.Hash(), block.NumberU64()) { stats.ignored++ continue } // Compute all the non-consensus fields of the receipts if err := SetReceiptsData(bc.chainConfig, block, receipts); err != nil { return i, fmt.Errorf("failed to set receipts data: %v", err) } // Write all the data out into the database rawdb.WriteBody(batch, block.Hash(), block.NumberU64(), block.Body()) rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts) rawdb.WriteTxLookupEntries(batch, block) stats.processed++ if batch.ValueSize() >= ethdb.IdealBatchSize { if err := batch.Write(); err != nil { return 0, err } bytes += batch.ValueSize() batch.Reset() } } if batch.ValueSize() > 0 { bytes += batch.ValueSize() if err := batch.Write(); err != nil { return 0, err } } // Update the head fast sync block if better bc.mu.Lock() head := blockChain[len(blockChain)-1] if td := bc.GetTd(head.Hash(), head.NumberU64()); td != nil { // Rewind may have occurred, skip in that case currentFastBlock := bc.CurrentFastBlock() if bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()).Cmp(td) < 0 { rawdb.WriteHeadFastBlockHash(bc.db, head.Hash()) bc.currentFastBlock.Store(head) } } bc.mu.Unlock() utils.Logger().Info(). Int32("count", stats.processed). Str("elapsed", common.PrettyDuration(time.Since(start)).String()). Str("age", common.PrettyAge(time.Unix(head.Time().Int64(), 0)).String()). Str("head", head.Number().String()). Str("hash", head.Hash().Hex()). Str("size", common.StorageSize(bytes).String()). Int32("ignored", stats.ignored). Msg("Imported new block receipts") return 0, nil } var lastWrite uint64 // WriteBlockWithoutState writes only the block and its metadata to the database, // but does not write any state. This is used to construct competing side forks // up to the point where they exceed the canonical total difficulty. func (bc *BlockChain) WriteBlockWithoutState(block *types.Block, td *big.Int) (err error) { bc.wg.Add(1) defer bc.wg.Done() if err := bc.hc.WriteTd(block.Hash(), block.NumberU64(), td); err != nil { return err } rawdb.WriteBlock(bc.db, block) return nil } // WriteBlockWithState writes the block and all associated state to the database. func (bc *BlockChain) WriteBlockWithState(block *types.Block, receipts []*types.Receipt, cxReceipts []*types.CXReceipt, state *state.DB) (status WriteStatus, err error) { bc.wg.Add(1) defer bc.wg.Done() // Make sure no inconsistent state is leaked during insertion bc.mu.Lock() defer bc.mu.Unlock() currentBlock := bc.CurrentBlock() rawdb.WriteBlock(bc.db, block) root, err := state.Commit(bc.chainConfig.IsS3(block.Epoch())) if err != nil { return NonStatTy, err } triedb := bc.stateCache.TrieDB() // If we're running an archive node, always flush if bc.cacheConfig.Disabled { if err := triedb.Commit(root, false); err != nil { return NonStatTy, err } } else { // Full but not archive node, do proper garbage collection triedb.Reference(root, common.Hash{}) // metadata reference to keep trie alive bc.triegc.Push(root, -int64(block.NumberU64())) if current := block.NumberU64(); current > triesInMemory { // If we exceeded our memory allowance, flush matured singleton nodes to disk var ( nodes, imgs = triedb.Size() limit = common.StorageSize(bc.cacheConfig.TrieNodeLimit) * 1024 * 1024 ) if nodes > limit || imgs > 4*1024*1024 { triedb.Cap(limit - ethdb.IdealBatchSize) } // Find the next state trie we need to commit header := bc.GetHeaderByNumber(current - triesInMemory) chosen := header.Number().Uint64() // If we exceeded out time allowance, flush an entire trie to disk if bc.gcproc > bc.cacheConfig.TrieTimeLimit { // If we're exceeding limits but haven't reached a large enough memory gap, // warn the user that the system is becoming unstable. if chosen < lastWrite+triesInMemory && bc.gcproc >= 2*bc.cacheConfig.TrieTimeLimit { utils.Logger().Info(). Dur("time", bc.gcproc). Dur("allowance", bc.cacheConfig.TrieTimeLimit). Float64("optimum", float64(chosen-lastWrite)/triesInMemory). Msg("State in memory for too long, committing") } // Flush an entire trie and restart the counters triedb.Commit(header.Root(), true) lastWrite = chosen bc.gcproc = 0 } // Garbage collect anything below our required write retention for !bc.triegc.Empty() { root, number := bc.triegc.Pop() if uint64(-number) > chosen { bc.triegc.Push(root, number) break } triedb.Dereference(root.(common.Hash)) } } } // Write other block data using a batch. // TODO: put following into a func /////////////////////////// START batch := bc.db.NewBatch() rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts) //// Cross-shard txns epoch := block.Header().Epoch() if bc.chainConfig.IsCrossTx(block.Epoch()) { shardingConfig := shard.Schedule.InstanceForEpoch(epoch) shardNum := int(shardingConfig.NumShards()) for i := 0; i < shardNum; i++ { if i == int(block.ShardID()) { continue } shardReceipts := GetToShardReceipts(cxReceipts, uint32(i)) err := rawdb.WriteCXReceipts(batch, uint32(i), block.NumberU64(), block.Hash(), shardReceipts, false) if err != nil { utils.Logger().Debug().Err(err).Interface("shardReceipts", shardReceipts).Int("toShardID", i).Msg("WriteCXReceipts cannot write into database") return NonStatTy, err } } // Mark incomingReceipts in the block as spent bc.WriteCXReceiptsProofSpent(block.IncomingReceipts()) } //// VRF + VDF //check non zero VRF field in header and add to local db if len(block.Vrf()) > 0 { vrfBlockNumbers, _ := bc.ReadEpochVrfBlockNums(block.Header().Epoch()) if (len(vrfBlockNumbers) > 0) && (vrfBlockNumbers[len(vrfBlockNumbers)-1] == block.NumberU64()) { utils.Logger().Error(). Str("number", block.Number().String()). Str("epoch", block.Header().Epoch().String()). Msg("VRF block number is already in local db") } else { vrfBlockNumbers = append(vrfBlockNumbers, block.NumberU64()) err = bc.WriteEpochVrfBlockNums(block.Header().Epoch(), vrfBlockNumbers) if err != nil { utils.Logger().Error(). Str("number", block.Number().String()). Str("epoch", block.Header().Epoch().String()). Msg("failed to write VRF block number to local db") return NonStatTy, err } } } //check non zero Vdf in header and add to local db if len(block.Vdf()) > 0 { err = bc.WriteEpochVdfBlockNum(block.Header().Epoch(), block.Number()) if err != nil { utils.Logger().Error(). Str("number", block.Number().String()). Str("epoch", block.Header().Epoch().String()). Msg("failed to write VDF block number to local db") return NonStatTy, err } } //// Shard State and Validator Update header := block.Header() if header.ShardStateHash() != (common.Hash{}) { // Write shard state for the new epoch epoch := new(big.Int).Add(header.Epoch(), common.Big1) shardState, err := bc.WriteShardStateBytes(batch, epoch, header.ShardState()) if err != nil { header.Logger(utils.Logger()).Warn().Err(err).Msg("cannot store shard state") return NonStatTy, err } // Find all the active validator addresses and store them in db allActiveValidators := []common.Address{} processed := make(map[common.Address]struct{}) for i := range *shardState { shard := (*shardState)[i] for j := range shard.Slots { slot := shard.Slots[j] if slot.StakeWithDelegationApplied != nil { // For external validator _, ok := processed[slot.EcdsaAddress] if !ok { processed[slot.EcdsaAddress] = struct{}{} allActiveValidators = append(allActiveValidators, shard.Slots[j].EcdsaAddress) } } } } if err := bc.WriteActiveValidatorList(allActiveValidators); err != nil { return NonStatTy, err } // Create snapshot for all validators if err := bc.UpdateValidatorSnapshots(); err != nil { return NonStatTy, err } } // Do bookkeeping for new staking txns if bc.chainConfig.IsStaking(block.Epoch()) { for _, tx := range block.StakingTransactions() { err = bc.UpdateStakingMetaData(tx, root) // keep offchain database consistency with onchain we need revert // but it should not happend unless local database corrupted if err != nil { utils.Logger().Debug().Msgf("oops, UpdateStakingMetaData failed, err: %+v", err) return NonStatTy, err } } } //// Cross-links if len(header.CrossLinks()) > 0 { crossLinks := &types.CrossLinks{} err = rlp.DecodeBytes(header.CrossLinks(), crossLinks) if err != nil { header.Logger(utils.Logger()).Warn().Err(err).Msg("[insertChain] cannot parse cross links") return NonStatTy, err } if !crossLinks.IsSorted() { header.Logger(utils.Logger()).Warn().Err(err).Msg("[insertChain] cross links are not sorted") return NonStatTy, errors.New("proposed cross links are not sorted") } for _, crossLink := range *crossLinks { if err := bc.WriteCrossLinks(types.CrossLinks{crossLink}, false); err == nil { utils.Logger().Info().Uint64("blockNum", crossLink.BlockNum().Uint64()).Uint32("shardID", crossLink.ShardID()).Msg("[InsertChain] Cross Link Added to Beaconchain") } bc.DeleteCrossLinks(types.CrossLinks{crossLink}, true) bc.WriteShardLastCrossLink(crossLink.ShardID(), crossLink) } } /////////////////////////// END // If the total difficulty is higher than our known, add it to the canonical chain // Second clause in the if statement reduces the vulnerability to selfish mining. // Please refer to http://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf // TODO: Remove reorg code, it's not used in our code reorg := true if reorg { // Reorganise the chain if the parent is not the head block if block.ParentHash() != currentBlock.Hash() { if err := bc.reorg(currentBlock, block); err != nil { return NonStatTy, err } } // Write the positional metadata for transaction/receipt lookups and preimages rawdb.WriteTxLookupEntries(batch, block) rawdb.WritePreimages(batch, block.NumberU64(), state.Preimages()) // write the positional metadata for CXReceipts lookups rawdb.WriteCxLookupEntries(batch, block) status = CanonStatTy } else { status = SideStatTy } if err := batch.Write(); err != nil { return NonStatTy, err } // Set new head. if status == CanonStatTy { bc.insert(block) } bc.futureBlocks.Remove(block.Hash()) return status, nil } // InsertChain attempts to insert the given batch of blocks in to the canonical // chain or, otherwise, create a fork. If an error is returned it will return // the index number of the failing block as well an error describing what went // wrong. // // After insertion is done, all accumulated events will be fired. func (bc *BlockChain) InsertChain(chain types.Blocks, verifyHeaders bool) (int, error) { n, events, logs, err := bc.insertChain(chain, verifyHeaders) bc.PostChainEvents(events, logs) return n, err } // insertChain will execute the actual chain insertion and event aggregation. The // only reason this method exists as a separate one is to make locking cleaner // with deferred statements. func (bc *BlockChain) insertChain(chain types.Blocks, verifyHeaders bool) (int, []interface{}, []*types.Log, error) { // Sanity check that we have something meaningful to import if len(chain) == 0 { return 0, nil, nil, nil } // Do a sanity check that the provided chain is actually ordered and linked for i := 1; i < len(chain); i++ { if chain[i].NumberU64() != chain[i-1].NumberU64()+1 || chain[i].ParentHash() != chain[i-1].Hash() { // Chain broke ancestry, log a message (programming error) and skip insertion utils.Logger().Error(). Str("number", chain[i].Number().String()). Str("hash", chain[i].Hash().Hex()). Str("parent", chain[i].ParentHash().Hex()). Str("prevnumber", chain[i-1].Number().String()). Str("prevhash", chain[i-1].Hash().Hex()). Msg("insertChain: non contiguous block insert") return 0, nil, nil, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, chain[i-1].NumberU64(), chain[i-1].Hash().Bytes()[:4], i, chain[i].NumberU64(), chain[i].Hash().Bytes()[:4], chain[i].ParentHash().Bytes()[:4]) } } // Pre-checks passed, start the full block imports bc.wg.Add(1) defer bc.wg.Done() bc.chainmu.Lock() defer bc.chainmu.Unlock() // A queued approach to delivering events. This is generally // faster than direct delivery and requires much less mutex // acquiring. var ( stats = insertStats{startTime: mclock.Now()} events = make([]interface{}, 0, len(chain)) lastCanon *types.Block coalescedLogs []*types.Log ) var verifyHeadersResults <-chan error // If the block header chain has not been verified, conduct header verification here. if verifyHeaders { headers := make([]*block.Header, len(chain)) seals := make([]bool, len(chain)) for i, block := range chain { headers[i] = block.Header() seals[i] = true } // Note that VerifyHeaders verifies headers in the chain in parallel abort, results := bc.Engine().VerifyHeaders(bc, headers, seals) verifyHeadersResults = results defer close(abort) } // Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss) //senderCacher.recoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain) // Iterate over the blocks and insert when the verifier permits for i, block := range chain { // If the chain is terminating, stop processing blocks if atomic.LoadInt32(&bc.procInterrupt) == 1 { utils.Logger().Debug().Msg("Premature abort during blocks processing") break } // Wait for the block's verification to complete bstart := time.Now() var err error if verifyHeaders { err = <-verifyHeadersResults } if err == nil { err = bc.Validator().ValidateBody(block) } switch { case err == ErrKnownBlock: // Block and state both already known. However if the current block is below // this number we did a rollback and we should reimport it nonetheless. if bc.CurrentBlock().NumberU64() >= block.NumberU64() { stats.ignored++ continue } case err == consensus_engine.ErrFutureBlock: // Allow up to MaxFuture second in the future blocks. If this limit is exceeded // the chain is discarded and processed at a later time if given. max := big.NewInt(time.Now().Unix() + maxTimeFutureBlocks) if block.Time().Cmp(max) > 0 { return i, events, coalescedLogs, fmt.Errorf("future block: %v > %v", block.Time(), max) } bc.futureBlocks.Add(block.Hash(), block) stats.queued++ continue case err == consensus_engine.ErrUnknownAncestor && bc.futureBlocks.Contains(block.ParentHash()): bc.futureBlocks.Add(block.Hash(), block) stats.queued++ continue case err == consensus_engine.ErrPrunedAncestor: // TODO: add fork choice mechanism // Block competing with the canonical chain, store in the db, but don't process // until the competitor TD goes above the canonical TD //currentBlock := bc.CurrentBlock() //localTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64()) //externTd := new(big.Int).Add(bc.GetTd(block.ParentHash(), block.NumberU64()-1), block.Difficulty()) //if localTd.Cmp(externTd) > 0 { // if err = bc.WriteBlockWithoutState(block, externTd); err != nil { // return i, events, coalescedLogs, err // } // continue //} // Competitor chain beat canonical, gather all blocks from the common ancestor var winner []*types.Block parent := bc.GetBlock(block.ParentHash(), block.NumberU64()-1) for parent != nil && !bc.HasState(parent.Root()) { winner = append(winner, parent) parent = bc.GetBlock(parent.ParentHash(), parent.NumberU64()-1) } for j := 0; j < len(winner)/2; j++ { winner[j], winner[len(winner)-1-j] = winner[len(winner)-1-j], winner[j] } // Prune in case non-empty winner chain if len(winner) > 0 { // Import all the pruned blocks to make the state available bc.chainmu.Unlock() _, evs, logs, err := bc.insertChain(winner, true /* verifyHeaders */) bc.chainmu.Lock() events, coalescedLogs = evs, logs if err != nil { return i, events, coalescedLogs, err } } case err != nil: bc.reportBlock(block, nil, err) return i, events, coalescedLogs, err } // Create a new statedb using the parent block and report an // error if it fails. var parent *types.Block if i == 0 { parent = bc.GetBlock(block.ParentHash(), block.NumberU64()-1) } else { parent = chain[i-1] } state, err := state.New(parent.Root(), bc.stateCache) if err != nil { return i, events, coalescedLogs, err } // Process block using the parent state as reference point. receipts, cxReceipts, logs, usedGas, err := bc.processor.Process(block, state, bc.vmConfig) if err != nil { bc.reportBlock(block, receipts, err) return i, events, coalescedLogs, err } // Validate the state using the default validator err = bc.Validator().ValidateState(block, parent, state, receipts, cxReceipts, usedGas) if err != nil { bc.reportBlock(block, receipts, err) return i, events, coalescedLogs, err } proctime := time.Since(bstart) // Write the block to the chain and get the status. status, err := bc.WriteBlockWithState(block, receipts, cxReceipts, state) if err != nil { return i, events, coalescedLogs, err } logger := utils.Logger().With(). Str("number", block.Number().String()). Str("hash", block.Hash().Hex()). Int("uncles", len(block.Uncles())). Int("txs", len(block.Transactions())). Uint64("gas", block.GasUsed()). Str("elapsed", common.PrettyDuration(time.Since(bstart)).String()). Logger() switch status { case CanonStatTy: logger.Info().Msg("Inserted new block") coalescedLogs = append(coalescedLogs, logs...) blockInsertTimer.UpdateSince(bstart) events = append(events, ChainEvent{block, block.Hash(), logs}) lastCanon = block // Only count canonical blocks for GC processing time bc.gcproc += proctime case SideStatTy: logger.Debug().Msg("Inserted forked block") blockInsertTimer.UpdateSince(bstart) events = append(events, ChainSideEvent{block}) } stats.processed++ stats.usedGas += usedGas cache, _ := bc.stateCache.TrieDB().Size() stats.report(chain, i, cache) } // Append a single chain head event if we've progressed the chain if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() { events = append(events, ChainHeadEvent{lastCanon}) } return 0, events, coalescedLogs, nil } // insertStats tracks and reports on block insertion. type insertStats struct { queued, processed, ignored int usedGas uint64 lastIndex int startTime mclock.AbsTime } // statsReportLimit is the time limit during import and export after which we // always print out progress. This avoids the user wondering what's going on. const statsReportLimit = 8 * time.Second // report prints statistics if some number of blocks have been processed // or more than a few seconds have passed since the last message. func (st *insertStats) report(chain []*types.Block, index int, cache common.StorageSize) { // Fetch the timings for the batch var ( now = mclock.Now() elapsed = time.Duration(now) - time.Duration(st.startTime) ) // If we're at the last block of the batch or report period reached, log if index == len(chain)-1 || elapsed >= statsReportLimit { var ( end = chain[index] txs = countTransactions(chain[st.lastIndex : index+1]) ) context := utils.Logger().With(). Int("blocks", st.processed). Int("txs", txs). Float64("mgas", float64(st.usedGas)/1000000). Str("elapsed", common.PrettyDuration(elapsed).String()). Float64("mgasps", float64(st.usedGas)*1000/float64(elapsed)). Str("number", end.Number().String()). Str("hash", end.Hash().Hex()). Str("cache", cache.String()) if timestamp := time.Unix(end.Time().Int64(), 0); time.Since(timestamp) > time.Minute { context = context.Str("age", common.PrettyAge(timestamp).String()) } if st.queued > 0 { context = context.Int("queued", st.queued) } if st.ignored > 0 { context = context.Int("ignored", st.ignored) } logger := context.Logger() logger.Info().Msg("Imported new chain segment") *st = insertStats{startTime: now, lastIndex: index + 1} } } func countTransactions(chain []*types.Block) (c int) { for _, b := range chain { c += len(b.Transactions()) } return c } // reorgs takes two blocks, an old chain and a new chain and will reconstruct the blocks and inserts them // to be part of the new canonical chain and accumulates potential missing transactions and post an // event about them func (bc *BlockChain) reorg(oldBlock, newBlock *types.Block) error { var ( newChain types.Blocks oldChain types.Blocks commonBlock *types.Block deletedTxs types.Transactions deletedLogs []*types.Log // collectLogs collects the logs that were generated during the // processing of the block that corresponds with the given hash. // These logs are later announced as deleted. collectLogs = func(hash common.Hash) { // Coalesce logs and set 'Removed'. number := bc.hc.GetBlockNumber(hash) if number == nil { return } receipts := rawdb.ReadReceipts(bc.db, hash, *number) for _, receipt := range receipts { for _, log := range receipt.Logs { del := *log del.Removed = true deletedLogs = append(deletedLogs, &del) } } } ) // first reduce whoever is higher bound if oldBlock.NumberU64() > newBlock.NumberU64() { // reduce old chain for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) { oldChain = append(oldChain, oldBlock) deletedTxs = append(deletedTxs, oldBlock.Transactions()...) collectLogs(oldBlock.Hash()) } } else { // reduce new chain and append new chain blocks for inserting later on for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) { newChain = append(newChain, newBlock) } } if oldBlock == nil { return fmt.Errorf("Invalid old chain") } if newBlock == nil { return fmt.Errorf("Invalid new chain") } for { if oldBlock.Hash() == newBlock.Hash() { commonBlock = oldBlock break } oldChain = append(oldChain, oldBlock) newChain = append(newChain, newBlock) deletedTxs = append(deletedTxs, oldBlock.Transactions()...) collectLogs(oldBlock.Hash()) oldBlock, newBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1), bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) if oldBlock == nil { return fmt.Errorf("Invalid old chain") } if newBlock == nil { return fmt.Errorf("Invalid new chain") } } // Ensure the user sees large reorgs if len(oldChain) > 0 && len(newChain) > 0 { logEvent := utils.Logger().Debug() if len(oldChain) > 63 { logEvent = utils.Logger().Warn() } logEvent. Str("number", commonBlock.Number().String()). Str("hash", commonBlock.Hash().Hex()). Int("drop", len(oldChain)). Str("dropfrom", oldChain[0].Hash().Hex()). Int("add", len(newChain)). Str("addfrom", newChain[0].Hash().Hex()). Msg("Chain split detected") } else { utils.Logger().Error(). Str("oldnum", oldBlock.Number().String()). Str("oldhash", oldBlock.Hash().Hex()). Str("newnum", newBlock.Number().String()). Str("newhash", newBlock.Hash().Hex()). Msg("Impossible reorg, please file an issue") } // Insert the new chain, taking care of the proper incremental order var addedTxs types.Transactions for i := len(newChain) - 1; i >= 0; i-- { // insert the block in the canonical way, re-writing history bc.insert(newChain[i]) // write lookup entries for hash based transaction/receipt searches rawdb.WriteTxLookupEntries(bc.db, newChain[i]) addedTxs = append(addedTxs, newChain[i].Transactions()...) } // calculate the difference between deleted and added transactions diff := types.TxDifference(deletedTxs, addedTxs) // When transactions get deleted from the database that means the // receipts that were created in the fork must also be deleted batch := bc.db.NewBatch() for _, tx := range diff { rawdb.DeleteTxLookupEntry(batch, tx.Hash()) } batch.Write() if len(deletedLogs) > 0 { go bc.rmLogsFeed.Send(RemovedLogsEvent{deletedLogs}) } if len(oldChain) > 0 { go func() { for _, block := range oldChain { bc.chainSideFeed.Send(ChainSideEvent{Block: block}) } }() } return nil } // PostChainEvents iterates over the events generated by a chain insertion and // posts them into the event feed. // TODO: Should not expose PostChainEvents. The chain events should be posted in WriteBlock. func (bc *BlockChain) PostChainEvents(events []interface{}, logs []*types.Log) { // post event logs for further processing if logs != nil { bc.logsFeed.Send(logs) } for _, event := range events { switch ev := event.(type) { case ChainEvent: bc.chainFeed.Send(ev) case ChainHeadEvent: bc.chainHeadFeed.Send(ev) case ChainSideEvent: bc.chainSideFeed.Send(ev) } } } func (bc *BlockChain) update() { futureTimer := time.NewTicker(5 * time.Second) defer futureTimer.Stop() for { select { case <-futureTimer.C: bc.procFutureBlocks() case <-bc.quit: return } } } // BadBlocks returns a list of the last 'bad blocks' that the client has seen on the network func (bc *BlockChain) BadBlocks() []*types.Block { blocks := make([]*types.Block, 0, bc.badBlocks.Len()) for _, hash := range bc.badBlocks.Keys() { if blk, exist := bc.badBlocks.Peek(hash); exist { block := blk.(*types.Block) blocks = append(blocks, block) } } return blocks } // addBadBlock adds a bad block to the bad-block LRU cache func (bc *BlockChain) addBadBlock(block *types.Block) { bc.badBlocks.Add(block.Hash(), block) } // reportBlock logs a bad block error. func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) { bc.addBadBlock(block) var receiptString string for _, receipt := range receipts { receiptString += fmt.Sprintf("\t%v\n", receipt) } utils.Logger().Error().Msgf(` ########## BAD BLOCK ######### Chain config: %v Number: %v Hash: 0x%x %v Error: %v ############################## `, bc.chainConfig, block.Number(), block.Hash(), receiptString, err) } // InsertHeaderChain attempts to insert the given header chain in to the local // chain, possibly creating a reorg. If an error is returned, it will return the // index number of the failing header as well an error describing what went wrong. // // The verify parameter can be used to fine tune whether nonce verification // should be done or not. The reason behind the optional check is because some // of the header retrieval mechanisms already need to verify nonces, as well as // because nonces can be verified sparsely, not needing to check each. func (bc *BlockChain) InsertHeaderChain(chain []*block.Header, checkFreq int) (int, error) { start := time.Now() if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq); err != nil { return i, err } // Make sure only one thread manipulates the chain at once bc.chainmu.Lock() defer bc.chainmu.Unlock() bc.wg.Add(1) defer bc.wg.Done() whFunc := func(header *block.Header) error { bc.mu.Lock() defer bc.mu.Unlock() _, err := bc.hc.WriteHeader(header) return err } return bc.hc.InsertHeaderChain(chain, whFunc, start) } // writeHeader writes a header into the local chain, given that its parent is // already known. If the total difficulty of the newly inserted header becomes // greater than the current known TD, the canonical chain is re-routed. // // Note: This method is not concurrent-safe with inserting blocks simultaneously // into the chain, as side effects caused by reorganisations cannot be emulated // without the real blocks. Hence, writing headers directly should only be done // in two scenarios: pure-header mode of operation (light clients), or properly // separated header/block phases (non-archive clients). func (bc *BlockChain) writeHeader(header *block.Header) error { bc.wg.Add(1) defer bc.wg.Done() bc.mu.Lock() defer bc.mu.Unlock() _, err := bc.hc.WriteHeader(header) return err } // CurrentHeader retrieves the current head header of the canonical chain. The // header is retrieved from the HeaderChain's internal cache. func (bc *BlockChain) CurrentHeader() *block.Header { return bc.hc.CurrentHeader() } // GetTd retrieves a block's total difficulty in the canonical chain from the // database by hash and number, caching it if found. func (bc *BlockChain) GetTd(hash common.Hash, number uint64) *big.Int { return bc.hc.GetTd(hash, number) } // GetTdByHash retrieves a block's total difficulty in the canonical chain from the // database by hash, caching it if found. func (bc *BlockChain) GetTdByHash(hash common.Hash) *big.Int { return bc.hc.GetTdByHash(hash) } // GetHeader retrieves a block header from the database by hash and number, // caching it if found. func (bc *BlockChain) GetHeader(hash common.Hash, number uint64) *block.Header { return bc.hc.GetHeader(hash, number) } // GetHeaderByHash retrieves a block header from the database by hash, caching it if // found. func (bc *BlockChain) GetHeaderByHash(hash common.Hash) *block.Header { return bc.hc.GetHeaderByHash(hash) } // HasHeader checks if a block header is present in the database or not, caching // it if present. func (bc *BlockChain) HasHeader(hash common.Hash, number uint64) bool { return bc.hc.HasHeader(hash, number) } // GetBlockHashesFromHash retrieves a number of block hashes starting at a given // hash, fetching towards the genesis block. func (bc *BlockChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash { return bc.hc.GetBlockHashesFromHash(hash, max) } // GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or // a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the // number of blocks to be individually checked before we reach the canonical chain. // // Note: ancestor == 0 returns the same block, 1 returns its parent and so on. func (bc *BlockChain) GetAncestor(hash common.Hash, number, ancestor uint64, maxNonCanonical *uint64) (common.Hash, uint64) { bc.chainmu.Lock() defer bc.chainmu.Unlock() return bc.hc.GetAncestor(hash, number, ancestor, maxNonCanonical) } // GetHeaderByNumber retrieves a block header from the database by number, // caching it (associated with its hash) if found. func (bc *BlockChain) GetHeaderByNumber(number uint64) *block.Header { return bc.hc.GetHeaderByNumber(number) } // Config retrieves the blockchain's chain configuration. func (bc *BlockChain) Config() *params.ChainConfig { return bc.chainConfig } // Engine retrieves the blockchain's consensus engine. func (bc *BlockChain) Engine() consensus_engine.Engine { return bc.engine } // SubscribeRemovedLogsEvent registers a subscription of RemovedLogsEvent. func (bc *BlockChain) SubscribeRemovedLogsEvent(ch chan<- RemovedLogsEvent) event.Subscription { return bc.scope.Track(bc.rmLogsFeed.Subscribe(ch)) } // SubscribeChainEvent registers a subscription of ChainEvent. func (bc *BlockChain) SubscribeChainEvent(ch chan<- ChainEvent) event.Subscription { return bc.scope.Track(bc.chainFeed.Subscribe(ch)) } // SubscribeChainHeadEvent registers a subscription of ChainHeadEvent. func (bc *BlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription { return bc.scope.Track(bc.chainHeadFeed.Subscribe(ch)) } // SubscribeChainSideEvent registers a subscription of ChainSideEvent. func (bc *BlockChain) SubscribeChainSideEvent(ch chan<- ChainSideEvent) event.Subscription { return bc.scope.Track(bc.chainSideFeed.Subscribe(ch)) } // SubscribeLogsEvent registers a subscription of []*types.Log. func (bc *BlockChain) SubscribeLogsEvent(ch chan<- []*types.Log) event.Subscription { return bc.scope.Track(bc.logsFeed.Subscribe(ch)) } // ReadShardState retrieves sharding state given the epoch number. func (bc *BlockChain) ReadShardState(epoch *big.Int) (shard.State, error) { cacheKey := string(epoch.Bytes()) if cached, ok := bc.shardStateCache.Get(cacheKey); ok { shardState := cached.(shard.State) return shardState, nil } shardState, err := rawdb.ReadShardState(bc.db, epoch) if err != nil { return nil, err } bc.shardStateCache.Add(cacheKey, shardState) return shardState, nil } // WriteShardState saves the given sharding state under the given epoch number. func (bc *BlockChain) WriteShardState( epoch *big.Int, shardState shard.State, ) error { shardState = shardState.DeepCopy() err := rawdb.WriteShardState(bc.db, epoch, shardState) if err != nil { return err } cacheKey := string(epoch.Bytes()) bc.shardStateCache.Add(cacheKey, shardState) return nil } // WriteShardStateBytes saves the given sharding state under the given epoch number. func (bc *BlockChain) WriteShardStateBytes(db rawdb.DatabaseWriter, epoch *big.Int, shardState []byte, ) (*shard.State, error) { decodeShardState := shard.State{} if err := rlp.DecodeBytes(shardState, &decodeShardState); err != nil { return nil, err } err := rawdb.WriteShardStateBytes(db, epoch, shardState) if err != nil { return nil, err } cacheKey := string(epoch.Bytes()) bc.shardStateCache.Add(cacheKey, decodeShardState) return &decodeShardState, nil } // ReadLastCommits retrieves last commits. func (bc *BlockChain) ReadLastCommits() ([]byte, error) { if cached, ok := bc.lastCommitsCache.Get("lastCommits"); ok { lastCommits := cached.([]byte) return lastCommits, nil } lastCommits, err := rawdb.ReadLastCommits(bc.db) if err != nil { return nil, err } return lastCommits, nil } // WriteLastCommits saves the commits of last block. func (bc *BlockChain) WriteLastCommits(lastCommits []byte) error { err := rawdb.WriteLastCommits(bc.db, lastCommits) if err != nil { return err } bc.lastCommitsCache.Add("lastCommits", lastCommits) return nil } // GetVdfByNumber retrieves the rand seed given the block number, return 0 if not exist func (bc *BlockChain) GetVdfByNumber(number uint64) []byte { header := bc.GetHeaderByNumber(number) if header == nil { return []byte{} } return header.Vdf() } // GetVrfByNumber retrieves the randomness preimage given the block number, return 0 if not exist func (bc *BlockChain) GetVrfByNumber(number uint64) []byte { header := bc.GetHeaderByNumber(number) if header == nil { return []byte{} } return header.Vrf() } // GetShardState returns the shard state for the given epoch, // creating one if needed. func (bc *BlockChain) GetShardState(epoch *big.Int) (shard.State, error) { shardState, err := bc.ReadShardState(epoch) if err == nil { // TODO ek – distinguish ErrNotFound return shardState, err } if epoch.Cmp(big.NewInt(GenesisEpoch)) == 0 { shardState, err = committee.WithStakingEnabled.Compute( big.NewInt(GenesisEpoch), *bc.Config(), nil, ) } else { prevEpoch := new(big.Int).Sub(epoch, common.Big1) shardState, err = committee.WithStakingEnabled.ReadFromDB( prevEpoch, bc, ) } if err != nil { return nil, err } err = bc.WriteShardState(epoch, shardState) if err != nil { return nil, err } utils.Logger().Debug().Str("epoch", epoch.String()).Msg("saved new shard state") return shardState, nil } // ChainDb returns the database func (bc *BlockChain) ChainDb() ethdb.Database { return bc.db } // GetEpochBlockNumber returns the first block number of the given epoch. func (bc *BlockChain) GetEpochBlockNumber(epoch *big.Int) (*big.Int, error) { // Try cache first cacheKey := string(epoch.Bytes()) if cachedValue, ok := bc.epochCache.Get(cacheKey); ok { return (&big.Int{}).SetBytes([]byte(cachedValue.(string))), nil } blockNum, err := rawdb.ReadEpochBlockNumber(bc.db, epoch) if err != nil { return nil, ctxerror.New("cannot read epoch block number from database", "epoch", epoch, ).WithCause(err) } cachedValue := []byte(blockNum.Bytes()) bc.epochCache.Add(cacheKey, cachedValue) return blockNum, nil } // StoreEpochBlockNumber stores the given epoch-first block number. func (bc *BlockChain) StoreEpochBlockNumber( epoch *big.Int, blockNum *big.Int, ) error { cacheKey := string(epoch.Bytes()) cachedValue := []byte(blockNum.Bytes()) bc.epochCache.Add(cacheKey, cachedValue) if err := rawdb.WriteEpochBlockNumber(bc.db, epoch, blockNum); err != nil { return ctxerror.New("cannot write epoch block number to database", "epoch", epoch, "epochBlockNum", blockNum, ).WithCause(err) } return nil } // ReadEpochVrfBlockNums retrieves block numbers with valid VRF for the specified epoch func (bc *BlockChain) ReadEpochVrfBlockNums(epoch *big.Int) ([]uint64, error) { vrfNumbers := []uint64{} if cached, ok := bc.randomnessCache.Get("vrf-" + string(epoch.Bytes())); ok { encodedVrfNumbers := cached.([]byte) if err := rlp.DecodeBytes(encodedVrfNumbers, &vrfNumbers); err != nil { return nil, err } return vrfNumbers, nil } encodedVrfNumbers, err := rawdb.ReadEpochVrfBlockNums(bc.db, epoch) if err != nil { return nil, err } if err := rlp.DecodeBytes(encodedVrfNumbers, &vrfNumbers); err != nil { return nil, err } return vrfNumbers, nil } // WriteEpochVrfBlockNums saves block numbers with valid VRF for the specified epoch func (bc *BlockChain) WriteEpochVrfBlockNums(epoch *big.Int, vrfNumbers []uint64) error { encodedVrfNumbers, err := rlp.EncodeToBytes(vrfNumbers) if err != nil { return err } err = rawdb.WriteEpochVrfBlockNums(bc.db, epoch, encodedVrfNumbers) if err != nil { return err } bc.randomnessCache.Add("vrf-"+string(epoch.Bytes()), encodedVrfNumbers) return nil } // ReadEpochVdfBlockNum retrieves block number with valid VDF for the specified epoch func (bc *BlockChain) ReadEpochVdfBlockNum(epoch *big.Int) (*big.Int, error) { if cached, ok := bc.randomnessCache.Get("vdf-" + string(epoch.Bytes())); ok { encodedVdfNumber := cached.([]byte) return new(big.Int).SetBytes(encodedVdfNumber), nil } encodedVdfNumber, err := rawdb.ReadEpochVdfBlockNum(bc.db, epoch) if err != nil { return nil, err } return new(big.Int).SetBytes(encodedVdfNumber), nil } // WriteEpochVdfBlockNum saves block number with valid VDF for the specified epoch func (bc *BlockChain) WriteEpochVdfBlockNum(epoch *big.Int, blockNum *big.Int) error { err := rawdb.WriteEpochVdfBlockNum(bc.db, epoch, blockNum.Bytes()) if err != nil { return err } bc.randomnessCache.Add("vdf-"+string(epoch.Bytes()), blockNum.Bytes()) return nil } // WriteCrossLinks saves the hashes of crosslinks by shardID and blockNum combination key // temp=true is to write the just received cross link that's not committed into blockchain with consensus func (bc *BlockChain) WriteCrossLinks(cls []types.CrossLink, temp bool) error { var err error for i := 0; i < len(cls); i++ { cl := cls[i] err = rawdb.WriteCrossLinkShardBlock(bc.db, cl.ShardID(), cl.BlockNum().Uint64(), cl.Serialize(), temp) } return err } // DeleteCrossLinks removes the hashes of crosslinks by shardID and blockNum combination key // temp=true is to write the just received cross link that's not committed into blockchain with consensus func (bc *BlockChain) DeleteCrossLinks(cls []types.CrossLink, temp bool) error { var err error for i := 0; i < len(cls); i++ { cl := cls[i] err = rawdb.DeleteCrossLinkShardBlock(bc.db, cl.ShardID(), cl.BlockNum().Uint64(), temp) } return err } // ReadCrossLink retrieves crosslink given shardID and blockNum. // temp=true is to retrieve the just received cross link that's not committed into blockchain with consensus func (bc *BlockChain) ReadCrossLink(shardID uint32, blockNum uint64, temp bool) (*types.CrossLink, error) { bytes, err := rawdb.ReadCrossLinkShardBlock(bc.db, shardID, blockNum, temp) if err != nil { return nil, err } crossLink, err := types.DeserializeCrossLink(bytes) return crossLink, err } // WriteShardLastCrossLink saves the last crosslink of a shard func (bc *BlockChain) WriteShardLastCrossLink(shardID uint32, cl types.CrossLink) error { return rawdb.WriteShardLastCrossLink(bc.db, cl.ShardID(), cl.Serialize()) } // ReadShardLastCrossLink retrieves the last crosslink of a shard. func (bc *BlockChain) ReadShardLastCrossLink(shardID uint32) (*types.CrossLink, error) { bytes, err := rawdb.ReadShardLastCrossLink(bc.db, shardID) if err != nil { return nil, err } crossLink, err := types.DeserializeCrossLink(bytes) return crossLink, err } // IsSameLeaderAsPreviousBlock retrieves a block from the database by number, caching it func (bc *BlockChain) IsSameLeaderAsPreviousBlock(block *types.Block) bool { if IsEpochBlock(block) { return false } previousHeader := bc.GetHeaderByNumber(block.NumberU64() - 1) return block.Coinbase() == previousHeader.Coinbase() } // ChainDB ... // TODO(ricl): in eth, this is not exposed. I expose it here because I need it in Harmony object. // In eth, chainDB is initialized within Ethereum object func (bc *BlockChain) ChainDB() ethdb.Database { return bc.db } // GetVMConfig returns the block chain VM config. func (bc *BlockChain) GetVMConfig() *vm.Config { return &bc.vmConfig } // GetToShardReceipts filters the cross shard receipts with given destination shardID func GetToShardReceipts(cxReceipts types.CXReceipts, shardID uint32) types.CXReceipts { cxs := types.CXReceipts{} for i := range cxReceipts { cx := cxReceipts[i] if cx.ToShardID == shardID { cxs = append(cxs, cx) } } return cxs } // ReadCXReceipts retrieves the cross shard transaction receipts of a given shard // temp=true is to retrieve the just received receipts that's not committed into blockchain with consensus func (bc *BlockChain) ReadCXReceipts(shardID uint32, blockNum uint64, blockHash common.Hash, temp bool) (types.CXReceipts, error) { cxs, err := rawdb.ReadCXReceipts(bc.db, shardID, blockNum, blockHash, temp) if err != nil || len(cxs) == 0 { return nil, err } return cxs, nil } // WriteCXReceipts saves the cross shard transaction receipts of a given shard // temp=true is to store the just received receipts that's not committed into blockchain with consensus func (bc *BlockChain) WriteCXReceipts(shardID uint32, blockNum uint64, blockHash common.Hash, receipts types.CXReceipts, temp bool) error { return rawdb.WriteCXReceipts(bc.db, shardID, blockNum, blockHash, receipts, temp) } // CXMerkleProof calculates the cross shard transaction merkle proof of a given destination shard func (bc *BlockChain) CXMerkleProof(shardID uint32, block *types.Block) (*types.CXMerkleProof, error) { proof := &types.CXMerkleProof{BlockNum: block.Number(), BlockHash: block.Hash(), ShardID: block.ShardID(), CXReceiptHash: block.Header().OutgoingReceiptHash(), CXShardHashes: []common.Hash{}, ShardIDs: []uint32{}} cxs, err := rawdb.ReadCXReceipts(bc.db, shardID, block.NumberU64(), block.Hash(), false) if err != nil || cxs == nil { return nil, err } epoch := block.Header().Epoch() shardingConfig := shard.Schedule.InstanceForEpoch(epoch) shardNum := int(shardingConfig.NumShards()) for i := 0; i < shardNum; i++ { receipts, err := bc.ReadCXReceipts(uint32(i), block.NumberU64(), block.Hash(), false) if err != nil || len(receipts) == 0 { continue } else { hash := types.DeriveSha(receipts) proof.CXShardHashes = append(proof.CXShardHashes, hash) proof.ShardIDs = append(proof.ShardIDs, uint32(i)) } } if len(proof.ShardIDs) == 0 { return nil, nil } return proof, nil } // LatestCXReceiptsCheckpoint returns the latest checkpoint func (bc *BlockChain) LatestCXReceiptsCheckpoint(shardID uint32) uint64 { blockNum, _ := rawdb.ReadCXReceiptsProofUnspentCheckpoint(bc.db, shardID) return blockNum } // NextCXReceiptsCheckpoint returns the next checkpoint blockNum func (bc *BlockChain) NextCXReceiptsCheckpoint(currentNum uint64, shardID uint32) uint64 { lastCheckpoint, _ := rawdb.ReadCXReceiptsProofUnspentCheckpoint(bc.db, shardID) newCheckpoint := lastCheckpoint // the new checkpoint will not exceed currentNum+1 for num := lastCheckpoint; num <= currentNum+1; num++ { newCheckpoint = num by, _ := rawdb.ReadCXReceiptsProofSpent(bc.db, shardID, num) if by == rawdb.NAByte { // TODO chao: check if there is IncompingReceiptsHash in crosslink header // if the rootHash is non-empty, it means incomingReceipts are not delivered // otherwise, it means there is no cross-shard transactions for this block continue } if by == rawdb.SpentByte { continue } // the first unspent blockHash found, break the loop break } return newCheckpoint } // updateCXReceiptsCheckpoints will update the checkpoint and clean spent receipts upto checkpoint func (bc *BlockChain) updateCXReceiptsCheckpoints(shardID uint32, currentNum uint64) { lastCheckpoint, err := rawdb.ReadCXReceiptsProofUnspentCheckpoint(bc.db, shardID) if err != nil { utils.Logger().Warn().Msg("[updateCXReceiptsCheckpoints] Cannot get lastCheckpoint") } newCheckpoint := bc.NextCXReceiptsCheckpoint(currentNum, shardID) if lastCheckpoint == newCheckpoint { return } utils.Logger().Debug().Uint64("lastCheckpoint", lastCheckpoint).Uint64("newCheckpont", newCheckpoint).Msg("[updateCXReceiptsCheckpoints]") for num := lastCheckpoint; num < newCheckpoint; num++ { rawdb.DeleteCXReceiptsProofSpent(bc.db, shardID, num) } rawdb.WriteCXReceiptsProofUnspentCheckpoint(bc.db, shardID, newCheckpoint) } // WriteCXReceiptsProofSpent mark the CXReceiptsProof list with given unspent status // true: unspent, false: spent func (bc *BlockChain) WriteCXReceiptsProofSpent(cxps []*types.CXReceiptsProof) { for _, cxp := range cxps { rawdb.WriteCXReceiptsProofSpent(bc.db, cxp) } } // IsSpent checks whether a CXReceiptsProof is unspent func (bc *BlockChain) IsSpent(cxp *types.CXReceiptsProof) bool { shardID := cxp.MerkleProof.ShardID blockNum := cxp.MerkleProof.BlockNum.Uint64() by, _ := rawdb.ReadCXReceiptsProofSpent(bc.db, shardID, blockNum) if by == rawdb.SpentByte || cxp.MerkleProof.BlockNum.Uint64() < bc.LatestCXReceiptsCheckpoint(cxp.MerkleProof.ShardID) { return true } return false } // UpdateCXReceiptsCheckpointsByBlock cleans checkpoints and update latest checkpoint based on incomingReceipts of the given block func (bc *BlockChain) UpdateCXReceiptsCheckpointsByBlock(block *types.Block) { m := make(map[uint32]uint64) for _, cxp := range block.IncomingReceipts() { shardID := cxp.MerkleProof.ShardID blockNum := cxp.MerkleProof.BlockNum.Uint64() if _, ok := m[shardID]; !ok { m[shardID] = blockNum } else if m[shardID] < blockNum { m[shardID] = blockNum } } for k, v := range m { utils.Logger().Debug().Uint32("shardID", k).Uint64("blockNum", v).Msg("[CleanCXReceiptsCheckpoints] Cleaning CXReceiptsProof upto") bc.updateCXReceiptsCheckpoints(k, v) } } // ReadTxLookupEntry returns where the given transaction resides in the chain, // as a (block hash, block number, index in transaction list) triple. // returns 0, 0 if not found func (bc *BlockChain) ReadTxLookupEntry(txID common.Hash) (common.Hash, uint64, uint64) { return rawdb.ReadTxLookupEntry(bc.db, txID) } // ReadValidatorDataAt reads staking information of given validatorWrapper at a specific state root func (bc *BlockChain) ReadValidatorDataAt(addr common.Address, root common.Hash) (*staking.ValidatorWrapper, error) { state, err := bc.StateAt(root) if err != nil || state == nil { return nil, err } wrapper := state.GetStakingInfo(addr) if wrapper == nil { return nil, fmt.Errorf("ValidatorData not found: %v", addr) } return wrapper, nil } // ReadValidatorData reads staking information of given validatorWrapper func (bc *BlockChain) ReadValidatorData(addr common.Address) (*staking.ValidatorWrapper, error) { return bc.ReadValidatorDataAt(addr, bc.CurrentBlock().Root()) } // ReadValidatorSnapshot reads the snapshot staking information of given validator address // TODO: put epoch number in to snapshot too. func (bc *BlockChain) ReadValidatorSnapshot(addr common.Address) (*staking.ValidatorWrapper, error) { if cached, ok := bc.validatorCache.Get("validator-snapshot-" + string(addr.Bytes())); ok { by := cached.([]byte) v := staking.ValidatorWrapper{} if err := rlp.DecodeBytes(by, &v); err != nil { return nil, err } return &v, nil } return rawdb.ReadValidatorSnapshot(bc.db, addr) } // WriteValidatorSnapshots writes the snapshot of provided list of validators func (bc *BlockChain) WriteValidatorSnapshots(addrs []common.Address) error { // Read all validator's current data validators := []*staking.ValidatorWrapper{} for _, addr := range addrs { validator, err := bc.ReadValidatorData(addr) if err != nil { return err } validators = append(validators, validator) } // Batch write the current data as snapshot batch := bc.db.NewBatch() for i := range validators { err := rawdb.WriteValidatorSnapshot(batch, validators[i]) if err != nil { return err } } if err := batch.Write(); err != nil { return err } // Update cache for i := range validators { by, err := rlp.EncodeToBytes(validators[i]) if err == nil { bc.validatorCache.Add("validator-snapshot-"+string(validators[i].Address.Bytes()), by) } } return nil } // ReadValidatorStats reads the stats of a validator func (bc *BlockChain) ReadValidatorStats(addr common.Address) (*staking.ValidatorStats, error) { return rawdb.ReadValidatorStats(bc.db, addr) } // WriteValidatorStats writes the stats for the committee func (bc *BlockChain) WriteValidatorStats(slots shard.SlotList, mask *bls.Mask) error { blsToAddress := make(map[shard.BlsPublicKey]common.Address) for _, slot := range slots { blsToAddress[slot.BlsPublicKey] = slot.EcdsaAddress } batch := bc.db.NewBatch() blsKeyBytes := shard.BlsPublicKey{} for i, blsPubKey := range mask.Publics { err := blsKeyBytes.FromLibBLSPublicKey(blsPubKey) if err != nil { return err } if addr, ok := blsToAddress[blsKeyBytes]; ok { // Retrieve the stats and add new counts stats, err := rawdb.ReadValidatorStats(bc.db, addr) if stats == nil { stats = &staking.ValidatorStats{big.NewInt(0), big.NewInt(0), big.NewInt(0)} } stats.NumBlocksToSign.Add(stats.NumBlocksToSign, big.NewInt(1)) enabled, err := mask.IndexEnabled(i) if err != nil { return err } if enabled { stats.NumBlocksSigned.Add(stats.NumBlocksSigned, big.NewInt(1)) } // TODO: record time being jailed. err = rawdb.WriteValidatorStats(batch, addr, stats) if err != nil { return err } } else { return fmt.Errorf("Bls public key not found in committee: %x", blsKeyBytes) } } if err := batch.Write(); err != nil { return err } // TODO: Update cache return nil } // DeleteValidatorSnapshots deletes the snapshot staking information of given validator address func (bc *BlockChain) DeleteValidatorSnapshots(addrs []common.Address) error { batch := bc.db.NewBatch() for i := range addrs { rawdb.DeleteValidatorSnapshot(batch, addrs[i]) } if err := batch.Write(); err != nil { return err } for i := range addrs { bc.validatorCache.Remove("validator-snapshot-" + string(addrs[i].Bytes())) } return nil } // UpdateValidatorSnapshots updates the content snapshot of all validators func (bc *BlockChain) UpdateValidatorSnapshots() error { allValidators, err := bc.ReadValidatorList() if err != nil { return err } // TODO: enable this once we allow validator to delete itself. //err = bc.DeleteValidatorSnapshots(allValidators) //if err != nil { // return err //} if err := bc.WriteValidatorSnapshots(allValidators); err != nil { return err } return nil } // ReadValidatorList reads the addresses of current all validators func (bc *BlockChain) ReadValidatorList() ([]common.Address, error) { if cached, ok := bc.validatorListCache.Get("validatorList"); ok { by := cached.([]byte) m := []common.Address{} if err := rlp.DecodeBytes(by, &m); err != nil { return nil, err } return m, nil } return rawdb.ReadValidatorList(bc.db, false) } // WriteValidatorList writes the list of validator addresses to database func (bc *BlockChain) WriteValidatorList(addrs []common.Address) error { err := rawdb.WriteValidatorList(bc.db, addrs, false) if err != nil { return err } bytes, err := rlp.EncodeToBytes(addrs) if err == nil { bc.validatorListCache.Add("validatorList", bytes) } return nil } // ReadActiveValidatorList reads the addresses of active validators func (bc *BlockChain) ReadActiveValidatorList() ([]common.Address, error) { if cached, ok := bc.validatorListCache.Get("activeValidatorList"); ok { by := cached.([]byte) m := []common.Address{} if err := rlp.DecodeBytes(by, &m); err != nil { return nil, err } return m, nil } return rawdb.ReadValidatorList(bc.db, true) } // WriteActiveValidatorList writes the list of active validator addresses to database func (bc *BlockChain) WriteActiveValidatorList(addrs []common.Address) error { err := rawdb.WriteValidatorList(bc.db, addrs, true) if err != nil { return err } bytes, err := rlp.EncodeToBytes(addrs) if err == nil { bc.validatorListCache.Add("activeValidatorList", bytes) } return nil } // ReadDelegationsByDelegator reads the addresses of validators delegated by a delegator func (bc *BlockChain) ReadDelegationsByDelegator(delegator common.Address) ([]staking.DelegationIndex, error) { if cached, ok := bc.validatorListByDelegatorCache.Get(string(delegator.Bytes())); ok { by := cached.([]byte) m := []staking.DelegationIndex{} if err := rlp.DecodeBytes(by, &m); err != nil { return nil, err } return m, nil } return rawdb.ReadDelegationsByDelegator(bc.db, delegator) } // WriteDelegationsByDelegator writes the list of validator addresses to database func (bc *BlockChain) WriteDelegationsByDelegator(delegator common.Address, indices []staking.DelegationIndex) error { err := rawdb.WriteDelegationsByDelegator(bc.db, delegator, indices) if err != nil { return err } bytes, err := rlp.EncodeToBytes(indices) if err == nil { bc.validatorListByDelegatorCache.Add(string(delegator.Bytes()), bytes) } return nil } // UpdateStakingMetaData updates the validator's and the delegator's meta data according to staking transaction func (bc *BlockChain) UpdateStakingMetaData(tx *staking.StakingTransaction, root common.Hash) error { // TODO: simply the logic here in staking/types/transaction.go payload, err := tx.RLPEncodeStakeMsg() if err != nil { return err } decodePayload, err := staking.RLPDecodeStakeMsg(payload, tx.StakingType()) if err != nil { return err } switch tx.StakingType() { case staking.DirectiveCreateValidator: createValidator := decodePayload.(*staking.CreateValidator) // TODO: batch add validator list instead of one by one list, err := bc.ReadValidatorList() if err != nil { return err } if list == nil { list = []common.Address{} } beforeLen := len(list) list = utils.AppendIfMissing(list, createValidator.ValidatorAddress) if len(list) > beforeLen { err = bc.WriteValidatorList(list) } // Add self delegation into the index delegations, err := bc.ReadDelegationsByDelegator(createValidator.ValidatorAddress) if err != nil { return err } delegations = append(delegations, staking.DelegationIndex{ createValidator.ValidatorAddress, 0, }) err = bc.WriteDelegationsByDelegator(createValidator.ValidatorAddress, delegations) return err case staking.DirectiveEditValidator: case staking.DirectiveDelegate: delegate := decodePayload.(*staking.Delegate) return bc.addDelegationIndex(delegate.DelegatorAddress, delegate.ValidatorAddress, root) case staking.DirectiveUndelegate: case staking.DirectiveCollectRewards: // TODO: Check whether the delegation reward can be cleared after reward is collected default: } return nil } func (bc *BlockChain) addDelegationIndex(delegatorAddress, validatorAddress common.Address, root common.Hash) error { // Get existing delegations delegations, err := bc.ReadDelegationsByDelegator(delegatorAddress) if err != nil { return err } // If there is an existing delegation, just return validatorAddressBytes := validatorAddress.Bytes() for _, delegation := range delegations { if bytes.Compare(delegation.ValidatorAddress.Bytes(), validatorAddressBytes) == 0 { return nil } } // Found the delegation from state and add the delegation index // Note this should read from the state of current block in concern wrapper, err := bc.ReadValidatorDataAt(validatorAddress, root) if err != nil { return err } for i := range wrapper.Delegations { if bytes.Compare(wrapper.Delegations[i].DelegatorAddress.Bytes(), delegatorAddress.Bytes()) == 0 { delegations = append(delegations, staking.DelegationIndex{ validatorAddress, uint64(i), }) } } return bc.WriteDelegationsByDelegator(delegatorAddress, delegations) } // ValidatorCandidates returns the up to date validator candidates for next epoch func (bc *BlockChain) ValidatorCandidates() []common.Address { list, err := bc.ReadValidatorList() if err != nil { return make([]common.Address, 0) } return list } // DelegatorsInformation returns up to date information of delegators of a given validator address func (bc *BlockChain) DelegatorsInformation(addr common.Address) []*staking.Delegation { return make([]*staking.Delegation, 0) } // ValidatorStakingWithDelegation returns the amount of staking after applying all delegated stakes func (bc *BlockChain) ValidatorStakingWithDelegation(addr common.Address) *big.Int { return big.NewInt(0) }