// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "fmt" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/rlp" "github.com/woop-chain/woop/core/types" "github.com/woop-chain/woop/core/vm" "github.com/woop-chain/woop/internal/utils" "github.com/woop-chain/woop/numeric" "github.com/woop-chain/woop/shard" stakingTypes "github.com/woop-chain/woop/staking/types" "github.com/pkg/errors" ) var ( errInvalidSigner = errors.New("invalid signer for staking transaction") errInsufficientBalanceForGas = errors.New("insufficient balance to pay for gas") errInsufficientBalanceForStake = errors.New("insufficient balance to stake") errValidatorExist = errors.New("staking validator already exists") errValidatorNotExist = errors.New("staking validator does not exist") errNoDelegationToUndelegate = errors.New("no delegation to undelegate") errCommissionRateChangeTooFast = errors.New("change on commission rate can not be more than max change rate within the same epoch") errCommissionRateChangeTooHigh = errors.New("commission rate can not be higher than maximum commission rate") errCommissionRateChangeTooLowT = errors.New("commission rate can not be lower than min rate of ") errNoRewardsToCollect = errors.New("no rewards to collect") errNegativeAmount = errors.New("amount can not be negative") errDupIdentity = errors.New("validator identity exists") errDupBlsKey = errors.New("BLS key exists") ) /* StateTransition is the State Transitioning Model which is described as follows: A state transition is a change made when a transaction is applied to the current world state The state transitioning model does all the necessary work to work out a valid new state root. 1) Nonce handling 2) Pre pay gas 3) Create a new state object if the recipient is \0*32 4) Value transfer == If contract creation == 4a) Attempt to run transaction data 4b) If valid, use result as code for the new state object == end == 5) Run Script section 6) Derive new state root */ type StateTransition struct { gp *GasPool msg Message gas uint64 gasPrice *big.Int initialGas uint64 value *big.Int data []byte state vm.StateDB evm *vm.EVM } // Message represents a message sent to a contract. type Message interface { From() common.Address //FromFrontier() (common.Address, error) To() *common.Address GasPrice() *big.Int Gas() uint64 Value() *big.Int Nonce() uint64 CheckNonce() bool Data() []byte Type() types.TransactionType BlockNum() *big.Int } // ExecutionResult is the return value from a transaction committed to the DB type ExecutionResult struct { ReturnData []byte UsedGas uint64 VMErr error } // Unwrap returns the internal evm error which allows us for further // analysis outside. func (result *ExecutionResult) Unwrap() error { return result.VMErr } // Failed returns the indicator whether the execution is successful or not func (result *ExecutionResult) Failed() bool { return result.VMErr != nil } // Return is a helper function to help caller distinguish between revert reason // and function return. Return returns the data after execution if no error occurs. func (result *ExecutionResult) Return() []byte { if result.VMErr != nil { return nil } return common.CopyBytes(result.ReturnData) } // Revert returns the concrete revert reason if the execution is aborted by `REVERT` // opcode. Note the reason can be nil if no data supplied with revert opcode. func (result *ExecutionResult) Revert() []byte { if result.VMErr != vm.ErrExecutionReverted { return nil } return common.CopyBytes(result.ReturnData) } // NewStateTransition initialises and returns a new state transition object. func NewStateTransition(evm *vm.EVM, msg Message, gp *GasPool) *StateTransition { return &StateTransition{ gp: gp, evm: evm, msg: msg, gasPrice: msg.GasPrice(), value: msg.Value(), data: msg.Data(), state: evm.StateDB, } } // ApplyMessage computes the new state by applying the given message // against the old state within the environment. // // ApplyMessage returns the bytes returned by any EVM execution (if it took place), // the gas used (which includes gas refunds) and an error if it failed. An error always // indicates a core error meaning that the message would always fail for that particular // state and would never be accepted within a block. func ApplyMessage(evm *vm.EVM, msg Message, gp *GasPool) (ExecutionResult, error) { return NewStateTransition(evm, msg, gp).TransitionDb() } // ApplyStakingMessage computes the new state for staking message func ApplyStakingMessage(evm *vm.EVM, msg Message, gp *GasPool) (uint64, error) { return NewStateTransition(evm, msg, gp).StakingTransitionDb() } // to returns the recipient of the message. func (st *StateTransition) to() common.Address { if st.msg == nil || st.msg.To() == nil /* contract creation */ { return common.Address{} } return *st.msg.To() } func (st *StateTransition) useGas(amount uint64) error { if st.gas < amount { return vm.ErrOutOfGas } st.gas -= amount return nil } func (st *StateTransition) buyGas() error { mgval := new(big.Int).Mul(new(big.Int).SetUint64(st.msg.Gas()), st.gasPrice) if have := st.state.GetBalance(st.msg.From()); have.Cmp(mgval) < 0 { return errors.Wrapf( errInsufficientBalanceForGas, "had: %s but need: %s", have.String(), mgval.String(), ) } if err := st.gp.SubGas(st.msg.Gas()); err != nil { return err } st.gas += st.msg.Gas() st.initialGas = st.msg.Gas() st.state.SubBalance(st.msg.From(), mgval) return nil } func (st *StateTransition) preCheck() error { // Make sure this transaction's nonce is correct. if st.msg.CheckNonce() { nonce := st.state.GetNonce(st.msg.From()) if nonce < st.msg.Nonce() { return ErrNonceTooHigh } else if nonce > st.msg.Nonce() { return ErrNonceTooLow } } return st.buyGas() } // TransitionDb will transition the state by applying the current message and // returning the result including the used gas. It returns an error if failed. // An error indicates a consensus issue. func (st *StateTransition) TransitionDb() (ExecutionResult, error) { if err := st.preCheck(); err != nil { return ExecutionResult{}, err } msg := st.msg sender := vm.AccountRef(msg.From()) homestead := st.evm.ChainConfig().IsS3(st.evm.EpochNumber) // s3 includes homestead istanbul := st.evm.ChainConfig().IsIstanbul(st.evm.EpochNumber) contractCreation := msg.To() == nil // Pay intrinsic gas gas, err := vm.IntrinsicGas(st.data, contractCreation, homestead, istanbul, false) if err != nil { return ExecutionResult{}, err } if err = st.useGas(gas); err != nil { return ExecutionResult{}, fmt.Errorf("%w: have %d, want %d", ErrIntrinsicGas, st.gas, gas) } evm := st.evm var ret []byte // All VM errors are valid except for insufficient balance, therefore returned separately var vmErr error if contractCreation { ret, _, st.gas, vmErr = evm.Create(sender, st.data, st.gas, st.value) } else { // Increment the nonce for the next transaction st.state.SetNonce(msg.From(), st.state.GetNonce(sender.Address())+1) ret, st.gas, vmErr = evm.Call(sender, st.to(), st.data, st.gas, st.value) } if vmErr != nil { utils.Logger().Debug().Err(vmErr).Msg("VM returned with error") // The only possible consensus-error would be if there wasn't // sufficient balance to make the transfer happen. The first // balance transfer may never fail. if vmErr == vm.ErrInsufficientBalance { return ExecutionResult{}, vmErr } } st.refundGas() st.collectGas() return ExecutionResult{ ReturnData: ret, UsedGas: st.gasUsed(), VMErr: vmErr, }, err } func (st *StateTransition) refundGas() { // Apply refund counter, capped to half of the used gas. refund := st.gasUsed() / 2 if refund > st.state.GetRefund() { refund = st.state.GetRefund() } st.gas += refund // Return ETH for remaining gas, exchanged at the original rate. remaining := new(big.Int).Mul(new(big.Int).SetUint64(st.gas), st.gasPrice) st.state.AddBalance(st.msg.From(), remaining) // Also return remaining gas to the block gas counter so it is // available for the next transaction. st.gp.AddGas(st.gas) } func (st *StateTransition) collectGas() { if config := st.evm.ChainConfig(); !config.IsStaking(st.evm.EpochNumber) { // Before staking epoch, add the fees to the block producer txFee := new(big.Int).Mul( new(big.Int).SetUint64(st.gasUsed()), st.gasPrice, ) st.state.AddBalance(st.evm.Coinbase, txFee) } else if feeCollectors := shard.Schedule.InstanceForEpoch( st.evm.EpochNumber, ).FeeCollectors(); len(feeCollectors) > 0 { // The caller must ensure that the feeCollectors are accurately set // at the appropriate epochs txFee := numeric.NewDecFromBigInt( new(big.Int).Mul( new(big.Int).SetUint64(st.gasUsed()), st.gasPrice, ), ) for address, percent := range feeCollectors { collectedFee := percent.Mul(txFee) st.state.AddBalance(address, collectedFee.TruncateInt()) } } } // gasUsed returns the amount of gas used up by the state transition. func (st *StateTransition) gasUsed() uint64 { return st.initialGas - st.gas } // StakingTransitionDb will transition the state by applying the staking message and // returning the result including the used gas. It returns an error if failed. // It is used for staking transaction only func (st *StateTransition) StakingTransitionDb() (usedGas uint64, err error) { if err = st.preCheck(); err != nil { return 0, err } msg := st.msg sender := vm.AccountRef(msg.From()) homestead := st.evm.ChainConfig().IsS3(st.evm.EpochNumber) // s3 includes homestead istanbul := st.evm.ChainConfig().IsIstanbul(st.evm.EpochNumber) // Pay intrinsic gas gas, err := vm.IntrinsicGas(st.data, false, homestead, istanbul, msg.Type() == types.StakeCreateVal) if err != nil { return 0, err } if err = st.useGas(gas); err != nil { return 0, err } // Increment the nonce for the next transaction st.state.SetNonce(msg.From(), st.state.GetNonce(sender.Address())+1) // from worker.go, we get here with shardID == BeaconChainShardID // from node_handler.go, via blockchain.go => it is checked that block shard == node shard // same via consensus // so only possible to reach here if shardID == BeaconChainShardID (no need to check further) switch msg.Type() { case types.StakeCreateVal: stkMsg := &stakingTypes.CreateValidator{} if err = rlp.DecodeBytes(msg.Data(), stkMsg); err != nil { return 0, err } utils.Logger().Info(). Msgf("[DEBUG STAKING] staking type: %s, gas: %d, txn: %+v", msg.Type(), gas, stkMsg) if msg.From() != stkMsg.ValidatorAddress { return 0, errInvalidSigner } err = st.evm.CreateValidator(st.evm.StateDB, nil, stkMsg) case types.StakeEditVal: stkMsg := &stakingTypes.EditValidator{} if err = rlp.DecodeBytes(msg.Data(), stkMsg); err != nil { return 0, err } utils.Logger().Info(). Msgf("[DEBUG STAKING] staking type: %s, gas: %d, txn: %+v", msg.Type(), gas, stkMsg) if msg.From() != stkMsg.ValidatorAddress { return 0, errInvalidSigner } err = st.evm.EditValidator(st.evm.StateDB, nil, stkMsg) case types.Delegate: stkMsg := &stakingTypes.Delegate{} if err = rlp.DecodeBytes(msg.Data(), stkMsg); err != nil { return 0, err } utils.Logger().Info().Msgf("[DEBUG STAKING] staking type: %s, gas: %d, txn: %+v", msg.Type(), gas, stkMsg) if msg.From() != stkMsg.DelegatorAddress { return 0, errInvalidSigner } err = st.evm.Delegate(st.evm.StateDB, nil, stkMsg) case types.Undelegate: stkMsg := &stakingTypes.Undelegate{} if err = rlp.DecodeBytes(msg.Data(), stkMsg); err != nil { return 0, err } utils.Logger().Info().Msgf("[DEBUG STAKING] staking type: %s, gas: %d, txn: %+v", msg.Type(), gas, stkMsg) if msg.From() != stkMsg.DelegatorAddress { return 0, errInvalidSigner } err = st.evm.Undelegate(st.evm.StateDB, nil, stkMsg) case types.CollectRewards: stkMsg := &stakingTypes.CollectRewards{} if err = rlp.DecodeBytes(msg.Data(), stkMsg); err != nil { return 0, err } utils.Logger().Info().Msgf("[DEBUG STAKING] staking type: %s, gas: %d, txn: %+v", msg.Type(), gas, stkMsg) if msg.From() != stkMsg.DelegatorAddress { return 0, errInvalidSigner } err = st.evm.CollectRewards(st.evm.StateDB, nil, stkMsg) default: return 0, stakingTypes.ErrInvalidStakingKind } st.refundGas() st.collectGas() return st.gasUsed(), err }