package blockchain import ( "bytes" "crypto/sha256" "encoding/gob" "encoding/hex" "fmt" "log" "math" ) var ( // zeroHash is the zero value for a Hash and is defined as // a package level variable to avoid the need to create a new instance // every time a check is needed. zeroHash Hash ) type Transaction struct { ID [32]byte // 32 byte hash TxInput []TXInput TxOutput []TXOutput Proofs []CrossShardTxProof // The proofs for crossShard tx unlock-to-commit/abort } // TXOutput is the struct of transaction output in a transaction. type TXOutput struct { Value int Address string ShardId uint32 // The Id of the shard where this UTXO belongs } type Hash = [32]byte // Output defines a data type that is used to track previous // transaction outputs. // Hash is the transaction id // Index is the index of the transaction ouput in the previous transaction type OutPoint struct { Hash Hash Index uint32 } // NewOutPoint returns a new transaction outpoint point with the // provided hash and index. func NewOutPoint(hash *Hash, index uint32) *OutPoint { return &OutPoint{ Hash: *hash, Index: index, } } // TXInput is the struct of transaction input (a UTXO) in a transaction. type TXInput struct { PreviousOutPoint OutPoint Address string ShardID uint32 // The Id of the shard where this UTXO belongs } // NewTXInput returns a new transaction input with the provided // previous outpoint point, output address and shardID func NewTXInput(prevOut *OutPoint, address string, shardID uint32) *TXInput { return &TXInput{ PreviousOutPoint: *prevOut, Address: address, ShardID: shardID, } } // The proof of accept or reject in the cross shard transaction locking phase. // This is created by the shard leader, filled with proof signatures after consensus, and returned back to the client. // One proof structure is only tied to one shard. Therefore, the utxos in the proof are all with the same shard. type CrossShardTxProof struct { Accept bool // false means proof-of-reject, true means proof-of-accept TxID [32]byte // Id of the transaction which this proof is on TxInput []TXInput // The list of Utxo that this proof is on. They should be in the same shard. BlockHash [32]byte // The hash of the block where the proof is registered // Signatures } // This is a internal data structure that doesn't go across network type CrossShardTxAndProof struct { Transaction *Transaction // The cross shard tx Proof *CrossShardTxProof // The proof } // DefaultCoinbaseValue is the default value of coinbase transaction. const DefaultCoinbaseValue = 1000 // SetID sets ID of a transaction (32 byte hash of the whole transaction) func (tx *Transaction) SetID() { var encoded bytes.Buffer var hash [32]byte enc := gob.NewEncoder(&encoded) err := enc.Encode(tx) if err != nil { log.Panic(err) } hash = sha256.Sum256(encoded.Bytes()) tx.ID = hash } // NewCoinbaseTX creates a new coinbase transaction func NewCoinbaseTX(to, data string, shardID uint32) *Transaction { if data == "" { data = fmt.Sprintf("Reward to '%s'", to) } txin := NewTXInput(NewOutPoint(&Hash{}, math.MaxUint32), to, shardID) txout := TXOutput{DefaultCoinbaseValue, to, shardID} tx := Transaction{[32]byte{}, []TXInput{*txin}, []TXOutput{txout}, nil} tx.SetID() return &tx } // Used for debuging. func (txInput *TXInput) String() string { res := fmt.Sprintf("TxID: %v, ", hex.EncodeToString(txInput.PreviousOutPoint.Hash[:])) res += fmt.Sprintf("TxOutputIndex: %v, ", txInput.PreviousOutPoint.Index) res += fmt.Sprintf("Address: %v, ", txInput.Address) res += fmt.Sprintf("Shard Id: %v", txInput.ShardID) return res } // Used for debuging. func (txOutput *TXOutput) String() string { res := fmt.Sprintf("Value: %v, ", txOutput.Value) res += fmt.Sprintf("Address: %v", txOutput.Address) return res } // Used for debuging. func (proof *CrossShardTxProof) String() string { res := fmt.Sprintf("Accept: %v, ", proof.Accept) return res } // Used for debuging. func (tx *Transaction) String() string { res := fmt.Sprintf("ID: %v\n", hex.EncodeToString(tx.ID[:])) res += fmt.Sprintf("TxInput:\n") for id, value := range tx.TxInput { res += fmt.Sprintf("%v: %v\n", id, value.String()) } res += fmt.Sprintf("TxOutput:\n") for id, value := range tx.TxOutput { res += fmt.Sprintf("%v: %v\n", id, value.String()) } for id, value := range tx.Proofs { res += fmt.Sprintf("%v: %v\n", id, value.String()) } return res }