// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "bytes" "errors" "math" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/rlp" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/core/vm" "github.com/harmony-one/harmony/internal/params" "github.com/harmony-one/harmony/internal/utils" staking "github.com/harmony-one/harmony/staking/types" ) var ( errInsufficientBalanceForGas = errors.New("insufficient balance to pay for gas") errInsufficientBalanceForStake = errors.New("insufficient balance to stake") errValidatorExist = errors.New("staking validator already exists") errValidatorNotExist = errors.New("staking validator does not exist") errNoDelegationToUndelegate = errors.New("no delegation to undelegate") errCommissionRateChangeTooFast = errors.New("commission rate can not be changed more than MaxChangeRate within the same epoch") errCommissionRateChangeTooHigh = errors.New("commission rate can not be higher than MaxCommissionRate") ) /* StateTransition is the State Transitioning Model which is described as follows: A state transition is a change made when a transaction is applied to the current world state The state transitioning model does all the necessary work to work out a valid new state root. 1) Nonce handling 2) Pre pay gas 3) Create a new state object if the recipient is \0*32 4) Value transfer == If contract creation == 4a) Attempt to run transaction data 4b) If valid, use result as code for the new state object == end == 5) Run Script section 6) Derive new state root */ type StateTransition struct { gp *GasPool msg Message gas uint64 gasPrice *big.Int initialGas uint64 value *big.Int data []byte state vm.StateDB evm *vm.EVM bc ChainContext } // Message represents a message sent to a contract. type Message interface { From() common.Address //FromFrontier() (common.Address, error) To() *common.Address GasPrice() *big.Int Gas() uint64 Value() *big.Int Nonce() uint64 CheckNonce() bool Data() []byte Type() types.TransactionType BlockNum() *big.Int } // IntrinsicGas computes the 'intrinsic gas' for a message with the given data. func IntrinsicGas(data []byte, contractCreation, homestead bool) (uint64, error) { // Set the starting gas for the raw transaction var gas uint64 if contractCreation && homestead { gas = params.TxGasContractCreation } else { gas = params.TxGas } // Bump the required gas by the amount of transactional data if len(data) > 0 { // Zero and non-zero bytes are priced differently var nz uint64 for _, byt := range data { if byt != 0 { nz++ } } // Make sure we don't exceed uint64 for all data combinations if (math.MaxUint64-gas)/params.TxDataNonZeroGas < nz { return 0, vm.ErrOutOfGas } gas += nz * params.TxDataNonZeroGas z := uint64(len(data)) - nz if (math.MaxUint64-gas)/params.TxDataZeroGas < z { return 0, vm.ErrOutOfGas } gas += z * params.TxDataZeroGas } return gas, nil } // NewStateTransition initialises and returns a new state transition object. func NewStateTransition(evm *vm.EVM, msg Message, gp *GasPool, bc ChainContext) *StateTransition { return &StateTransition{ gp: gp, evm: evm, msg: msg, gasPrice: msg.GasPrice(), value: msg.Value(), data: msg.Data(), state: evm.StateDB, bc: bc, } } // ApplyMessage computes the new state by applying the given message // against the old state within the environment. // // ApplyMessage returns the bytes returned by any EVM execution (if it took place), // the gas used (which includes gas refunds) and an error if it failed. An error always // indicates a core error meaning that the message would always fail for that particular // state and would never be accepted within a block. func ApplyMessage(evm *vm.EVM, msg Message, gp *GasPool) ([]byte, uint64, bool, error) { return NewStateTransition(evm, msg, gp, nil).TransitionDb() } // ApplyStakingMessage computes the new state for staking message func ApplyStakingMessage(evm *vm.EVM, msg Message, gp *GasPool, bc ChainContext) (uint64, error) { return NewStateTransition(evm, msg, gp, bc).StakingTransitionDb() } // to returns the recipient of the message. func (st *StateTransition) to() common.Address { if st.msg == nil || st.msg.To() == nil /* contract creation */ { return common.Address{} } return *st.msg.To() } func (st *StateTransition) useGas(amount uint64) error { if st.gas < amount { return vm.ErrOutOfGas } st.gas -= amount return nil } func (st *StateTransition) buyGas() error { mgval := new(big.Int).Mul(new(big.Int).SetUint64(st.msg.Gas()), st.gasPrice) if st.state.GetBalance(st.msg.From()).Cmp(mgval) < 0 { return errInsufficientBalanceForGas } if err := st.gp.SubGas(st.msg.Gas()); err != nil { return err } st.gas += st.msg.Gas() st.initialGas = st.msg.Gas() st.state.SubBalance(st.msg.From(), mgval) return nil } func (st *StateTransition) preCheck() error { // Make sure this transaction's nonce is correct. if st.msg.CheckNonce() { nonce := st.state.GetNonce(st.msg.From()) if nonce < st.msg.Nonce() { return ErrNonceTooHigh } else if nonce > st.msg.Nonce() { return ErrNonceTooLow } } return st.buyGas() } // TransitionDb will transition the state by applying the current message and // returning the result including the used gas. It returns an error if failed. // An error indicates a consensus issue. func (st *StateTransition) TransitionDb() (ret []byte, usedGas uint64, failed bool, err error) { if err = st.preCheck(); err != nil { return } msg := st.msg sender := vm.AccountRef(msg.From()) homestead := st.evm.ChainConfig().IsS3(st.evm.EpochNumber) // s3 includes homestead contractCreation := msg.To() == nil // Pay intrinsic gas gas, err := IntrinsicGas(st.data, contractCreation, homestead) if err != nil { return nil, 0, false, err } if err = st.useGas(gas); err != nil { return nil, 0, false, err } var ( evm = st.evm // vm errors do not effect consensus and are therefor // not assigned to err, except for insufficient balance // error. vmerr error ) if contractCreation { ret, _, st.gas, vmerr = evm.Create(sender, st.data, st.gas, st.value) } else { // Increment the nonce for the next transaction st.state.SetNonce(msg.From(), st.state.GetNonce(sender.Address())+1) ret, st.gas, vmerr = evm.Call(sender, st.to(), st.data, st.gas, st.value) } if vmerr != nil { utils.Logger().Debug().Err(vmerr).Msg("VM returned with error") // The only possible consensus-error would be if there wasn't // sufficient balance to make the transfer happen. The first // balance transfer may never fail. if vmerr == vm.ErrInsufficientBalance { return nil, 0, false, vmerr } } st.refundGas() st.state.AddBalance(st.evm.Coinbase, new(big.Int).Mul(new(big.Int).SetUint64(st.gasUsed()), st.gasPrice)) return ret, st.gasUsed(), vmerr != nil, err } func (st *StateTransition) refundGas() { // Apply refund counter, capped to half of the used gas. refund := st.gasUsed() / 2 if refund > st.state.GetRefund() { refund = st.state.GetRefund() } st.gas += refund // Return ETH for remaining gas, exchanged at the original rate. remaining := new(big.Int).Mul(new(big.Int).SetUint64(st.gas), st.gasPrice) st.state.AddBalance(st.msg.From(), remaining) // Also return remaining gas to the block gas counter so it is // available for the next transaction. st.gp.AddGas(st.gas) } // gasUsed returns the amount of gas used up by the state transition. func (st *StateTransition) gasUsed() uint64 { return st.initialGas - st.gas } // StakingTransitionDb will transition the state by applying the staking message and // returning the result including the used gas. It returns an error if failed. // It is used for staking transaction only func (st *StateTransition) StakingTransitionDb() (usedGas uint64, err error) { if err = st.preCheck(); err != nil { return 0, err } msg := st.msg sender := vm.AccountRef(msg.From()) homestead := st.evm.ChainConfig().IsS3(st.evm.EpochNumber) // s3 includes homestead // Pay intrinsic gas // TODO: propose staking-specific formula for staking transaction gas, err := IntrinsicGas(st.data, false, homestead) // TODO Remove this logging utils.Logger().Info().Uint64("Using", gas).Msg("Gas cost of staking transaction being processed") if err != nil { return 0, err } if err = st.useGas(gas); err != nil { return 0, err } // Increment the nonce for the next transaction st.state.SetNonce(msg.From(), st.state.GetNonce(sender.Address())+1) switch msg.Type() { case types.StakeNewVal: stkMsg := &staking.CreateValidator{} if err = rlp.DecodeBytes(msg.Data(), stkMsg); err != nil { return 0, err } err = st.applyCreateValidatorTx(stkMsg, msg.BlockNum()) case types.StakeEditVal: stkMsg := &staking.EditValidator{} if err = rlp.DecodeBytes(msg.Data(), stkMsg); err != nil { return 0, err } err = st.applyEditValidatorTx(stkMsg, msg.BlockNum()) case types.Delegate: stkMsg := &staking.Delegate{} if err = rlp.DecodeBytes(msg.Data(), stkMsg); err != nil { return 0, err } err = st.applyDelegateTx(stkMsg) case types.Undelegate: stkMsg := &staking.Undelegate{} if err = rlp.DecodeBytes(msg.Data(), stkMsg); err != nil { return 0, err } err = st.applyUndelegateTx(stkMsg) case types.CollectRewards: stkMsg := &staking.CollectRewards{} if err = rlp.DecodeBytes(msg.Data(), stkMsg); err != nil { return 0, err } err = st.applyCollectRewards(stkMsg) default: return 0, staking.ErrInvalidStakingKind } st.refundGas() return st.gasUsed(), err } func (st *StateTransition) applyCreateValidatorTx(createValidator *staking.CreateValidator, blockNum *big.Int) error { if st.state.IsValidator(createValidator.ValidatorAddress) { return errValidatorExist } v, err := staking.CreateValidatorFromNewMsg(createValidator, blockNum) if err != nil { return err } delegations := []staking.Delegation{} delegations = append(delegations, staking.NewDelegation(v.Address, createValidator.Amount)) wrapper := staking.ValidatorWrapper{*v, delegations} if err := st.state.UpdateStakingInfo(v.Address, &wrapper); err != nil { return err } st.state.SetValidatorFlag(v.Address) return nil } func (st *StateTransition) applyEditValidatorTx(editValidator *staking.EditValidator, blockNum *big.Int) error { if !st.state.IsValidator(editValidator.ValidatorAddress) { return errValidatorNotExist } wrapper := st.state.GetStakingInfo(editValidator.ValidatorAddress) if wrapper == nil { return errValidatorNotExist } if err := staking.UpdateValidatorFromEditMsg(&wrapper.Validator, editValidator); err != nil { return err } newRate := wrapper.Validator.Rate // TODO: make sure we are reading from the correct snapshot snapshotValidator, err := st.bc.ReadValidatorSnapshot(wrapper.Address) if err != nil { return err } rateAtBeginningOfEpoch := snapshotValidator.Rate if rateAtBeginningOfEpoch.IsNil() || (!newRate.IsNil() && !rateAtBeginningOfEpoch.Equal(newRate)) { wrapper.Validator.UpdateHeight = blockNum } if newRate.Sub(rateAtBeginningOfEpoch).Abs().GT(wrapper.Validator.MaxChangeRate) { return errCommissionRateChangeTooFast } if newRate.GT(wrapper.Validator.MaxRate) { return errCommissionRateChangeTooHigh } if err := st.state.UpdateStakingInfo(editValidator.ValidatorAddress, wrapper); err != nil { return err } return nil } func (st *StateTransition) applyDelegateTx(delegate *staking.Delegate) error { if !st.state.IsValidator(delegate.ValidatorAddress) { return errValidatorNotExist } wrapper := st.state.GetStakingInfo(delegate.ValidatorAddress) if wrapper == nil { return errValidatorNotExist } stateDB := st.state delegatorExist := false for i := range wrapper.Delegations { delegation := &wrapper.Delegations[i] if bytes.Equal(delegation.DelegatorAddress.Bytes(), delegate.DelegatorAddress.Bytes()) { delegatorExist = true totalInUndelegation := delegation.TotalInUndelegation() // If the sum of normal balance and the total amount of tokens in undelegation is greater than the amount to delegate if big.NewInt(0).Add(totalInUndelegation, stateDB.GetBalance(delegate.DelegatorAddress)).Cmp(delegate.Amount) >= 0 { // Firstly use the tokens in undelegation to delegate (redelegate) undelegateAmount := big.NewInt(0).Set(delegate.Amount) // Use the latest undelegated token first as it has the longest remaining locking time. i := len(delegation.Undelegations) - 1 for ; i >= 0; i-- { if delegation.Undelegations[i].Amount.Cmp(undelegateAmount) <= 0 { undelegateAmount.Sub(undelegateAmount, delegation.Undelegations[i].Amount) } else { delegation.Undelegations[i].Amount.Sub(delegation.Undelegations[i].Amount, undelegateAmount) break } } delegation.Undelegations = delegation.Undelegations[:i+1] delegation.Amount.Add(delegation.Amount, delegate.Amount) err := stateDB.UpdateStakingInfo(wrapper.Validator.Address, wrapper) // Secondly, if all locked token are used, try use the balance. if err == nil && undelegateAmount.Cmp(big.NewInt(0)) > 0 { stateDB.SubBalance(delegate.DelegatorAddress, delegate.Amount) } return err } return errInsufficientBalanceForStake } } if !delegatorExist { if CanTransfer(stateDB, delegate.DelegatorAddress, delegate.Amount) { newDelegator := staking.NewDelegation(delegate.DelegatorAddress, delegate.Amount) wrapper.Delegations = append(wrapper.Delegations, newDelegator) if err := stateDB.UpdateStakingInfo(wrapper.Validator.Address, wrapper); err == nil { stateDB.SubBalance(delegate.DelegatorAddress, delegate.Amount) } else { return err } } } return nil } func (st *StateTransition) applyUndelegateTx(undelegate *staking.Undelegate) error { if !st.state.IsValidator(undelegate.ValidatorAddress) { return errValidatorNotExist } wrapper := st.state.GetStakingInfo(undelegate.ValidatorAddress) if wrapper == nil { return errValidatorNotExist } stateDB := st.state delegatorExist := false for i := range wrapper.Delegations { delegation := &wrapper.Delegations[i] if bytes.Equal(delegation.DelegatorAddress.Bytes(), undelegate.DelegatorAddress.Bytes()) { delegatorExist = true err := delegation.Undelegate(st.evm.EpochNumber, undelegate.Amount) if err != nil { return err } err = stateDB.UpdateStakingInfo(wrapper.Validator.Address, wrapper) return err } } if !delegatorExist { return errNoDelegationToUndelegate } return nil } func (st *StateTransition) applyCollectRewards(collectRewards *staking.CollectRewards) error { if st.bc == nil { return errors.New("[CollectRewards] No chain context provided") } chainContext := st.bc delegations, err := chainContext.ReadDelegationsByDelegator(collectRewards.DelegatorAddress) if err != nil { return err } totalRewards := big.NewInt(0) for i := range delegations { wrapper := st.state.GetStakingInfo(delegations[i].ValidatorAddress) if wrapper == nil { return errValidatorNotExist } if uint64(len(wrapper.Delegations)) > delegations[i].Index { delegation := &wrapper.Delegations[delegations[i].Index] if delegation.Reward.Cmp(big.NewInt(0)) > 0 { totalRewards.Add(totalRewards, delegation.Reward) } delegation.Reward.SetUint64(0) } err = st.state.UpdateStakingInfo(wrapper.Validator.Address, wrapper) if err != nil { return err } } st.state.AddBalance(collectRewards.DelegatorAddress, totalRewards) return nil }