package node import ( "bytes" "crypto/ecdsa" "encoding/gob" "fmt" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/params" "github.com/harmony-one/harmony/core" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/core/vm" "github.com/harmony-one/harmony/node/worker" "math/big" "net" "strings" "sync" "time" "github.com/harmony-one/harmony/blockchain" "github.com/harmony-one/harmony/client" bft "github.com/harmony-one/harmony/consensus" "github.com/harmony-one/harmony/crypto/pki" hdb "github.com/harmony-one/harmony/db" "github.com/harmony-one/harmony/log" "github.com/harmony-one/harmony/p2p" proto_identity "github.com/harmony-one/harmony/proto/identity" proto_node "github.com/harmony-one/harmony/proto/node" "github.com/jinzhu/copier" ) type NodeState byte const ( NodeInit NodeState = iota // Node just started, before contacting BeaconChain NodeWaitToJoin // Node contacted BeaconChain, wait to join Shard NodeJoinedShard // Node joined Shard, ready for consensus NodeOffline // Node is offline ) type NetworkNode struct { SelfPeer p2p.Peer IDCPeer p2p.Peer } // Node represents a program (machine) participating in the network // TODO(minhdoan, rj): consider using BlockChannel *chan blockchain.Block for efficiency. type Node struct { Consensus *bft.Consensus // Consensus object containing all Consensus related data (e.g. committee members, signatures, commits) BlockChannel chan blockchain.Block // The channel to receive new blocks from Node pendingTransactions []*blockchain.Transaction // All the transactions received but not yet processed for Consensus transactionInConsensus []*blockchain.Transaction // The transactions selected into the new block and under Consensus process blockchain *blockchain.Blockchain // The blockchain for the shard where this node belongs db *hdb.LDBDatabase // LevelDB to store blockchain. UtxoPool *blockchain.UTXOPool // The corresponding UTXO pool of the current blockchain CrossTxsInConsensus []*blockchain.CrossShardTxAndProof // The cross shard txs that is under consensus, the proof is not filled yet. CrossTxsToReturn []*blockchain.CrossShardTxAndProof // The cross shard txs and proof that needs to be sent back to the user client. log log.Logger // Log utility pendingTxMutex sync.Mutex crossTxToReturnMutex sync.Mutex ClientPeer *p2p.Peer // The peer for the benchmark tx generator client, used for leaders to return proof-of-accept Client *client.Client // The presence of a client object means this node will also act as a client IsWaiting bool SelfPeer p2p.Peer // TODO(minhdoan): it could be duplicated with Self below whose is Alok work. IDCPeer p2p.Peer SyncNode bool // TODO(minhdoan): Remove it later. chain *core.BlockChain // Account Model Neighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer State NodeState // State of the Node // Account Model Chain *core.BlockChain TxPool *core.TxPool BlockChannelAccount chan *types.Block // The channel to receive new blocks from Node worker *worker.Worker // Test only testBankKey *ecdsa.PrivateKey } // GetBlockHashes used for state download. func (node *Node) GetBlockHashes() [][32]byte { return node.blockchain.GetBlockHashes() } // SetBlockchain is used for testing func (node *Node) SetBlockchain(bc *blockchain.Blockchain) { node.blockchain = bc } // Add new crossTx and proofs to the list of crossTx that needs to be sent back to client func (node *Node) addCrossTxsToReturn(crossTxs []*blockchain.CrossShardTxAndProof) { node.crossTxToReturnMutex.Lock() node.CrossTxsToReturn = append(node.CrossTxsToReturn, crossTxs...) node.crossTxToReturnMutex.Unlock() node.log.Debug("Got more cross transactions to return", "num", len(crossTxs), len(node.pendingTransactions), "node", node) } // Add new transactions to the pending transaction list func (node *Node) addPendingTransactions(newTxs []*blockchain.Transaction) { node.pendingTxMutex.Lock() node.pendingTransactions = append(node.pendingTransactions, newTxs...) node.pendingTxMutex.Unlock() node.log.Debug("Got more transactions", "num", len(newTxs), "totalPending", len(node.pendingTransactions), "node", node) } // Take out a subset of valid transactions from the pending transaction list // Note the pending transaction list will then contain the rest of the txs func (node *Node) getTransactionsForNewBlock(maxNumTxs int) ([]*blockchain.Transaction, []*blockchain.CrossShardTxAndProof) { node.pendingTxMutex.Lock() selected, unselected, invalid, crossShardTxs := node.UtxoPool.SelectTransactionsForNewBlock(node.pendingTransactions, maxNumTxs) _ = invalid // invalid txs are discard node.log.Debug("Invalid transactions discarded", "number", len(invalid)) node.pendingTransactions = unselected node.pendingTxMutex.Unlock() return selected, crossShardTxs } // StartServer starts a server and process the request by a handler. func (node *Node) StartServer(port string) { if node.SyncNode { // Disable this temporarily. // node.blockchain = syncing.StartBlockSyncing(node.Consensus.GetValidatorPeers()) } fmt.Println("going to start server on port:", port) //node.log.Debug("Starting server", "node", node, "port", port) node.listenOnPort(port) } func (node *Node) SetLog() *Node { node.log = log.New() return node } func (node *Node) listenOnPort(port string) { addr := net.JoinHostPort("", port) listen, err := net.Listen("tcp4", addr) if err != nil { node.log.Error("Socket listen port failed", "addr", addr, "err", err) return } if listen == nil { node.log.Error("Listen returned nil", "addr", addr) return } defer listen.Close() backoff := p2p.NewExpBackoff(250*time.Millisecond, 15*time.Second, 2.0) for { conn, err := listen.Accept() if err != nil { node.log.Error("Error listening on port.", "port", port, "err", err) backoff.Sleep() continue } go node.NodeHandler(conn) } } func (node *Node) String() string { return node.Consensus.String() } // Count the total number of transactions in the blockchain // Currently used for stats reporting purpose func (node *Node) countNumTransactionsInBlockchain() int { count := 0 for _, block := range node.blockchain.Blocks { count += len(block.Transactions) } return count } //ConnectIdentityChain connects to identity chain func (node *Node) ConnectBeaconChain() { Nnode := &NetworkNode{SelfPeer: node.SelfPeer, IDCPeer: node.IDCPeer} msg := node.SerializeNode(Nnode) msgToSend := proto_identity.ConstructIdentityMessage(proto_identity.Register, msg) p2p.SendMessage(node.IDCPeer, msgToSend) } // SerializeNode serializes the node // https://stackoverflow.com/questions/12854125/how-do-i-dump-the-struct-into-the-byte-array-without-reflection/12854659#12854659 func (node *Node) SerializeNode(nnode *NetworkNode) []byte { //Needs to escape the serialization of unexported fields var result bytes.Buffer encoder := gob.NewEncoder(&result) err := encoder.Encode(nnode) if err != nil { fmt.Println("Could not serialize node") fmt.Println("ERROR", err) //node.log.Error("Could not serialize node") } return result.Bytes() } // DeserializeNode deserializes the node func DeserializeNode(d []byte) *NetworkNode { var wn NetworkNode r := bytes.NewBuffer(d) decoder := gob.NewDecoder(r) err := decoder.Decode(&wn) if err != nil { log.Error("Could not de-serialize node 1") } return &wn } // New creates a new node. func New(consensus *bft.Consensus, db *hdb.LDBDatabase) *Node { node := Node{} if consensus != nil { // Consensus and associated channel to communicate blocks node.Consensus = consensus node.BlockChannel = make(chan blockchain.Block) // Genesis Block // TODO(minh): Use or implement new function in blockchain package for this. genesisBlock := &blockchain.Blockchain{} genesisBlock.Blocks = make([]*blockchain.Block, 0) // TODO(RJ): use miner's address as coinbase address coinbaseTx := blockchain.NewCoinbaseTX(pki.GetAddressFromInt(1), "0", node.Consensus.ShardID) genesisBlock.Blocks = append(genesisBlock.Blocks, blockchain.NewGenesisBlock(coinbaseTx, node.Consensus.ShardID)) node.blockchain = genesisBlock // UTXO pool from Genesis block node.UtxoPool = blockchain.CreateUTXOPoolFromGenesisBlock(node.blockchain.Blocks[0]) // Initialize level db. node.db = db // (account model) node.testBankKey, _ = ecdsa.GenerateKey(crypto.S256(), strings.NewReader("Fixed source of randomnessasdffffffffffffffffffffffffffffffffffffffffsdffffffffffffffffffffffffffffffffffffffffffffffffffffff")) testBankAddress := crypto.PubkeyToAddress(node.testBankKey.PublicKey) testBankFunds := big.NewInt(1000000000000000000) database := hdb.NewMemDatabase() gspec := core.Genesis{ Config: params.TestChainConfig, Alloc: core.GenesisAlloc{testBankAddress: {Balance: testBankFunds}}, } _ = gspec.MustCommit(database) chain, _ := core.NewBlockChain(database, nil, gspec.Config, bft.NewFaker(), vm.Config{}, nil) node.Chain = chain node.TxPool = core.NewTxPool(core.DefaultTxPoolConfig, params.TestChainConfig, chain) node.BlockChannelAccount = make(chan *types.Block) node.worker = worker.New(params.TestChainConfig, chain, bft.NewFaker()) fmt.Println("BALANCE") fmt.Println(node.worker.GetCurrentState().GetBalance(testBankAddress)) } // Logger node.log = log.New() node.State = NodeInit return &node } // Add neighbors nodes func (node *Node) AddPeers(peers []p2p.Peer) int { count := 0 for _, p := range peers { key := fmt.Sprintf("%v", p.PubKey) _, ok := node.Neighbors.Load(key) if !ok { np := new(p2p.Peer) copier.Copy(np, &p) node.Neighbors.Store(key, *np) count++ } } if count > 0 { c := node.Consensus.AddPeers(peers) node.log.Info("Node.AddPeers", "#", c) } return count } func (node *Node) JoinShard(leader p2p.Peer) { // try to join the shard, with 10 minutes time-out backoff := p2p.NewExpBackoff(1*time.Second, 10*time.Minute, 2) for node.State == NodeWaitToJoin { backoff.Sleep() ping := proto_node.NewPingMessage(node.SelfPeer) buffer := ping.ConstructPingMessage() p2p.SendMessage(leader, buffer) node.log.Debug("Sent ping message") } }