package node import ( "container/ring" "crypto/ecdsa" "fmt" "os" "strings" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/harmony-one/harmony/accounts" "github.com/harmony-one/harmony/api/client" clientService "github.com/harmony-one/harmony/api/client/service" msg_pb "github.com/harmony-one/harmony/api/proto/message" proto_node "github.com/harmony-one/harmony/api/proto/node" "github.com/harmony-one/harmony/api/service" "github.com/harmony-one/harmony/api/service/syncing" "github.com/harmony-one/harmony/api/service/syncing/downloader" "github.com/harmony-one/harmony/consensus" "github.com/harmony-one/harmony/consensus/reward" "github.com/harmony-one/harmony/core" "github.com/harmony-one/harmony/core/rawdb" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/drand" "github.com/harmony-one/harmony/internal/chain" nodeconfig "github.com/harmony-one/harmony/internal/configs/node" "github.com/harmony-one/harmony/internal/ctxerror" "github.com/harmony-one/harmony/internal/params" "github.com/harmony-one/harmony/internal/shardchain" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/msgq" "github.com/harmony-one/harmony/node/worker" "github.com/harmony-one/harmony/p2p" p2p_host "github.com/harmony-one/harmony/p2p/host" "github.com/harmony-one/harmony/shard" "github.com/harmony-one/harmony/shard/committee" "github.com/harmony-one/harmony/staking/slash" staking "github.com/harmony-one/harmony/staking/types" ) // State is a state of a node. type State byte // All constants except the NodeLeader below are for validators only. const ( NodeInit State = iota // Node just started, before contacting BeaconChain NodeWaitToJoin // Node contacted BeaconChain, wait to join Shard NodeNotInSync // Node out of sync, might be just joined Shard or offline for a period of time NodeOffline // Node is offline NodeReadyForConsensus // Node is ready for doing consensus NodeDoingConsensus // Node is already doing consensus NodeLeader // Node is the leader of some shard. ) const ( // NumTryBroadCast is the number of times trying to broadcast NumTryBroadCast = 3 // ClientRxQueueSize is the number of client messages to queue before tail-dropping. ClientRxQueueSize = 16384 // ShardRxQueueSize is the number of shard messages to queue before tail-dropping. ShardRxQueueSize = 16384 // GlobalRxQueueSize is the number of global messages to queue before tail-dropping. GlobalRxQueueSize = 16384 // ClientRxWorkers is the number of concurrent client message handlers. ClientRxWorkers = 8 // ShardRxWorkers is the number of concurrent shard message handlers. ShardRxWorkers = 32 // GlobalRxWorkers is the number of concurrent global message handlers. GlobalRxWorkers = 32 ) func (state State) String() string { switch state { case NodeInit: return "NodeInit" case NodeWaitToJoin: return "NodeWaitToJoin" case NodeNotInSync: return "NodeNotInSync" case NodeOffline: return "NodeOffline" case NodeReadyForConsensus: return "NodeReadyForConsensus" case NodeDoingConsensus: return "NodeDoingConsensus" case NodeLeader: return "NodeLeader" } return "Unknown" } const ( maxBroadcastNodes = 10 // broadcast at most maxBroadcastNodes peers that need in sync broadcastTimeout int64 = 60 * 1000000000 // 1 mins //SyncIDLength is the length of bytes for syncID SyncIDLength = 20 ) // use to push new block to outofsync node type syncConfig struct { timestamp int64 client *downloader.Client } // Node represents a protocol-participating node in the network type Node struct { Consensus *consensus.Consensus // Consensus object containing all Consensus related data (e.g. committee members, signatures, commits) BlockChannel chan *types.Block // The channel to send newly proposed blocks ConfirmedBlockChannel chan *types.Block // The channel to send confirmed blocks BeaconBlockChannel chan *types.Block // The channel to send beacon blocks for non-beaconchain nodes DRand *drand.DRand // The instance for distributed randomness protocol pendingCXReceipts map[string]*types.CXReceiptsProof // All the receipts received but not yet processed for Consensus pendingCXMutex sync.Mutex // Shard databases shardChains shardchain.Collection Client *client.Client // The presence of a client object means this node will also act as a client SelfPeer p2p.Peer // TODO(minhdoan): it could be duplicated with Self below whose is Alok work. BCPeers []p2p.Peer // list of Beacon Chain Peers. This is needed by all nodes. // TODO: Neighbors should store only neighbor nodes in the same shard Neighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer numPeers int // Number of Peers State State // State of the Node stateMutex sync.Mutex // mutex for change node state // BeaconNeighbors store only neighbor nodes in the beacon chain shard BeaconNeighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer TxPool *core.TxPool CxPool *core.CxPool // pool for missing cross shard receipts resend Worker *worker.Worker BeaconWorker *worker.Worker // worker for beacon chain // Client server (for wallet requests) clientServer *clientService.Server // Syncing component. syncID [SyncIDLength]byte // a unique ID for the node during the state syncing process with peers downloaderServer *downloader.Server stateSync *syncing.StateSync beaconSync *syncing.StateSync peerRegistrationRecord map[string]*syncConfig // record registration time (unixtime) of peers begin in syncing SyncingPeerProvider SyncingPeerProvider // syncing frequency parameters syncFreq int beaconSyncFreq int // The p2p host used to send/receive p2p messages host p2p.Host // Incoming messages to process. clientRxQueue *msgq.Queue shardRxQueue *msgq.Queue globalRxQueue *msgq.Queue // Service manager. serviceManager *service.Manager // Demo account. DemoContractAddress common.Address LotteryManagerPrivateKey *ecdsa.PrivateKey // Puzzle account. PuzzleContractAddress common.Address PuzzleManagerPrivateKey *ecdsa.PrivateKey // For test only; TODO ek – remove this TestBankKeys []*ecdsa.PrivateKey ContractDeployerKey *ecdsa.PrivateKey ContractDeployerCurrentNonce uint64 // The nonce of the deployer contract at current block ContractAddresses []common.Address // For puzzle contracts AddressNonce sync.Map // Shard group Message Receiver shardGroupReceiver p2p.GroupReceiver // Global group Message Receiver, communicate with beacon chain, or cross-shard TX globalGroupReceiver p2p.GroupReceiver // Client Message Receiver to handle light client messages // Beacon leader needs to use this receiver to talk to new node clientReceiver p2p.GroupReceiver // Duplicated Ping Message Received duplicatedPing sync.Map // Channel to notify consensus service to really start consensus startConsensus chan struct{} // node configuration, including group ID, shard ID, etc NodeConfig *nodeconfig.ConfigType // Chain configuration. chainConfig params.ChainConfig // map of service type to its message channel. serviceMessageChan map[service.Type]chan *msg_pb.Message accountManager *accounts.Manager isFirstTime bool // the node was started with a fresh database // How long in second the leader needs to wait to propose a new block. BlockPeriod time.Duration // last time consensus reached for metrics lastConsensusTime int64 // Last 1024 staking transaction error, only in memory errorSink struct { sync.Mutex failedStakingTxns *ring.Ring failedTxns *ring.Ring } } // Blockchain returns the blockchain for the node's current shard. func (node *Node) Blockchain() *core.BlockChain { shardID := node.NodeConfig.ShardID bc, err := node.shardChains.ShardChain(shardID) if err != nil { utils.Logger().Error(). Uint32("shardID", shardID). Err(err). Msg("cannot get shard chain") } return bc } // Beaconchain returns the beaconchain from node. func (node *Node) Beaconchain() *core.BlockChain { bc, err := node.shardChains.ShardChain(0) if err != nil { utils.Logger().Error().Err(err).Msg("cannot get beaconchain") } return bc } // TODO: make this batch more transactions func (node *Node) tryBroadcast(tx *types.Transaction) { msg := proto_node.ConstructTransactionListMessageAccount(types.Transactions{tx}) shardGroupID := nodeconfig.NewGroupIDByShardID(nodeconfig.ShardID(tx.ShardID())) utils.Logger().Info().Str("shardGroupID", string(shardGroupID)).Msg("tryBroadcast") for attempt := 0; attempt < NumTryBroadCast; attempt++ { if err := node.host.SendMessageToGroups([]nodeconfig.GroupID{shardGroupID}, p2p_host.ConstructP2pMessage(byte(0), msg)); err != nil && attempt < NumTryBroadCast { utils.Logger().Error().Int("attempt", attempt).Msg("Error when trying to broadcast tx") } else { break } } } func (node *Node) tryBroadcastStaking(stakingTx *staking.StakingTransaction) { msg := proto_node.ConstructStakingTransactionListMessageAccount(staking.StakingTransactions{stakingTx}) shardGroupID := nodeconfig.NewGroupIDByShardID( nodeconfig.ShardID(shard.BeaconChainShardID), ) // broadcast to beacon chain utils.Logger().Info().Str("shardGroupID", string(shardGroupID)).Msg("tryBroadcastStaking") for attempt := 0; attempt < NumTryBroadCast; attempt++ { if err := node.host.SendMessageToGroups([]nodeconfig.GroupID{shardGroupID}, p2p_host.ConstructP2pMessage(byte(0), msg)); err != nil && attempt < NumTryBroadCast { utils.Logger().Error().Int("attempt", attempt).Msg("Error when trying to broadcast staking tx") } else { break } } } // Add new transactions to the pending transaction list. func (node *Node) addPendingTransactions(newTxs types.Transactions) []error { poolTxs := types.PoolTransactions{} for _, tx := range newTxs { poolTxs = append(poolTxs, tx) } errs := node.TxPool.AddRemotes(poolTxs) pendingCount, queueCount := node.TxPool.Stats() utils.Logger().Info(). Int("length of newTxs", len(newTxs)). Int("totalPending", pendingCount). Int("totalQueued", queueCount). Msg("Got more transactions") return errs } // Add new staking transactions to the pending staking transaction list. func (node *Node) addPendingStakingTransactions(newStakingTxs staking.StakingTransactions) []error { if node.NodeConfig.ShardID == shard.BeaconChainShardID && node.Blockchain().Config().IsPreStaking(node.Blockchain().CurrentHeader().Epoch()) { poolTxs := types.PoolTransactions{} for _, tx := range newStakingTxs { poolTxs = append(poolTxs, tx) } errs := node.TxPool.AddRemotes(poolTxs) pendingCount, queueCount := node.TxPool.Stats() utils.Logger().Info(). Int("length of newStakingTxs", len(poolTxs)). Int("totalPending", pendingCount). Int("totalQueued", queueCount). Msg("Got more staking transactions") return errs } return make([]error, len(newStakingTxs)) } // AddPendingStakingTransaction staking transactions func (node *Node) AddPendingStakingTransaction(newStakingTx *staking.StakingTransaction) { if node.NodeConfig.ShardID == shard.BeaconChainShardID { errs := node.addPendingStakingTransactions(staking.StakingTransactions{newStakingTx}) for i := range errs { if errs[i] != nil { return } } utils.Logger().Info().Str("Hash", newStakingTx.Hash().Hex()).Msg("Broadcasting Staking Tx") node.tryBroadcastStaking(newStakingTx) } } // AddPendingTransaction adds one new transaction to the pending transaction list. // This is only called from SDK. func (node *Node) AddPendingTransaction(newTx *types.Transaction) { if newTx.ShardID() == node.NodeConfig.ShardID { errs := node.addPendingTransactions(types.Transactions{newTx}) for i := range errs { if errs[i] != nil { return } } utils.Logger().Info().Str("Hash", newTx.Hash().Hex()).Msg("Broadcasting Tx") node.tryBroadcast(newTx) } } // AddPendingReceipts adds one receipt message to pending list. func (node *Node) AddPendingReceipts(receipts *types.CXReceiptsProof) { node.pendingCXMutex.Lock() defer node.pendingCXMutex.Unlock() if receipts.ContainsEmptyField() { utils.Logger().Info(). Int("totalPendingReceipts", len(node.pendingCXReceipts)). Msg("CXReceiptsProof contains empty field") return } blockNum := receipts.Header.Number().Uint64() shardID := receipts.Header.ShardID() // Sanity checks if err := node.Blockchain().Validator().ValidateCXReceiptsProof(receipts); err != nil { if !strings.Contains(err.Error(), rawdb.MsgNoShardStateFromDB) { utils.Logger().Error().Err(err).Msg("[AddPendingReceipts] Invalid CXReceiptsProof") return } } // cross-shard receipt should not be coming from our shard if s := node.Consensus.ShardID; s == shardID { utils.Logger().Info(). Uint32("my-shard", s). Uint32("receipt-shard", shardID). Msg("ShardID of incoming receipt was same as mine") return } if e := receipts.Header.Epoch(); blockNum == 0 || !node.Blockchain().Config().AcceptsCrossTx(e) { utils.Logger().Info(). Uint64("incoming-epoch", e.Uint64()). Msg("Incoming receipt had meaningless epoch") return } key := utils.GetPendingCXKey(shardID, blockNum) // DDoS protection const maxCrossTxnSize = 4096 if s := len(node.pendingCXReceipts); s >= maxCrossTxnSize { utils.Logger().Info(). Int("pending-cx-receipts-size", s). Int("pending-cx-receipts-limit", maxCrossTxnSize). Msg("Current pending cx-receipts reached size limit") return } if _, ok := node.pendingCXReceipts[key]; ok { utils.Logger().Info(). Int("totalPendingReceipts", len(node.pendingCXReceipts)). Msg("Already Got Same Receipt message") return } node.pendingCXReceipts[key] = receipts utils.Logger().Info(). Int("totalPendingReceipts", len(node.pendingCXReceipts)). Msg("Got ONE more receipt message") } func (node *Node) startRxPipeline( receiver p2p.GroupReceiver, queue *msgq.Queue, numWorkers int, ) { // consumers for i := 0; i < numWorkers; i++ { go queue.HandleMessages(node) } // provider go node.receiveGroupMessage(receiver, queue) } // StartServer starts a server and process the requests by a handler. func (node *Node) StartServer() { // client messages are sent by clients, like txgen, wallet node.startRxPipeline(node.clientReceiver, node.clientRxQueue, ClientRxWorkers) // start the goroutine to receive group message node.startRxPipeline(node.shardGroupReceiver, node.shardRxQueue, ShardRxWorkers) // start the goroutine to receive global message, used for cross-shard TX // FIXME (leo): we use beacon client topic as the global topic for now node.startRxPipeline(node.globalGroupReceiver, node.globalRxQueue, GlobalRxWorkers) select {} } // Count the total number of transactions in the blockchain // Currently used for stats reporting purpose func (node *Node) countNumTransactionsInBlockchain() int { count := 0 for block := node.Blockchain().CurrentBlock(); block != nil; block = node.Blockchain().GetBlockByHash(block.Header().ParentHash()) { count += len(block.Transactions()) } return count } // GetSyncID returns the syncID of this node func (node *Node) GetSyncID() [SyncIDLength]byte { return node.syncID } // New creates a new node. func New(host p2p.Host, consensusObj *consensus.Consensus, chainDBFactory shardchain.DBFactory, blacklist map[common.Address]struct{}, isArchival bool) *Node { node := Node{} const sinkSize = 4096 node.errorSink = struct { sync.Mutex failedStakingTxns *ring.Ring failedTxns *ring.Ring }{sync.Mutex{}, ring.New(sinkSize), ring.New(sinkSize)} node.syncFreq = SyncFrequency node.beaconSyncFreq = SyncFrequency // Get the node config that's created in the harmony.go program. if consensusObj != nil { node.NodeConfig = nodeconfig.GetShardConfig(consensusObj.ShardID) } else { node.NodeConfig = nodeconfig.GetDefaultConfig() } copy(node.syncID[:], GenerateRandomString(SyncIDLength)) if host != nil { node.host = host node.SelfPeer = host.GetSelfPeer() } networkType := node.NodeConfig.GetNetworkType() chainConfig := networkType.ChainConfig() node.chainConfig = chainConfig collection := shardchain.NewCollection( chainDBFactory, &genesisInitializer{&node}, chain.Engine, &chainConfig, ) if isArchival { collection.DisableCache() } node.shardChains = collection if host != nil && consensusObj != nil { // Consensus and associated channel to communicate blocks node.Consensus = consensusObj // Load the chains. blockchain := node.Blockchain() // this also sets node.isFirstTime if the DB is fresh beaconChain := node.Beaconchain() if b1, b2 := beaconChain == nil, blockchain == nil; b1 || b2 { fmt.Fprintf( os.Stderr, "beaconchain-is-nil:%t shardchain-is-nil:%t", b1, b2, ) os.Exit(-1) } node.BlockChannel = make(chan *types.Block) node.ConfirmedBlockChannel = make(chan *types.Block) node.BeaconBlockChannel = make(chan *types.Block) txPoolConfig := core.DefaultTxPoolConfig txPoolConfig.Blacklist = blacklist node.TxPool = core.NewTxPool(txPoolConfig, node.Blockchain().Config(), blockchain, func(payload []types.RPCTransactionError) { if len(payload) > 0 { node.errorSink.Lock() for i := range payload { node.errorSink.failedTxns.Value = payload[i] node.errorSink.failedTxns = node.errorSink.failedTxns.Next() } node.errorSink.Unlock() } }, func(payload []staking.RPCTransactionError) { node.errorSink.Lock() for i := range payload { node.errorSink.failedStakingTxns.Value = payload[i] node.errorSink.failedStakingTxns = node.errorSink.failedStakingTxns.Next() } node.errorSink.Unlock() }, ) node.CxPool = core.NewCxPool(core.CxPoolSize) node.Worker = worker.New(node.Blockchain().Config(), blockchain, chain.Engine) if node.Blockchain().ShardID() != shard.BeaconChainShardID { node.BeaconWorker = worker.New( node.Beaconchain().Config(), beaconChain, chain.Engine, ) } node.pendingCXReceipts = make(map[string]*types.CXReceiptsProof) node.Consensus.VerifiedNewBlock = make(chan *types.Block) chain.Engine.SetRewarder(node.Consensus.Decider.(reward.Distributor)) chain.Engine.SetBeaconchain(beaconChain) // the sequence number is the next block number to be added in consensus protocol, which is // always one more than current chain header block node.Consensus.SetBlockNum(blockchain.CurrentBlock().NumberU64() + 1) // Add Faucet contract to all shards, so that on testnet, we can demo wallet in explorer if networkType != nodeconfig.Mainnet { if node.isFirstTime { // Setup one time smart contracts node.AddFaucetContractToPendingTransactions() } else { node.AddContractKeyAndAddress(scFaucet) } // Create test keys. Genesis will later need this. var err error node.TestBankKeys, err = CreateTestBankKeys(TestAccountNumber) if err != nil { utils.Logger().Error().Err(err).Msg("Error while creating test keys") } } } utils.Logger().Info(). Interface("genesis block header", node.Blockchain().GetHeaderByNumber(0)). Msg("Genesis block hash") node.clientRxQueue = msgq.New(ClientRxQueueSize) node.shardRxQueue = msgq.New(ShardRxQueueSize) node.globalRxQueue = msgq.New(GlobalRxQueueSize) // Setup initial state of syncing. node.peerRegistrationRecord = make(map[string]*syncConfig) node.startConsensus = make(chan struct{}) go node.bootstrapConsensus() // Broadcast double-signers reported by consensus if node.Consensus != nil { go func() { for { select { case doubleSign := <-node.Consensus.SlashChan: l := utils.Logger().Info().RawJSON("double-sign", []byte(doubleSign.String())) // no point to broadcast the slash if we aren't even in the right epoch yet if !node.Blockchain().Config().IsStaking( node.Blockchain().CurrentHeader().Epoch(), ) { l.Msg("double sign occured before staking era, no-op") return } if hooks := node.NodeConfig.WebHooks.DoubleSigning; hooks != nil { url := hooks.WebHooks.OnNoticeDoubleSign go func() { slash.DoPost(url, &doubleSign) }() } if node.NodeConfig.ShardID != shard.BeaconChainShardID { go node.BroadcastSlash(&doubleSign) l.Msg("broadcast the double sign record") } else { records := slash.Records{doubleSign} node.Blockchain().AddPendingSlashingCandidates(records) l.Msg("added double sign record to off-chain pending") } } } }() } return &node } // InitConsensusWithValidators initialize shard state from latest epoch and update committee pub // keys for consensus and drand func (node *Node) InitConsensusWithValidators() (err error) { if node.Consensus == nil { utils.Logger().Error().Msg("[InitConsensusWithValidators] consenus is nil; Cannot figure out shardID") return ctxerror.New("[InitConsensusWithValidators] consenus is nil; Cannot figure out shardID") } shardID := node.Consensus.ShardID blockNum := node.Blockchain().CurrentBlock().NumberU64() node.Consensus.SetMode(consensus.Listening) epoch := shard.Schedule.CalcEpochNumber(blockNum) utils.Logger().Info(). Uint64("blockNum", blockNum). Uint32("shardID", shardID). Uint64("epoch", epoch.Uint64()). Msg("[InitConsensusWithValidators] Try To Get PublicKeys") shardState, err := committee.WithStakingEnabled.Compute( epoch, node.Consensus.ChainReader, ) if err != nil { utils.Logger().Err(err). Uint64("blockNum", blockNum). Uint32("shardID", shardID). Uint64("epoch", epoch.Uint64()). Msg("[InitConsensusWithValidators] Failed getting shard state") return err } pubKeys := committee.WithStakingEnabled.GetCommitteePublicKeys( shardState.FindCommitteeByID(shardID), ) if len(pubKeys) == 0 { utils.Logger().Error(). Uint32("shardID", shardID). Uint64("blockNum", blockNum). Msg("[InitConsensusWithValidators] PublicKeys is Empty, Cannot update public keys") return ctxerror.New( "[InitConsensusWithValidators] PublicKeys is Empty, Cannot update public keys", "shardID", shardID, "blockNum", blockNum) } for _, key := range pubKeys { if node.Consensus.PubKey.Contains(key) { utils.Logger().Info(). Uint64("blockNum", blockNum). Int("numPubKeys", len(pubKeys)). Msg("[InitConsensusWithValidators] Successfully updated public keys") node.Consensus.UpdatePublicKeys(pubKeys) node.Consensus.SetMode(consensus.Normal) return nil } } // TODO: Disable drand. Currently drand isn't functioning but we want to compeletely turn it off for full protection. // node.DRand.UpdatePublicKeys(pubKeys) return nil } // AddPeers adds neighbors nodes func (node *Node) AddPeers(peers []*p2p.Peer) int { count := 0 for _, p := range peers { key := fmt.Sprintf("%s:%s:%s", p.IP, p.Port, p.PeerID) _, ok := node.Neighbors.LoadOrStore(key, *p) if !ok { // !ok means new peer is stored count++ node.host.AddPeer(p) node.numPeers++ continue } } return count } // AddBeaconPeer adds beacon chain neighbors nodes // Return false means new neighbor peer was added // Return true means redundant neighbor peer wasn't added func (node *Node) AddBeaconPeer(p *p2p.Peer) bool { key := fmt.Sprintf("%s:%s:%s", p.IP, p.Port, p.PeerID) _, ok := node.BeaconNeighbors.LoadOrStore(key, *p) return ok } // isBeacon = true if the node is beacon node // isClient = true if the node light client(wallet) func (node *Node) initNodeConfiguration() (service.NodeConfig, chan p2p.Peer) { chanPeer := make(chan p2p.Peer) nodeConfig := service.NodeConfig{ PushgatewayIP: node.NodeConfig.GetPushgatewayIP(), PushgatewayPort: node.NodeConfig.GetPushgatewayPort(), IsClient: node.NodeConfig.IsClient(), Beacon: nodeconfig.NewGroupIDByShardID(0), ShardGroupID: node.NodeConfig.GetShardGroupID(), Actions: make(map[nodeconfig.GroupID]nodeconfig.ActionType), } if nodeConfig.IsClient { nodeConfig.Actions[nodeconfig.NewClientGroupIDByShardID(0)] = nodeconfig.ActionStart } else { nodeConfig.Actions[node.NodeConfig.GetShardGroupID()] = nodeconfig.ActionStart } var err error node.shardGroupReceiver, err = node.host.GroupReceiver(node.NodeConfig.GetShardGroupID()) if err != nil { utils.Logger().Error().Err(err).Msg("Failed to create shard receiver") } node.globalGroupReceiver, err = node.host.GroupReceiver(nodeconfig.NewClientGroupIDByShardID(0)) if err != nil { utils.Logger().Error().Err(err).Msg("Failed to create global receiver") } node.clientReceiver, err = node.host.GroupReceiver(node.NodeConfig.GetClientGroupID()) if err != nil { utils.Logger().Error().Err(err).Msg("Failed to create client receiver") } return nodeConfig, chanPeer } // AccountManager ... func (node *Node) AccountManager() *accounts.Manager { return node.accountManager } // ServiceManager ... func (node *Node) ServiceManager() *service.Manager { return node.serviceManager } // SetSyncFreq sets the syncing frequency in the loop func (node *Node) SetSyncFreq(syncFreq int) { node.syncFreq = syncFreq } // SetBeaconSyncFreq sets the syncing frequency in the loop func (node *Node) SetBeaconSyncFreq(syncFreq int) { node.beaconSyncFreq = syncFreq } // ShutDown gracefully shut down the node server and dump the in-memory blockchain state into DB. func (node *Node) ShutDown() { node.Blockchain().Stop() node.Beaconchain().Stop() msg := "Successfully shut down!\n" utils.Logger().Print(msg) fmt.Print(msg) os.Exit(0) }