// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package core implements the Ethereum consensus protocol. package core import ( "errors" "fmt" "io" "math/big" mrand "math/rand" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/common/prque" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" lru "github.com/hashicorp/golang-lru" consensus_engine "github.com/harmony-one/harmony/consensus/engine" "github.com/harmony-one/harmony/contracts/structs" "github.com/harmony-one/harmony/core/rawdb" "github.com/harmony-one/harmony/core/state" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/core/vm" "github.com/harmony-one/harmony/internal/ctxerror" "github.com/harmony-one/harmony/internal/utils" ) var ( // blockInsertTimer blockInsertTimer = metrics.NewRegisteredTimer("chain/inserts", nil) // ErrNoGenesis is the error when there is no genesis. ErrNoGenesis = errors.New("Genesis not found in chain") ) const ( bodyCacheLimit = 256 blockCacheLimit = 256 receiptsCacheLimit = 32 maxFutureBlocks = 256 maxTimeFutureBlocks = 30 badBlockLimit = 10 triesInMemory = 128 shardCacheLimit = 2 epochCacheLimit = 10 // BlocksPerEpoch is the number of blocks in one epoch // currently set to small number for testing // in future, this need to be adjusted dynamically instead of constant // TODO ek – inflate to disable resharding until we can 1) fix shard // state mutation bug and 2) implement key passphrase recycle across // process restart (exec) for shard migration BlocksPerEpoch = 1000000000000 // BlockChainVersion ensures that an incompatible database forces a resync from scratch. BlockChainVersion = 3 ) // CacheConfig contains the configuration values for the trie caching/pruning // that's resident in a blockchain. type CacheConfig struct { Disabled bool // Whether to disable trie write caching (archive node) TrieNodeLimit int // Memory limit (MB) at which to flush the current in-memory trie to disk TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk } // BlockChain represents the canonical chain given a database with a genesis // block. The Blockchain manages chain imports, reverts, chain reorganisations. // // Importing blocks in to the block chain happens according to the set of rules // defined by the two stage Validator. Processing of blocks is done using the // Processor which processes the included transaction. The validation of the state // is done in the second part of the Validator. Failing results in aborting of // the import. // // The BlockChain also helps in returning blocks from **any** chain included // in the database as well as blocks that represents the canonical chain. It's // important to note that GetBlock can return any block and does not need to be // included in the canonical one where as GetBlockByNumber always represents the // canonical chain. type BlockChain struct { chainConfig *params.ChainConfig // Chain & network configuration cacheConfig *CacheConfig // Cache configuration for pruning db ethdb.Database // Low level persistent database to store final content in triegc *prque.Prque // Priority queue mapping block numbers to tries to gc gcproc time.Duration // Accumulates canonical block processing for trie dumping hc *HeaderChain rmLogsFeed event.Feed chainFeed event.Feed chainSideFeed event.Feed chainHeadFeed event.Feed logsFeed event.Feed scope event.SubscriptionScope genesisBlock *types.Block mu sync.RWMutex // global mutex for locking chain operations chainmu sync.RWMutex // blockchain insertion lock procmu sync.RWMutex // block processor lock checkpoint int // checkpoint counts towards the new checkpoint currentBlock atomic.Value // Current head of the block chain currentFastBlock atomic.Value // Current head of the fast-sync chain (may be above the block chain!) stateCache state.Database // State database to reuse between imports (contains state cache) bodyCache *lru.Cache // Cache for the most recent block bodies bodyRLPCache *lru.Cache // Cache for the most recent block bodies in RLP encoded format receiptsCache *lru.Cache // Cache for the most recent receipts per block blockCache *lru.Cache // Cache for the most recent entire blocks futureBlocks *lru.Cache // future blocks are blocks added for later processing shardStateCache *lru.Cache epochCache *lru.Cache // Cache epoch number → first block number quit chan struct{} // blockchain quit channel running int32 // running must be called atomically // procInterrupt must be atomically called procInterrupt int32 // interrupt signaler for block processing wg sync.WaitGroup // chain processing wait group for shutting down engine consensus_engine.Engine processor Processor // block processor interface validator Validator // block and state validator interface vmConfig vm.Config badBlocks *lru.Cache // Bad block cache shouldPreserve func(*types.Block) bool // Function used to determine whether should preserve the given block. } // NewBlockChain returns a fully initialised block chain using information // available in the database. It initialises the default Ethereum Validator and // Processor. func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *params.ChainConfig, engine consensus_engine.Engine, vmConfig vm.Config, shouldPreserve func(block *types.Block) bool) (*BlockChain, error) { if cacheConfig == nil { cacheConfig = &CacheConfig{ TrieNodeLimit: 256 * 1024 * 1024, TrieTimeLimit: 5 * time.Minute, } } bodyCache, _ := lru.New(bodyCacheLimit) bodyRLPCache, _ := lru.New(bodyCacheLimit) receiptsCache, _ := lru.New(receiptsCacheLimit) blockCache, _ := lru.New(blockCacheLimit) futureBlocks, _ := lru.New(maxFutureBlocks) badBlocks, _ := lru.New(badBlockLimit) shardCache, _ := lru.New(shardCacheLimit) epochCache, _ := lru.New(epochCacheLimit) bc := &BlockChain{ chainConfig: chainConfig, cacheConfig: cacheConfig, db: db, triegc: prque.New(nil), stateCache: state.NewDatabase(db), quit: make(chan struct{}), shouldPreserve: shouldPreserve, bodyCache: bodyCache, bodyRLPCache: bodyRLPCache, receiptsCache: receiptsCache, blockCache: blockCache, futureBlocks: futureBlocks, shardStateCache: shardCache, epochCache: epochCache, engine: engine, vmConfig: vmConfig, badBlocks: badBlocks, } bc.SetValidator(NewBlockValidator(chainConfig, bc, engine)) bc.SetProcessor(NewStateProcessor(chainConfig, bc, engine)) var err error bc.hc, err = NewHeaderChain(db, chainConfig, engine, bc.getProcInterrupt) if err != nil { return nil, err } bc.genesisBlock = bc.GetBlockByNumber(0) if bc.genesisBlock == nil { return nil, ErrNoGenesis } if err := bc.loadLastState(); err != nil { return nil, err } // Take ownership of this particular state go bc.update() return bc, nil } // ValidateNewBlock validates new block. func (bc *BlockChain) ValidateNewBlock(block *types.Block) error { state, err := state.New(bc.CurrentBlock().Root(), bc.stateCache) if err != nil { return err } // Process block using the parent state as reference point. receipts, _, usedGas, err := bc.processor.Process(block, state, bc.vmConfig) if err != nil { bc.reportBlock(block, receipts, err) return err } err = bc.Validator().ValidateState(block, bc.CurrentBlock(), state, receipts, usedGas) if err != nil { bc.reportBlock(block, receipts, err) return err } return nil } // IsEpochBlock returns whether this block is the first block of an epoch. func IsEpochBlock(block *types.Block) bool { return block.NumberU64()%BlocksPerEpoch == 0 } // IsEpochLastBlock returns whether this block is the last block of an epoch. func IsEpochLastBlock(block *types.Block) bool { return block.NumberU64()%BlocksPerEpoch == BlocksPerEpoch-1 } func (bc *BlockChain) getProcInterrupt() bool { return atomic.LoadInt32(&bc.procInterrupt) == 1 } // loadLastState loads the last known chain state from the database. This method // assumes that the chain manager mutex is held. func (bc *BlockChain) loadLastState() error { // Restore the last known head block head := rawdb.ReadHeadBlockHash(bc.db) if head == (common.Hash{}) { // Corrupt or empty database, init from scratch log.Warn("Empty database, resetting chain") return bc.Reset() } // Make sure the entire head block is available currentBlock := bc.GetBlockByHash(head) if currentBlock == nil { // Corrupt or empty database, init from scratch log.Warn("Head block missing, resetting chain", "hash", head) return bc.Reset() } // Make sure the state associated with the block is available if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil { // Dangling block without a state associated, init from scratch log.Warn("Head state missing, repairing chain", "number", currentBlock.Number(), "hash", currentBlock.Hash()) if err := bc.repair(¤tBlock); err != nil { return err } } // Everything seems to be fine, set as the head block bc.currentBlock.Store(currentBlock) // Restore the last known head header currentHeader := currentBlock.Header() if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) { if header := bc.GetHeaderByHash(head); header != nil { currentHeader = header } } bc.hc.SetCurrentHeader(currentHeader) // Restore the last known head fast block bc.currentFastBlock.Store(currentBlock) if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) { if block := bc.GetBlockByHash(head); block != nil { bc.currentFastBlock.Store(block) } } // Issue a status log for the user currentFastBlock := bc.CurrentFastBlock() headerTd := bc.GetTd(currentHeader.Hash(), currentHeader.Number.Uint64()) blockTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64()) fastTd := bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()) log.Info("Loaded most recent local header", "number", currentHeader.Number, "hash", currentHeader.Hash(), "td", headerTd, "age", common.PrettyAge(time.Unix(currentHeader.Time.Int64(), 0))) log.Info("Loaded most recent local full block", "number", currentBlock.Number(), "hash", currentBlock.Hash(), "td", blockTd, "age", common.PrettyAge(time.Unix(currentBlock.Time().Int64(), 0))) log.Info("Loaded most recent local fast block", "number", currentFastBlock.Number(), "hash", currentFastBlock.Hash(), "td", fastTd, "age", common.PrettyAge(time.Unix(currentFastBlock.Time().Int64(), 0))) return nil } // SetHead rewinds the local chain to a new head. In the case of headers, everything // above the new head will be deleted and the new one set. In the case of blocks // though, the head may be further rewound if block bodies are missing (non-archive // nodes after a fast sync). func (bc *BlockChain) SetHead(head uint64) error { log.Warn("Rewinding blockchain", "target", head) bc.mu.Lock() defer bc.mu.Unlock() // Rewind the header chain, deleting all block bodies until then delFn := func(db rawdb.DatabaseDeleter, hash common.Hash, num uint64) { rawdb.DeleteBody(db, hash, num) } bc.hc.SetHead(head, delFn) currentHeader := bc.hc.CurrentHeader() // Clear out any stale content from the caches bc.bodyCache.Purge() bc.bodyRLPCache.Purge() bc.receiptsCache.Purge() bc.blockCache.Purge() bc.futureBlocks.Purge() bc.shardStateCache.Purge() // Rewind the block chain, ensuring we don't end up with a stateless head block if currentBlock := bc.CurrentBlock(); currentBlock != nil && currentHeader.Number.Uint64() < currentBlock.NumberU64() { bc.currentBlock.Store(bc.GetBlock(currentHeader.Hash(), currentHeader.Number.Uint64())) } if currentBlock := bc.CurrentBlock(); currentBlock != nil { if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil { // Rewound state missing, rolled back to before pivot, reset to genesis bc.currentBlock.Store(bc.genesisBlock) } } // Rewind the fast block in a simpleton way to the target head if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && currentHeader.Number.Uint64() < currentFastBlock.NumberU64() { bc.currentFastBlock.Store(bc.GetBlock(currentHeader.Hash(), currentHeader.Number.Uint64())) } // If either blocks reached nil, reset to the genesis state if currentBlock := bc.CurrentBlock(); currentBlock == nil { bc.currentBlock.Store(bc.genesisBlock) } if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock == nil { bc.currentFastBlock.Store(bc.genesisBlock) } currentBlock := bc.CurrentBlock() currentFastBlock := bc.CurrentFastBlock() rawdb.WriteHeadBlockHash(bc.db, currentBlock.Hash()) rawdb.WriteHeadFastBlockHash(bc.db, currentFastBlock.Hash()) return bc.loadLastState() } // FastSyncCommitHead sets the current head block to the one defined by the hash // irrelevant what the chain contents were prior. func (bc *BlockChain) FastSyncCommitHead(hash common.Hash) error { // Make sure that both the block as well at its state trie exists block := bc.GetBlockByHash(hash) if block == nil { return fmt.Errorf("non existent block [%x…]", hash[:4]) } if _, err := trie.NewSecure(block.Root(), bc.stateCache.TrieDB(), 0); err != nil { return err } // If all checks out, manually set the head block bc.mu.Lock() bc.currentBlock.Store(block) bc.mu.Unlock() log.Info("Committed new head block", "number", block.Number(), "hash", hash) return nil } // ShardID returns the shard Id of the blockchain. func (bc *BlockChain) ShardID() uint32 { return uint32(bc.chainConfig.ChainID.Int64()) } // GasLimit returns the gas limit of the current HEAD block. func (bc *BlockChain) GasLimit() uint64 { return bc.CurrentBlock().GasLimit() } // CurrentBlock retrieves the current head block of the canonical chain. The // block is retrieved from the blockchain's internal cache. func (bc *BlockChain) CurrentBlock() *types.Block { return bc.currentBlock.Load().(*types.Block) } // CurrentFastBlock retrieves the current fast-sync head block of the canonical // chain. The block is retrieved from the blockchain's internal cache. func (bc *BlockChain) CurrentFastBlock() *types.Block { return bc.currentFastBlock.Load().(*types.Block) } // SetProcessor sets the processor required for making state modifications. func (bc *BlockChain) SetProcessor(processor Processor) { bc.procmu.Lock() defer bc.procmu.Unlock() bc.processor = processor } // SetValidator sets the validator which is used to validate incoming blocks. func (bc *BlockChain) SetValidator(validator Validator) { bc.procmu.Lock() defer bc.procmu.Unlock() bc.validator = validator } // Validator returns the current validator. func (bc *BlockChain) Validator() Validator { bc.procmu.RLock() defer bc.procmu.RUnlock() return bc.validator } // Processor returns the current processor. func (bc *BlockChain) Processor() Processor { bc.procmu.RLock() defer bc.procmu.RUnlock() return bc.processor } // State returns a new mutable state based on the current HEAD block. func (bc *BlockChain) State() (*state.DB, error) { return bc.StateAt(bc.CurrentBlock().Root()) } // StateAt returns a new mutable state based on a particular point in time. func (bc *BlockChain) StateAt(root common.Hash) (*state.DB, error) { return state.New(root, bc.stateCache) } // Reset purges the entire blockchain, restoring it to its genesis state. func (bc *BlockChain) Reset() error { return bc.ResetWithGenesisBlock(bc.genesisBlock) } // ResetWithGenesisBlock purges the entire blockchain, restoring it to the // specified genesis state. func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error { // Dump the entire block chain and purge the caches if err := bc.SetHead(0); err != nil { return err } bc.mu.Lock() defer bc.mu.Unlock() // Prepare the genesis block and reinitialise the chain rawdb.WriteBlock(bc.db, genesis) bc.genesisBlock = genesis bc.insert(bc.genesisBlock) bc.currentBlock.Store(bc.genesisBlock) bc.hc.SetGenesis(bc.genesisBlock.Header()) bc.hc.SetCurrentHeader(bc.genesisBlock.Header()) bc.currentFastBlock.Store(bc.genesisBlock) return nil } // repair tries to repair the current blockchain by rolling back the current block // until one with associated state is found. This is needed to fix incomplete db // writes caused either by crashes/power outages, or simply non-committed tries. // // This method only rolls back the current block. The current header and current // fast block are left intact. func (bc *BlockChain) repair(head **types.Block) error { for { // Abort if we've rewound to a head block that does have associated state if _, err := state.New((*head).Root(), bc.stateCache); err == nil { log.Info("Rewound blockchain to past state", "number", (*head).Number(), "hash", (*head).Hash()) return nil } // Otherwise rewind one block and recheck state availability there (*head) = bc.GetBlock((*head).ParentHash(), (*head).NumberU64()-1) } } // Export writes the active chain to the given writer. func (bc *BlockChain) Export(w io.Writer) error { return bc.ExportN(w, uint64(0), bc.CurrentBlock().NumberU64()) } // ExportN writes a subset of the active chain to the given writer. func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error { bc.mu.RLock() defer bc.mu.RUnlock() if first > last { return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last) } log.Info("Exporting batch of blocks", "count", last-first+1) start, reported := time.Now(), time.Now() for nr := first; nr <= last; nr++ { block := bc.GetBlockByNumber(nr) if block == nil { return fmt.Errorf("export failed on #%d: not found", nr) } if err := block.EncodeRLP(w); err != nil { return err } if time.Since(reported) >= statsReportLimit { log.Info("Exporting blocks", "exported", block.NumberU64()-first, "elapsed", common.PrettyDuration(time.Since(start))) reported = time.Now() } } return nil } // insert injects a new head block into the current block chain. This method // assumes that the block is indeed a true head. It will also reset the head // header and the head fast sync block to this very same block if they are older // or if they are on a different side chain. // // Note, this function assumes that the `mu` mutex is held! func (bc *BlockChain) insert(block *types.Block) { // If the block is on a side chain or an unknown one, force other heads onto it too updateHeads := rawdb.ReadCanonicalHash(bc.db, block.NumberU64()) != block.Hash() // Add the block to the canonical chain number scheme and mark as the head rawdb.WriteCanonicalHash(bc.db, block.Hash(), block.NumberU64()) rawdb.WriteHeadBlockHash(bc.db, block.Hash()) bc.currentBlock.Store(block) // If the block is better than our head or is on a different chain, force update heads if updateHeads { bc.hc.SetCurrentHeader(block.Header()) rawdb.WriteHeadFastBlockHash(bc.db, block.Hash()) bc.currentFastBlock.Store(block) } } // Genesis retrieves the chain's genesis block. func (bc *BlockChain) Genesis() *types.Block { return bc.genesisBlock } // GetBody retrieves a block body (transactions and uncles) from the database by // hash, caching it if found. func (bc *BlockChain) GetBody(hash common.Hash) *types.Body { // Short circuit if the body's already in the cache, retrieve otherwise if cached, ok := bc.bodyCache.Get(hash); ok { body := cached.(*types.Body) return body } number := bc.hc.GetBlockNumber(hash) if number == nil { return nil } body := rawdb.ReadBody(bc.db, hash, *number) if body == nil { return nil } // Cache the found body for next time and return bc.bodyCache.Add(hash, body) return body } // GetBodyRLP retrieves a block body in RLP encoding from the database by hash, // caching it if found. func (bc *BlockChain) GetBodyRLP(hash common.Hash) rlp.RawValue { // Short circuit if the body's already in the cache, retrieve otherwise if cached, ok := bc.bodyRLPCache.Get(hash); ok { return cached.(rlp.RawValue) } number := bc.hc.GetBlockNumber(hash) if number == nil { return nil } body := rawdb.ReadBodyRLP(bc.db, hash, *number) if len(body) == 0 { return nil } // Cache the found body for next time and return bc.bodyRLPCache.Add(hash, body) return body } // HasBlock checks if a block is fully present in the database or not. func (bc *BlockChain) HasBlock(hash common.Hash, number uint64) bool { if bc.blockCache.Contains(hash) { return true } return rawdb.HasBody(bc.db, hash, number) } // HasState checks if state trie is fully present in the database or not. func (bc *BlockChain) HasState(hash common.Hash) bool { _, err := bc.stateCache.OpenTrie(hash) return err == nil } // HasBlockAndState checks if a block and associated state trie is fully present // in the database or not, caching it if present. func (bc *BlockChain) HasBlockAndState(hash common.Hash, number uint64) bool { // Check first that the block itself is known block := bc.GetBlock(hash, number) if block == nil { return false } return bc.HasState(block.Root()) } // GetBlock retrieves a block from the database by hash and number, // caching it if found. func (bc *BlockChain) GetBlock(hash common.Hash, number uint64) *types.Block { // Short circuit if the block's already in the cache, retrieve otherwise if block, ok := bc.blockCache.Get(hash); ok { return block.(*types.Block) } block := rawdb.ReadBlock(bc.db, hash, number) if block == nil { return nil } // Cache the found block for next time and return bc.blockCache.Add(block.Hash(), block) return block } // GetBlockByHash retrieves a block from the database by hash, caching it if found. func (bc *BlockChain) GetBlockByHash(hash common.Hash) *types.Block { number := bc.hc.GetBlockNumber(hash) if number == nil { return nil } return bc.GetBlock(hash, *number) } // GetBlockByNumber retrieves a block from the database by number, caching it // (associated with its hash) if found. func (bc *BlockChain) GetBlockByNumber(number uint64) *types.Block { hash := rawdb.ReadCanonicalHash(bc.db, number) if hash == (common.Hash{}) { return nil } return bc.GetBlock(hash, number) } // GetReceiptsByHash retrieves the receipts for all transactions in a given block. func (bc *BlockChain) GetReceiptsByHash(hash common.Hash) types.Receipts { if receipts, ok := bc.receiptsCache.Get(hash); ok { return receipts.(types.Receipts) } number := rawdb.ReadHeaderNumber(bc.db, hash) if number == nil { return nil } receipts := rawdb.ReadReceipts(bc.db, hash, *number) bc.receiptsCache.Add(hash, receipts) return receipts } // GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors. // [deprecated by eth/62] func (bc *BlockChain) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) { number := bc.hc.GetBlockNumber(hash) if number == nil { return nil } for i := 0; i < n; i++ { block := bc.GetBlock(hash, *number) if block == nil { break } blocks = append(blocks, block) hash = block.ParentHash() *number-- } return } // GetUnclesInChain retrieves all the uncles from a given block backwards until // a specific distance is reached. func (bc *BlockChain) GetUnclesInChain(block *types.Block, length int) []*types.Header { uncles := []*types.Header{} for i := 0; block != nil && i < length; i++ { uncles = append(uncles, block.Uncles()...) block = bc.GetBlock(block.ParentHash(), block.NumberU64()-1) } return uncles } // TrieNode retrieves a blob of data associated with a trie node (or code hash) // either from ephemeral in-memory cache, or from persistent storage. func (bc *BlockChain) TrieNode(hash common.Hash) ([]byte, error) { return bc.stateCache.TrieDB().Node(hash) } // Stop stops the blockchain service. If any imports are currently in progress // it will abort them using the procInterrupt. func (bc *BlockChain) Stop() { if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) { return } // Unsubscribe all subscriptions registered from blockchain bc.scope.Close() close(bc.quit) atomic.StoreInt32(&bc.procInterrupt, 1) bc.wg.Wait() // Ensure the state of a recent block is also stored to disk before exiting. // We're writing three different states to catch different restart scenarios: // - HEAD: So we don't need to reprocess any blocks in the general case // - HEAD-1: So we don't do large reorgs if our HEAD becomes an uncle // - HEAD-127: So we have a hard limit on the number of blocks reexecuted if !bc.cacheConfig.Disabled { triedb := bc.stateCache.TrieDB() for _, offset := range []uint64{0, 1, triesInMemory - 1} { if number := bc.CurrentBlock().NumberU64(); number > offset { recent := bc.GetBlockByNumber(number - offset) log.Info("Writing cached state to disk", "block", recent.Number(), "hash", recent.Hash(), "root", recent.Root()) if err := triedb.Commit(recent.Root(), true); err != nil { log.Error("Failed to commit recent state trie", "err", err) } } } for !bc.triegc.Empty() { triedb.Dereference(bc.triegc.PopItem().(common.Hash)) } if size, _ := triedb.Size(); size != 0 { log.Error("Dangling trie nodes after full cleanup") } } log.Info("Blockchain manager stopped") } func (bc *BlockChain) procFutureBlocks() { blocks := make([]*types.Block, 0, bc.futureBlocks.Len()) for _, hash := range bc.futureBlocks.Keys() { if block, exist := bc.futureBlocks.Peek(hash); exist { blocks = append(blocks, block.(*types.Block)) } } if len(blocks) > 0 { types.BlockBy(types.Number).Sort(blocks) // Insert one by one as chain insertion needs contiguous ancestry between blocks for i := range blocks { bc.InsertChain(blocks[i : i+1]) } } } // WriteStatus status of write type WriteStatus byte // Constants for WriteStatus const ( NonStatTy WriteStatus = iota CanonStatTy SideStatTy ) // Rollback is designed to remove a chain of links from the database that aren't // certain enough to be valid. func (bc *BlockChain) Rollback(chain []common.Hash) { bc.mu.Lock() defer bc.mu.Unlock() for i := len(chain) - 1; i >= 0; i-- { hash := chain[i] currentHeader := bc.hc.CurrentHeader() if currentHeader.Hash() == hash { bc.hc.SetCurrentHeader(bc.GetHeader(currentHeader.ParentHash, currentHeader.Number.Uint64()-1)) } if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock.Hash() == hash { newFastBlock := bc.GetBlock(currentFastBlock.ParentHash(), currentFastBlock.NumberU64()-1) bc.currentFastBlock.Store(newFastBlock) rawdb.WriteHeadFastBlockHash(bc.db, newFastBlock.Hash()) } if currentBlock := bc.CurrentBlock(); currentBlock.Hash() == hash { newBlock := bc.GetBlock(currentBlock.ParentHash(), currentBlock.NumberU64()-1) bc.currentBlock.Store(newBlock) rawdb.WriteHeadBlockHash(bc.db, newBlock.Hash()) } } } // SetReceiptsData computes all the non-consensus fields of the receipts func SetReceiptsData(config *params.ChainConfig, block *types.Block, receipts types.Receipts) error { signer := types.MakeSigner(config, block.Number()) transactions, logIndex := block.Transactions(), uint(0) if len(transactions) != len(receipts) { return errors.New("transaction and receipt count mismatch") } for j := 0; j < len(receipts); j++ { // The transaction hash can be retrieved from the transaction itself receipts[j].TxHash = transactions[j].Hash() // The contract address can be derived from the transaction itself if transactions[j].To() == nil { // Deriving the signer is expensive, only do if it's actually needed from, _ := types.Sender(signer, transactions[j]) receipts[j].ContractAddress = crypto.CreateAddress(from, transactions[j].Nonce()) } // The used gas can be calculated based on previous receipts if j == 0 { receipts[j].GasUsed = receipts[j].CumulativeGasUsed } else { receipts[j].GasUsed = receipts[j].CumulativeGasUsed - receipts[j-1].CumulativeGasUsed } // The derived log fields can simply be set from the block and transaction for k := 0; k < len(receipts[j].Logs); k++ { receipts[j].Logs[k].BlockNumber = block.NumberU64() receipts[j].Logs[k].BlockHash = block.Hash() receipts[j].Logs[k].TxHash = receipts[j].TxHash receipts[j].Logs[k].TxIndex = uint(j) receipts[j].Logs[k].Index = logIndex logIndex++ } } return nil } // InsertReceiptChain attempts to complete an already existing header chain with // transaction and receipt data. func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) { bc.wg.Add(1) defer bc.wg.Done() // Do a sanity check that the provided chain is actually ordered and linked for i := 1; i < len(blockChain); i++ { if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() { log.Error("Non contiguous receipt insert", "number", blockChain[i].Number(), "hash", blockChain[i].Hash(), "parent", blockChain[i].ParentHash(), "prevnumber", blockChain[i-1].Number(), "prevhash", blockChain[i-1].Hash()) return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, blockChain[i-1].NumberU64(), blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4]) } } var ( stats = struct{ processed, ignored int32 }{} start = time.Now() bytes = 0 batch = bc.db.NewBatch() ) for i, block := range blockChain { receipts := receiptChain[i] // Short circuit insertion if shutting down or processing failed if atomic.LoadInt32(&bc.procInterrupt) == 1 { return 0, nil } // Short circuit if the owner header is unknown if !bc.HasHeader(block.Hash(), block.NumberU64()) { return i, fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4]) } // Skip if the entire data is already known if bc.HasBlock(block.Hash(), block.NumberU64()) { stats.ignored++ continue } // Compute all the non-consensus fields of the receipts if err := SetReceiptsData(bc.chainConfig, block, receipts); err != nil { return i, fmt.Errorf("failed to set receipts data: %v", err) } // Write all the data out into the database rawdb.WriteBody(batch, block.Hash(), block.NumberU64(), block.Body()) rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts) rawdb.WriteTxLookupEntries(batch, block) stats.processed++ if batch.ValueSize() >= ethdb.IdealBatchSize { if err := batch.Write(); err != nil { return 0, err } bytes += batch.ValueSize() batch.Reset() } } if batch.ValueSize() > 0 { bytes += batch.ValueSize() if err := batch.Write(); err != nil { return 0, err } } // Update the head fast sync block if better bc.mu.Lock() head := blockChain[len(blockChain)-1] if td := bc.GetTd(head.Hash(), head.NumberU64()); td != nil { // Rewind may have occurred, skip in that case currentFastBlock := bc.CurrentFastBlock() if bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()).Cmp(td) < 0 { rawdb.WriteHeadFastBlockHash(bc.db, head.Hash()) bc.currentFastBlock.Store(head) } } bc.mu.Unlock() context := []interface{}{ "count", stats.processed, "elapsed", common.PrettyDuration(time.Since(start)), "number", head.Number(), "hash", head.Hash(), "age", common.PrettyAge(time.Unix(head.Time().Int64(), 0)), "size", common.StorageSize(bytes), } if stats.ignored > 0 { context = append(context, []interface{}{"ignored", stats.ignored}...) } log.Info("Imported new block receipts", context...) return 0, nil } var lastWrite uint64 // WriteBlockWithoutState writes only the block and its metadata to the database, // but does not write any state. This is used to construct competing side forks // up to the point where they exceed the canonical total difficulty. func (bc *BlockChain) WriteBlockWithoutState(block *types.Block, td *big.Int) (err error) { bc.wg.Add(1) defer bc.wg.Done() if err := bc.hc.WriteTd(block.Hash(), block.NumberU64(), td); err != nil { return err } rawdb.WriteBlock(bc.db, block) return nil } // WriteBlockWithState writes the block and all associated state to the database. func (bc *BlockChain) WriteBlockWithState(block *types.Block, receipts []*types.Receipt, state *state.DB) (status WriteStatus, err error) { bc.wg.Add(1) defer bc.wg.Done() // Calculate the total difficulty of the block ptd := bc.GetTd(block.ParentHash(), block.NumberU64()-1) if ptd == nil { return NonStatTy, consensus_engine.ErrUnknownAncestor } // Make sure no inconsistent state is leaked during insertion bc.mu.Lock() defer bc.mu.Unlock() currentBlock := bc.CurrentBlock() localTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64()) // Set the block's own difficulty to 1 // TODO: fix the difficulty issue externTd := new(big.Int).Add(big.NewInt(1), ptd) // Irrelevant of the canonical status, write the block itself to the database if err := bc.hc.WriteTd(block.Hash(), block.NumberU64(), externTd); err != nil { return NonStatTy, err } rawdb.WriteBlock(bc.db, block) root, err := state.Commit(bc.chainConfig.IsEIP158(block.Number())) if err != nil { return NonStatTy, err } triedb := bc.stateCache.TrieDB() // If we're running an archive node, always flush if bc.cacheConfig.Disabled { if err := triedb.Commit(root, false); err != nil { return NonStatTy, err } } else { // Full but not archive node, do proper garbage collection triedb.Reference(root, common.Hash{}) // metadata reference to keep trie alive bc.triegc.Push(root, -int64(block.NumberU64())) if current := block.NumberU64(); current > triesInMemory { // If we exceeded our memory allowance, flush matured singleton nodes to disk var ( nodes, imgs = triedb.Size() limit = common.StorageSize(bc.cacheConfig.TrieNodeLimit) * 1024 * 1024 ) if nodes > limit || imgs > 4*1024*1024 { triedb.Cap(limit - ethdb.IdealBatchSize) } // Find the next state trie we need to commit header := bc.GetHeaderByNumber(current - triesInMemory) chosen := header.Number.Uint64() // If we exceeded out time allowance, flush an entire trie to disk if bc.gcproc > bc.cacheConfig.TrieTimeLimit { // If we're exceeding limits but haven't reached a large enough memory gap, // warn the user that the system is becoming unstable. if chosen < lastWrite+triesInMemory && bc.gcproc >= 2*bc.cacheConfig.TrieTimeLimit { log.Info("State in memory for too long, committing", "time", bc.gcproc, "allowance", bc.cacheConfig.TrieTimeLimit, "optimum", float64(chosen-lastWrite)/triesInMemory) } // Flush an entire trie and restart the counters triedb.Commit(header.Root, true) lastWrite = chosen bc.gcproc = 0 } // Garbage collect anything below our required write retention for !bc.triegc.Empty() { root, number := bc.triegc.Pop() if uint64(-number) > chosen { bc.triegc.Push(root, number) break } triedb.Dereference(root.(common.Hash)) } } } // Write other block data using a batch. batch := bc.db.NewBatch() rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts) // If the total difficulty is higher than our known, add it to the canonical chain // Second clause in the if statement reduces the vulnerability to selfish mining. // Please refer to http://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf reorg := externTd.Cmp(localTd) > 0 currentBlock = bc.CurrentBlock() if !reorg && externTd.Cmp(localTd) == 0 { // Split same-difficulty blocks by number, then preferentially select // the block generated by the local miner as the canonical block. if block.NumberU64() < currentBlock.NumberU64() { reorg = true } else if block.NumberU64() == currentBlock.NumberU64() { var currentPreserve, blockPreserve bool if bc.shouldPreserve != nil { currentPreserve, blockPreserve = bc.shouldPreserve(currentBlock), bc.shouldPreserve(block) } reorg = !currentPreserve && (blockPreserve || mrand.Float64() < 0.5) } } if reorg { // Reorganise the chain if the parent is not the head block if block.ParentHash() != currentBlock.Hash() { if err := bc.reorg(currentBlock, block); err != nil { return NonStatTy, err } } // Write the positional metadata for transaction/receipt lookups and preimages rawdb.WriteTxLookupEntries(batch, block) rawdb.WritePreimages(batch, block.NumberU64(), state.Preimages()) status = CanonStatTy } else { status = SideStatTy } if err := batch.Write(); err != nil { return NonStatTy, err } // Set new head. if status == CanonStatTy { bc.insert(block) } bc.futureBlocks.Remove(block.Hash()) return status, nil } // InsertChain attempts to insert the given batch of blocks in to the canonical // chain or, otherwise, create a fork. If an error is returned it will return // the index number of the failing block as well an error describing what went // wrong. // // After insertion is done, all accumulated events will be fired. func (bc *BlockChain) InsertChain(chain types.Blocks) (int, error) { n, events, logs, err := bc.insertChain(chain) bc.PostChainEvents(events, logs) // TODO ek – make this a post-chain event if err == nil { for idx, block := range chain { header := block.Header() header.Logger(utils.GetLogger()).Info("added block to chain", "segmentIndex", idx, "parentHash", header.ParentHash) if header.ShardStateHash != (common.Hash{}) { epoch := new(big.Int).Add(header.Epoch, common.Big1) err = bc.WriteShardState(epoch, header.ShardState) if err != nil { ctxerror.Log15(header.Logger(utils.GetLogger()).Warn, ctxerror.New("cannot store shard state").WithCause(err)) } } } } return n, err } // insertChain will execute the actual chain insertion and event aggregation. The // only reason this method exists as a separate one is to make locking cleaner // with deferred statements. func (bc *BlockChain) insertChain(chain types.Blocks) (int, []interface{}, []*types.Log, error) { // Sanity check that we have something meaningful to import if len(chain) == 0 { return 0, nil, nil, nil } // Do a sanity check that the provided chain is actually ordered and linked for i := 1; i < len(chain); i++ { if chain[i].NumberU64() != chain[i-1].NumberU64()+1 || chain[i].ParentHash() != chain[i-1].Hash() { // Chain broke ancestry, log a message (programming error) and skip insertion log.Error("Non contiguous block insert", "number", chain[i].Number(), "hash", chain[i].Hash(), "parent", chain[i].ParentHash(), "prevnumber", chain[i-1].Number(), "prevhash", chain[i-1].Hash()) return 0, nil, nil, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, chain[i-1].NumberU64(), chain[i-1].Hash().Bytes()[:4], i, chain[i].NumberU64(), chain[i].Hash().Bytes()[:4], chain[i].ParentHash().Bytes()[:4]) } } // Pre-checks passed, start the full block imports bc.wg.Add(1) defer bc.wg.Done() bc.chainmu.Lock() defer bc.chainmu.Unlock() // A queued approach to delivering events. This is generally // faster than direct delivery and requires much less mutex // acquiring. var ( stats = insertStats{startTime: mclock.Now()} events = make([]interface{}, 0, len(chain)) lastCanon *types.Block coalescedLogs []*types.Log ) // Start the parallel header verifier headers := make([]*types.Header, len(chain)) seals := make([]bool, len(chain)) for i, block := range chain { headers[i] = block.Header() seals[i] = true } abort, results := bc.engine.VerifyHeaders(bc, headers, seals) defer close(abort) // Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss) //senderCacher.recoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain) // Iterate over the blocks and insert when the verifier permits for i, block := range chain { // If the chain is terminating, stop processing blocks if atomic.LoadInt32(&bc.procInterrupt) == 1 { log.Debug("Premature abort during blocks processing") break } // Wait for the block's verification to complete bstart := time.Now() err := <-results if err == nil { err = bc.Validator().ValidateBody(block) } switch { case err == ErrKnownBlock: // Block and state both already known. However if the current block is below // this number we did a rollback and we should reimport it nonetheless. if bc.CurrentBlock().NumberU64() >= block.NumberU64() { stats.ignored++ continue } case err == consensus_engine.ErrFutureBlock: // Allow up to MaxFuture second in the future blocks. If this limit is exceeded // the chain is discarded and processed at a later time if given. max := big.NewInt(time.Now().Unix() + maxTimeFutureBlocks) if block.Time().Cmp(max) > 0 { return i, events, coalescedLogs, fmt.Errorf("future block: %v > %v", block.Time(), max) } bc.futureBlocks.Add(block.Hash(), block) stats.queued++ continue case err == consensus_engine.ErrUnknownAncestor && bc.futureBlocks.Contains(block.ParentHash()): bc.futureBlocks.Add(block.Hash(), block) stats.queued++ continue case err == consensus_engine.ErrPrunedAncestor: // TODO: add fork choice mechanism // Block competing with the canonical chain, store in the db, but don't process // until the competitor TD goes above the canonical TD //currentBlock := bc.CurrentBlock() //localTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64()) //externTd := new(big.Int).Add(bc.GetTd(block.ParentHash(), block.NumberU64()-1), block.Difficulty()) //if localTd.Cmp(externTd) > 0 { // if err = bc.WriteBlockWithoutState(block, externTd); err != nil { // return i, events, coalescedLogs, err // } // continue //} // Competitor chain beat canonical, gather all blocks from the common ancestor var winner []*types.Block parent := bc.GetBlock(block.ParentHash(), block.NumberU64()-1) for !bc.HasState(parent.Root()) { winner = append(winner, parent) parent = bc.GetBlock(parent.ParentHash(), parent.NumberU64()-1) } for j := 0; j < len(winner)/2; j++ { winner[j], winner[len(winner)-1-j] = winner[len(winner)-1-j], winner[j] } // Import all the pruned blocks to make the state available bc.chainmu.Unlock() _, evs, logs, err := bc.insertChain(winner) bc.chainmu.Lock() events, coalescedLogs = evs, logs if err != nil { return i, events, coalescedLogs, err } case err != nil: bc.reportBlock(block, nil, err) return i, events, coalescedLogs, err } // Create a new statedb using the parent block and report an // error if it fails. var parent *types.Block if i == 0 { parent = bc.GetBlock(block.ParentHash(), block.NumberU64()-1) } else { parent = chain[i-1] } state, err := state.New(parent.Root(), bc.stateCache) if err != nil { return i, events, coalescedLogs, err } // Process block using the parent state as reference point. receipts, logs, usedGas, err := bc.processor.Process(block, state, bc.vmConfig) if err != nil { bc.reportBlock(block, receipts, err) return i, events, coalescedLogs, err } // Validate the state using the default validator err = bc.Validator().ValidateState(block, parent, state, receipts, usedGas) if err != nil { bc.reportBlock(block, receipts, err) return i, events, coalescedLogs, err } proctime := time.Since(bstart) // Write the block to the chain and get the status. status, err := bc.WriteBlockWithState(block, receipts, state) if err != nil { return i, events, coalescedLogs, err } switch status { case CanonStatTy: log.Debug("Inserted new block", "number", block.Number(), "hash", block.Hash(), "uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(), "elapsed", common.PrettyDuration(time.Since(bstart))) coalescedLogs = append(coalescedLogs, logs...) blockInsertTimer.UpdateSince(bstart) events = append(events, ChainEvent{block, block.Hash(), logs}) lastCanon = block // Only count canonical blocks for GC processing time bc.gcproc += proctime case SideStatTy: log.Debug("Inserted forked block", "number", block.Number(), "hash", block.Hash(), "elapsed", common.PrettyDuration(time.Since(bstart)), "txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles())) blockInsertTimer.UpdateSince(bstart) events = append(events, ChainSideEvent{block}) } stats.processed++ stats.usedGas += usedGas cache, _ := bc.stateCache.TrieDB().Size() stats.report(chain, i, cache) } // Append a single chain head event if we've progressed the chain if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() { events = append(events, ChainHeadEvent{lastCanon}) } return 0, events, coalescedLogs, nil } // insertStats tracks and reports on block insertion. type insertStats struct { queued, processed, ignored int usedGas uint64 lastIndex int startTime mclock.AbsTime } // statsReportLimit is the time limit during import and export after which we // always print out progress. This avoids the user wondering what's going on. const statsReportLimit = 8 * time.Second // report prints statistics if some number of blocks have been processed // or more than a few seconds have passed since the last message. func (st *insertStats) report(chain []*types.Block, index int, cache common.StorageSize) { // Fetch the timings for the batch var ( now = mclock.Now() elapsed = time.Duration(now) - time.Duration(st.startTime) ) // If we're at the last block of the batch or report period reached, log if index == len(chain)-1 || elapsed >= statsReportLimit { var ( end = chain[index] txs = countTransactions(chain[st.lastIndex : index+1]) ) context := []interface{}{ "blocks", st.processed, "txs", txs, "mgas", float64(st.usedGas) / 1000000, "elapsed", common.PrettyDuration(elapsed), "mgasps", float64(st.usedGas) * 1000 / float64(elapsed), "number", end.Number(), "hash", end.Hash(), } if timestamp := time.Unix(end.Time().Int64(), 0); time.Since(timestamp) > time.Minute { context = append(context, []interface{}{"age", common.PrettyAge(timestamp)}...) } context = append(context, []interface{}{"cache", cache}...) if st.queued > 0 { context = append(context, []interface{}{"queued", st.queued}...) } if st.ignored > 0 { context = append(context, []interface{}{"ignored", st.ignored}...) } log.Info("Imported new chain segment", context...) *st = insertStats{startTime: now, lastIndex: index + 1} } } func countTransactions(chain []*types.Block) (c int) { for _, b := range chain { c += len(b.Transactions()) } return c } // reorgs takes two blocks, an old chain and a new chain and will reconstruct the blocks and inserts them // to be part of the new canonical chain and accumulates potential missing transactions and post an // event about them func (bc *BlockChain) reorg(oldBlock, newBlock *types.Block) error { var ( newChain types.Blocks oldChain types.Blocks commonBlock *types.Block deletedTxs types.Transactions deletedLogs []*types.Log // collectLogs collects the logs that were generated during the // processing of the block that corresponds with the given hash. // These logs are later announced as deleted. collectLogs = func(hash common.Hash) { // Coalesce logs and set 'Removed'. number := bc.hc.GetBlockNumber(hash) if number == nil { return } receipts := rawdb.ReadReceipts(bc.db, hash, *number) for _, receipt := range receipts { for _, log := range receipt.Logs { del := *log del.Removed = true deletedLogs = append(deletedLogs, &del) } } } ) // first reduce whoever is higher bound if oldBlock.NumberU64() > newBlock.NumberU64() { // reduce old chain for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) { oldChain = append(oldChain, oldBlock) deletedTxs = append(deletedTxs, oldBlock.Transactions()...) collectLogs(oldBlock.Hash()) } } else { // reduce new chain and append new chain blocks for inserting later on for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) { newChain = append(newChain, newBlock) } } if oldBlock == nil { return fmt.Errorf("Invalid old chain") } if newBlock == nil { return fmt.Errorf("Invalid new chain") } for { if oldBlock.Hash() == newBlock.Hash() { commonBlock = oldBlock break } oldChain = append(oldChain, oldBlock) newChain = append(newChain, newBlock) deletedTxs = append(deletedTxs, oldBlock.Transactions()...) collectLogs(oldBlock.Hash()) oldBlock, newBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1), bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) if oldBlock == nil { return fmt.Errorf("Invalid old chain") } if newBlock == nil { return fmt.Errorf("Invalid new chain") } } // Ensure the user sees large reorgs if len(oldChain) > 0 && len(newChain) > 0 { logFn := log.Debug if len(oldChain) > 63 { logFn = log.Warn } logFn("Chain split detected", "number", commonBlock.Number(), "hash", commonBlock.Hash(), "drop", len(oldChain), "dropfrom", oldChain[0].Hash(), "add", len(newChain), "addfrom", newChain[0].Hash()) } else { log.Error("Impossible reorg, please file an issue", "oldnum", oldBlock.Number(), "oldhash", oldBlock.Hash(), "newnum", newBlock.Number(), "newhash", newBlock.Hash()) } // Insert the new chain, taking care of the proper incremental order var addedTxs types.Transactions for i := len(newChain) - 1; i >= 0; i-- { // insert the block in the canonical way, re-writing history bc.insert(newChain[i]) // write lookup entries for hash based transaction/receipt searches rawdb.WriteTxLookupEntries(bc.db, newChain[i]) addedTxs = append(addedTxs, newChain[i].Transactions()...) } // calculate the difference between deleted and added transactions diff := types.TxDifference(deletedTxs, addedTxs) // When transactions get deleted from the database that means the // receipts that were created in the fork must also be deleted batch := bc.db.NewBatch() for _, tx := range diff { rawdb.DeleteTxLookupEntry(batch, tx.Hash()) } batch.Write() if len(deletedLogs) > 0 { go bc.rmLogsFeed.Send(RemovedLogsEvent{deletedLogs}) } if len(oldChain) > 0 { go func() { for _, block := range oldChain { bc.chainSideFeed.Send(ChainSideEvent{Block: block}) } }() } return nil } // PostChainEvents iterates over the events generated by a chain insertion and // posts them into the event feed. // TODO: Should not expose PostChainEvents. The chain events should be posted in WriteBlock. func (bc *BlockChain) PostChainEvents(events []interface{}, logs []*types.Log) { // post event logs for further processing if logs != nil { bc.logsFeed.Send(logs) } for _, event := range events { switch ev := event.(type) { case ChainEvent: bc.chainFeed.Send(ev) case ChainHeadEvent: bc.chainHeadFeed.Send(ev) case ChainSideEvent: bc.chainSideFeed.Send(ev) } } } func (bc *BlockChain) update() { futureTimer := time.NewTicker(5 * time.Second) defer futureTimer.Stop() for { select { case <-futureTimer.C: bc.procFutureBlocks() case <-bc.quit: return } } } // BadBlocks returns a list of the last 'bad blocks' that the client has seen on the network func (bc *BlockChain) BadBlocks() []*types.Block { blocks := make([]*types.Block, 0, bc.badBlocks.Len()) for _, hash := range bc.badBlocks.Keys() { if blk, exist := bc.badBlocks.Peek(hash); exist { block := blk.(*types.Block) blocks = append(blocks, block) } } return blocks } // addBadBlock adds a bad block to the bad-block LRU cache func (bc *BlockChain) addBadBlock(block *types.Block) { bc.badBlocks.Add(block.Hash(), block) } // reportBlock logs a bad block error. func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) { bc.addBadBlock(block) var receiptString string for _, receipt := range receipts { receiptString += fmt.Sprintf("\t%v\n", receipt) } log.Error(fmt.Sprintf(` ########## BAD BLOCK ######### Chain config: %v Number: %v Hash: 0x%x %v Error: %v ############################## `, bc.chainConfig, block.Number(), block.Hash(), receiptString, err)) } // InsertHeaderChain attempts to insert the given header chain in to the local // chain, possibly creating a reorg. If an error is returned, it will return the // index number of the failing header as well an error describing what went wrong. // // The verify parameter can be used to fine tune whether nonce verification // should be done or not. The reason behind the optional check is because some // of the header retrieval mechanisms already need to verify nonces, as well as // because nonces can be verified sparsely, not needing to check each. func (bc *BlockChain) InsertHeaderChain(chain []*types.Header, checkFreq int) (int, error) { start := time.Now() if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq); err != nil { return i, err } // Make sure only one thread manipulates the chain at once bc.chainmu.Lock() defer bc.chainmu.Unlock() bc.wg.Add(1) defer bc.wg.Done() whFunc := func(header *types.Header) error { bc.mu.Lock() defer bc.mu.Unlock() _, err := bc.hc.WriteHeader(header) return err } return bc.hc.InsertHeaderChain(chain, whFunc, start) } // writeHeader writes a header into the local chain, given that its parent is // already known. If the total difficulty of the newly inserted header becomes // greater than the current known TD, the canonical chain is re-routed. // // Note: This method is not concurrent-safe with inserting blocks simultaneously // into the chain, as side effects caused by reorganisations cannot be emulated // without the real blocks. Hence, writing headers directly should only be done // in two scenarios: pure-header mode of operation (light clients), or properly // separated header/block phases (non-archive clients). func (bc *BlockChain) writeHeader(header *types.Header) error { bc.wg.Add(1) defer bc.wg.Done() bc.mu.Lock() defer bc.mu.Unlock() _, err := bc.hc.WriteHeader(header) return err } // CurrentHeader retrieves the current head header of the canonical chain. The // header is retrieved from the HeaderChain's internal cache. func (bc *BlockChain) CurrentHeader() *types.Header { return bc.hc.CurrentHeader() } // GetTd retrieves a block's total difficulty in the canonical chain from the // database by hash and number, caching it if found. func (bc *BlockChain) GetTd(hash common.Hash, number uint64) *big.Int { return bc.hc.GetTd(hash, number) } // GetTdByHash retrieves a block's total difficulty in the canonical chain from the // database by hash, caching it if found. func (bc *BlockChain) GetTdByHash(hash common.Hash) *big.Int { return bc.hc.GetTdByHash(hash) } // GetHeader retrieves a block header from the database by hash and number, // caching it if found. func (bc *BlockChain) GetHeader(hash common.Hash, number uint64) *types.Header { return bc.hc.GetHeader(hash, number) } // GetHeaderByHash retrieves a block header from the database by hash, caching it if // found. func (bc *BlockChain) GetHeaderByHash(hash common.Hash) *types.Header { return bc.hc.GetHeaderByHash(hash) } // HasHeader checks if a block header is present in the database or not, caching // it if present. func (bc *BlockChain) HasHeader(hash common.Hash, number uint64) bool { return bc.hc.HasHeader(hash, number) } // GetBlockHashesFromHash retrieves a number of block hashes starting at a given // hash, fetching towards the genesis block. func (bc *BlockChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash { return bc.hc.GetBlockHashesFromHash(hash, max) } // GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or // a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the // number of blocks to be individually checked before we reach the canonical chain. // // Note: ancestor == 0 returns the same block, 1 returns its parent and so on. func (bc *BlockChain) GetAncestor(hash common.Hash, number, ancestor uint64, maxNonCanonical *uint64) (common.Hash, uint64) { bc.chainmu.Lock() defer bc.chainmu.Unlock() return bc.hc.GetAncestor(hash, number, ancestor, maxNonCanonical) } // GetHeaderByNumber retrieves a block header from the database by number, // caching it (associated with its hash) if found. func (bc *BlockChain) GetHeaderByNumber(number uint64) *types.Header { return bc.hc.GetHeaderByNumber(number) } // Config retrieves the blockchain's chain configuration. func (bc *BlockChain) Config() *params.ChainConfig { return bc.chainConfig } // Engine retrieves the blockchain's consensus engine. func (bc *BlockChain) Engine() consensus_engine.Engine { return bc.engine } // SubscribeRemovedLogsEvent registers a subscription of RemovedLogsEvent. func (bc *BlockChain) SubscribeRemovedLogsEvent(ch chan<- RemovedLogsEvent) event.Subscription { return bc.scope.Track(bc.rmLogsFeed.Subscribe(ch)) } // SubscribeChainEvent registers a subscription of ChainEvent. func (bc *BlockChain) SubscribeChainEvent(ch chan<- ChainEvent) event.Subscription { return bc.scope.Track(bc.chainFeed.Subscribe(ch)) } // SubscribeChainHeadEvent registers a subscription of ChainHeadEvent. func (bc *BlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription { return bc.scope.Track(bc.chainHeadFeed.Subscribe(ch)) } // SubscribeChainSideEvent registers a subscription of ChainSideEvent. func (bc *BlockChain) SubscribeChainSideEvent(ch chan<- ChainSideEvent) event.Subscription { return bc.scope.Track(bc.chainSideFeed.Subscribe(ch)) } // SubscribeLogsEvent registers a subscription of []*types.Log. func (bc *BlockChain) SubscribeLogsEvent(ch chan<- []*types.Log) event.Subscription { return bc.scope.Track(bc.logsFeed.Subscribe(ch)) } // ReadShardState retrieves sharding state given the epoch number. func (bc *BlockChain) ReadShardState(epoch *big.Int) (types.ShardState, error) { cacheKey := string(epoch.Bytes()) if cached, ok := bc.shardStateCache.Get(cacheKey); ok { shardState := cached.(types.ShardState) return shardState, nil } shardState, err := rawdb.ReadShardState(bc.db, epoch) if err != nil { return nil, err } bc.shardStateCache.Add(cacheKey, shardState) return shardState, nil } // WriteShardState saves the given sharding state under the given epoch number. func (bc *BlockChain) WriteShardState( epoch *big.Int, shardState types.ShardState, ) error { shardState = shardState.DeepCopy() err := rawdb.WriteShardState(bc.db, epoch, shardState) if err != nil { return err } cacheKey := string(epoch.Bytes()) bc.shardStateCache.Add(cacheKey, shardState) return nil } // GetVdfByNumber retrieves the rand seed given the block number, return 0 if not exist func (bc *BlockChain) GetVdfByNumber(number uint64) [32]byte { header := bc.GetHeaderByNumber(number) if header == nil { return [32]byte{} } result := [32]byte{} copy(result[:], header.Vdf[:32]) return result } // GetVrfByNumber retrieves the randomness preimage given the block number, return 0 if not exist func (bc *BlockChain) GetVrfByNumber(number uint64) [32]byte { header := bc.GetHeaderByNumber(number) if header == nil { return [32]byte{} } return header.Vrf } // GetShardState returns the shard state for the given epoch, // creating one if needed. func (bc *BlockChain) GetShardState( epoch *big.Int, stakeInfo *map[common.Address]*structs.StakeInfo, ) (types.ShardState, error) { shardState, err := bc.ReadShardState(epoch) if err == nil { // TODO ek – distinguish ErrNotFound return shardState, err } shardState, err = CalculateNewShardState(bc, epoch, stakeInfo) if err != nil { return nil, err } err = bc.WriteShardState(epoch, shardState) if err != nil { return nil, err } utils.GetLogger().Debug("saved new shard state", "epoch", epoch) return shardState, nil } // ChainDb returns the database func (bc *BlockChain) ChainDb() ethdb.Database { return bc.db } // GetEpochBlockNumber returns the first block number of the given epoch. func (bc *BlockChain) GetEpochBlockNumber(epoch *big.Int) (*big.Int, error) { // Try cache first cacheKey := string(epoch.Bytes()) if cachedValue, ok := bc.epochCache.Get(cacheKey); ok { return (&big.Int{}).SetBytes([]byte(cachedValue.(string))), nil } blockNum, err := rawdb.ReadEpochBlockNumber(bc.db, epoch) if err != nil { return nil, ctxerror.New("cannot read epoch block number from database", "epoch", epoch, ).WithCause(err) } cachedValue := []byte(blockNum.Bytes()) bc.epochCache.Add(cacheKey, cachedValue) return blockNum, nil } // StoreEpochBlockNumber stores the given epoch-first block number. func (bc *BlockChain) StoreEpochBlockNumber( epoch *big.Int, blockNum *big.Int, ) error { cacheKey := string(epoch.Bytes()) cachedValue := []byte(blockNum.Bytes()) bc.epochCache.Add(cacheKey, cachedValue) if err := rawdb.WriteEpochBlockNumber(bc.db, epoch, blockNum); err != nil { return ctxerror.New("cannot write epoch block number to database", "epoch", epoch, "epochBlockNum", blockNum, ).WithCause(err) } return nil } // ChainDB ... // TODO(ricl): in eth, this is not exposed. I expose it here because I need it in Harmony object. // In eth, chainDB is initialized within Ethereum object func (bc *BlockChain) ChainDB() ethdb.Database { return bc.db }