/* Package cosi implements the collective signing (CoSi) algorithm as presented in the paper "Keeping Authorities 'Honest or Bust' with Decentralized Witness Cosigning" by Ewa Syta et al. See https://arxiv.org/abs/1503.08768. This package only provides the functionality for the cryptographic operations of CoSi. All network-related operations have to be handled elsewhere. Below we describe a high-level overview of the CoSi protocol (using a star communication topology). We refer to the research paper for further details on communication over trees, exception mechanisms and signature verification policies. The CoSi protocol has four phases executed between a list of participants P having a protocol leader (index i = 0) and a list of other nodes (index i > 0). The secret key of node i is denoted by a_i and the public key by A_i = [a_i]G (where G is the base point of the underlying group and [...] denotes scalar multiplication). The aggregate public key is given as A = \sum{i ∈ P}(A_i). 1. Announcement: The leader broadcasts an announcement to the other nodes optionally including the message M to be signed. Upon receiving an announcement message, a node starts its commitment phase. 2. Commitment: Each node i (including the leader) picks a random scalar v_i, computes its commitment V_i = [v_i]G and sends V_i back to the leader. The leader waits until it has received enough commitments (according to some policy) from the other nodes or a timer has run out. Let P' be the nodes that have sent their commitments. The leader computes an aggregate commitment V from all commitments he has received, i.e., V = \sum{j ∈ P'}(V_j) and creates a participation bitmask Z. The leader then broadcasts V and Z to the other participations together with the message M if it was not sent in phase 1. Upon receiving a commitment message, a node starts the challenge phase. 3. Challenge: Each node i computes the collective challenge c = H(V || A || M) using a cryptographic hash function H (here: SHA512), computes its response r_i = v_i + c*a_i and sends it back to the leader. 4. Response: The leader waits until he has received replies from all nodes in P' or a timer has run out. If he has not enough replies he aborts. Finally, the leader computes the aggregate response r = \sum{j ∈ P'}(r_j) and publishes (V,r,Z) as the signature for the message M. */ package crypto import ( "errors" "fmt" "github.com/dedis/kyber" ) // Commit returns a random scalar v, generated from the given suite, // and a corresponding commitment V = [v]G. If the given cipher stream is nil, // a random stream is used. func Commit(suite Suite) (v kyber.Scalar, V kyber.Point) { random := suite.Scalar().Pick(suite.RandomStream()) commitment := suite.Point().Mul(random, nil) return random, commitment } // AggregateCommitments returns the sum of the given commitments and the // bitwise OR of the corresponding masks. func AggregateCommitments(suite Suite, commitments []kyber.Point, masks [][]byte) (sum kyber.Point, commits []byte, err error) { if len(commitments) != len(masks) { return nil, nil, errors.New("mismatching lengths of commitment and mask slices") } aggCom := suite.Point().Null() aggMask := make([]byte, len(masks[0])) for i := range commitments { aggCom = suite.Point().Add(aggCom, commitments[i]) aggMask, err = AggregateMasks(aggMask, masks[i]) if err != nil { return nil, nil, err } } return aggCom, aggMask, nil } // AggregateCommitmentsOnly returns the sum of the given commitments. func AggregateCommitmentsOnly(suite Suite, commitments []kyber.Point) kyber.Point { aggCom := suite.Point().Null() for i := range commitments { aggCom = suite.Point().Add(aggCom, commitments[i]) } return aggCom } // Challenge creates the collective challenge from the given aggregate // commitment V, aggregate public key A, and message M, i.e., it returns // c = H(V || A || M). func Challenge(suite Suite, commitment, public kyber.Point, message []byte) (kyber.Scalar, error) { if commitment == nil { return nil, errors.New("no commitment provided") } if message == nil { return nil, errors.New("no message provided") } hash := suite.Hash() if _, err := commitment.MarshalTo(hash); err != nil { return nil, err } if _, err := public.MarshalTo(hash); err != nil { return nil, err } hash.Write(message) return suite.Scalar().SetBytes(hash.Sum(nil)), nil } // Response creates the response from the given random scalar v, (collective) // challenge c, and private key a, i.e., it returns r = v + c*a. func Response(suite Suite, private, random, challenge kyber.Scalar) (kyber.Scalar, error) { if private == nil { return nil, errors.New("no private key provided") } if random == nil { return nil, errors.New("no random scalar provided") } if challenge == nil { return nil, errors.New("no challenge provided") } // TODO: figure out why in the paper it says r = v - cx ca := suite.Scalar().Mul(private, challenge) return ca.Add(random, ca), nil } // AggregateResponses returns the sum of given responses. func AggregateResponses(suite Suite, responses []kyber.Scalar) (kyber.Scalar, error) { if responses == nil { return nil, errors.New("no responses provided") } r := suite.Scalar().Zero() for i := range responses { r = r.Add(r, responses[i]) } return r, nil } // Sign returns the collective signature from the given (aggregate) commitment // V, (aggregate) response r, and participation bitmask Z using the EdDSA // format, i.e., the signature is V || r || Z. func Sign(suite Suite, commitment kyber.Point, response kyber.Scalar, mask *Mask) ([]byte, error) { if commitment == nil { return nil, errors.New("no commitment provided") } if response == nil { return nil, errors.New("no response provided") } if mask == nil { return nil, errors.New("no mask provided") } lenV := suite.PointLen() lenSig := lenV + suite.ScalarLen() VB, err := commitment.MarshalBinary() if err != nil { return nil, errors.New("marshalling of commitment failed") } RB, err := response.MarshalBinary() if err != nil { return nil, errors.New("marshalling of signature failed") } sig := make([]byte, lenSig+mask.Len()) copy(sig[:], VB) copy(sig[lenV:lenSig], RB) copy(sig[lenSig:], mask.mask) return sig, nil } // Verify checks the given cosignature on the provided message using the list // of public keys and cosigning policy. func Verify(suite Suite, publics []kyber.Point, message, sig []byte, policy Policy) error { if publics == nil { return errors.New("no public keys provided") } if message == nil { return errors.New("no message provided") } if sig == nil { return errors.New("no signature provided") } if policy == nil { policy = CompletePolicy{} } lenCom := suite.PointLen() VBuff := sig[:lenCom] V := suite.Point() if err := V.UnmarshalBinary(VBuff); err != nil { return errors.New("unmarshalling of commitment failed") } // Unpack the aggregate response lenRes := lenCom + suite.ScalarLen() rBuff := sig[lenCom:lenRes] r := suite.Scalar().SetBytes(rBuff) // Unpack the participation mask and get the aggregate public key mask, err := NewMask(suite, publics, nil) if err != nil { return err } mask.SetMask(sig[lenRes:]) A := mask.AggregatePublic ABuff, err := A.MarshalBinary() if err != nil { return errors.New("marshalling of aggregate public key failed") } // Recompute the challenge hash := suite.Hash() hash.Write(VBuff) hash.Write(ABuff) hash.Write(message) buff := hash.Sum(nil) k := suite.Scalar().SetBytes(buff) // k * -aggPublic + s * B = k*-A + s*B // from s = k * a + r => s * B = k * a * B + r * B <=> s*B = k*A + r*B // <=> s*B + k*-A = r*B minusPublic := suite.Point().Neg(A) kA := suite.Point().Mul(k, minusPublic) sB := suite.Point().Mul(r, nil) left := suite.Point().Add(kA, sB) if !left.Equal(V) { return errors.New("recreated response is different from signature") } if !policy.Check(mask) { return errors.New("the policy is not fulfilled") } return nil } // Mask represents a cosigning participation bitmask. type Mask struct { mask []byte publics []kyber.Point AggregatePublic kyber.Point } // NewMask returns a new participation bitmask for cosigning where all // cosigners are disabled by default. If a public key is given it verifies that // it is present in the list of keys and sets the corresponding index in the // bitmask to 1 (enabled). func NewMask(suite Suite, publics []kyber.Point, myKey kyber.Point) (*Mask, error) { m := &Mask{ publics: publics, } m.mask = make([]byte, m.Len()) m.AggregatePublic = suite.Point().Null() if myKey != nil { found := false for i, key := range publics { if key.Equal(myKey) { m.SetBit(i, true) found = true break } } if !found { return nil, errors.New("key not found") } } return m, nil } // Mask returns a copy of the participation bitmask. func (m *Mask) Mask() []byte { clone := make([]byte, len(m.mask)) copy(clone[:], m.mask) return clone } // Len returns the mask length in bytes. func (m *Mask) Len() int { return (len(m.publics) + 7) >> 3 } // SetMask sets the participation bitmask according to the given byte slice // interpreted in little-endian order, i.e., bits 0-7 of byte 0 correspond to // cosigners 0-7, bits 0-7 of byte 1 correspond to cosigners 8-15, etc. func (m *Mask) SetMask(mask []byte) error { if m.Len() != len(mask) { return fmt.Errorf("mismatching mask lengths") } for i := range m.publics { byt := i >> 3 msk := byte(1) << uint(i&7) if ((m.mask[byt] & msk) == 0) && ((mask[byt] & msk) != 0) { m.mask[byt] ^= msk // flip bit in mask from 0 to 1 m.AggregatePublic.Add(m.AggregatePublic, m.publics[i]) } if ((m.mask[byt] & msk) != 0) && ((mask[byt] & msk) == 0) { m.mask[byt] ^= msk // flip bit in mask from 1 to 0 m.AggregatePublic.Sub(m.AggregatePublic, m.publics[i]) } } return nil } // SetBit enables (enable: true) or disables (enable: false) the bit // in the participation mask of the given cosigner. func (m *Mask) SetBit(i int, enable bool) error { if i >= len(m.publics) { return errors.New("index out of range") } byt := i >> 3 msk := byte(1) << uint(i&7) if ((m.mask[byt] & msk) == 0) && enable { m.mask[byt] ^= msk // flip bit in mask from 0 to 1 m.AggregatePublic.Add(m.AggregatePublic, m.publics[i]) } if ((m.mask[byt] & msk) != 0) && !enable { m.mask[byt] ^= msk // flip bit in mask from 1 to 0 m.AggregatePublic.Sub(m.AggregatePublic, m.publics[i]) } return nil } // IndexEnabled checks whether the given index is enabled in the mask or not. func (m *Mask) IndexEnabled(i int) (bool, error) { if i >= len(m.publics) { return false, errors.New("index out of range") } byt := i >> 3 msk := byte(1) << uint(i&7) return ((m.mask[byt] & msk) != 0), nil } // KeyEnabled checks whether the index, corresponding to the given key, is // enabled in the mask or not. func (m *Mask) KeyEnabled(public kyber.Point) (bool, error) { for i, key := range m.publics { if key.Equal(public) { return m.IndexEnabled(i) } } return false, errors.New("key not found") } // SetKey set the bit in the mask for the given cosigner func (m *Mask) SetKey(public kyber.Point, enable bool) error { for i, key := range m.publics { if key.Equal(public) { return m.SetBit(i, enable) } } return errors.New("key not found") } // CountEnabled returns the number of enabled nodes in the CoSi participation // mask. func (m *Mask) CountEnabled() int { // hw is hamming weight hw := 0 for i := range m.publics { byt := i >> 3 msk := byte(1) << uint(i&7) if (m.mask[byt] & msk) != 0 { hw++ } } return hw } // CountTotal returns the total number of nodes this CoSi instance knows. func (m *Mask) CountTotal() int { return len(m.publics) } // AggregateMasks computes the bitwise OR of the two given participation masks. func AggregateMasks(a, b []byte) ([]byte, error) { if len(a) != len(b) { return nil, errors.New("mismatching mask lengths") } m := make([]byte, len(a)) for i := range m { m[i] = a[i] | b[i] } return m, nil } // Policy represents a fully customizable cosigning policy deciding what // cosigner sets are and aren't sufficient for a collective signature to be // considered acceptable to a verifier. The Check method may inspect the set of // participants that cosigned by invoking cosi.Mask and/or cosi.MaskBit, and may // use any other relevant contextual information (e.g., how security-critical // the operation relying on the collective signature is) in determining whether // the collective signature was produced by an acceptable set of cosigners. type Policy interface { Check(m *Mask) bool } // CompletePolicy is the default policy requiring that all participants have // cosigned to make a collective signature valid. type CompletePolicy struct { } // Check verifies that all participants have contributed to a collective // signature. func (p CompletePolicy) Check(m *Mask) bool { return m.CountEnabled() == m.CountTotal() } // ThresholdPolicy allows to specify a simple t-of-n policy requring that at // least the given threshold number of participants t have cosigned to make a // collective signature valid. type ThresholdPolicy struct { thold int } // NewThresholdPolicy returns a new ThresholdPolicy with the given threshold. func NewThresholdPolicy(thold int) *ThresholdPolicy { return &ThresholdPolicy{thold: thold} } // Check verifies that at least a threshold number of participants have // contributed to a collective signature. func (p ThresholdPolicy) Check(m *Mask) bool { return m.CountEnabled() >= p.thold }