package drand import ( "crypto/sha256" "encoding/binary" "errors" "strconv" "sync" protobuf "github.com/golang/protobuf/proto" "github.com/harmony-one/bls/ffi/go/bls" drand_proto "github.com/harmony-one/harmony/api/drand" "github.com/harmony-one/harmony/core/types" bls_cosi "github.com/harmony-one/harmony/crypto/bls" "github.com/harmony-one/harmony/crypto/vrf" "github.com/harmony-one/harmony/crypto/vrf/p256" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/p2p" ) // DRand is the main struct which contains state for the distributed randomness protocol. type DRand struct { vrfs *map[uint32][]byte bitmap *bls_cosi.Mask pRand *[32]byte rand *[32]byte ConfirmedBlockChannel chan *types.Block // Channel to receive confirmed blocks PRndChannel chan []byte // Channel to send pRnd (preimage of randomness resulting from combined vrf randomnesses) to consensus. The first 32 bytes are randomness, the rest is for bitmap. RndChannel chan [64]byte // Channel for DRG protocol to send the final randomness to consensus. The first 32 bytes are the randomness and the last 32 bytes are the hash of the block where the corresponding pRnd was generated // global consensus mutex mutex sync.Mutex // map of nodeID to validator Peer object // FIXME: should use PubKey of p2p.Peer as the hashkey validators sync.Map // key is uint16, value is p2p.Peer // Leader's address leader p2p.Peer // Public keys of the committee including leader and validators PublicKeys []*bls.PublicKey pubKeyLock sync.Mutex // private/public keys of current node priKey *bls.SecretKey pubKey *bls.PublicKey // VRF private and public key // TODO: directly use signature signing key (BLS) for vrf vrfPriKey *vrf.PrivateKey vrfPubKey *vrf.PublicKey // Whether I am leader. False means I am validator IsLeader bool // Leader or validator Id - 4 byte nodeID uint32 // The p2p host used to send/receive p2p messages host p2p.Host // Shard Id which this node belongs to ShardID uint32 // Blockhash - 32 byte blockHash [32]byte } // New creates a new dRand object func New(host p2p.Host, ShardID string, peers []p2p.Peer, leader p2p.Peer, confirmedBlockChannel chan *types.Block, isLeader bool) *DRand { dRand := DRand{} dRand.host = host if confirmedBlockChannel != nil { dRand.ConfirmedBlockChannel = confirmedBlockChannel } dRand.PRndChannel = make(chan []byte) dRand.RndChannel = make(chan [64]byte) selfPeer := host.GetSelfPeer() dRand.IsLeader = isLeader dRand.leader = leader for _, peer := range peers { dRand.validators.Store(utils.GetUniqueIDFromPeer(peer), peer) } dRand.vrfs = &map[uint32][]byte{} // Initialize cosign bitmap allPublicKeys := make([]*bls.PublicKey, 0) for _, validatorPeer := range peers { allPublicKeys = append(allPublicKeys, validatorPeer.ConsensusPubKey) } allPublicKeys = append(allPublicKeys, leader.ConsensusPubKey) dRand.PublicKeys = allPublicKeys bitmap, _ := bls_cosi.NewMask(dRand.PublicKeys, dRand.leader.ConsensusPubKey) dRand.bitmap = bitmap dRand.pRand = nil dRand.rand = nil // For now use socket address as ID // TODO: populate Id derived from address dRand.nodeID = utils.GetUniqueIDFromPeer(selfPeer) // Set private key for myself so that I can sign messages. nodeIDBytes := make([]byte, 32) binary.LittleEndian.PutUint32(nodeIDBytes, dRand.nodeID) privateKey := bls.SecretKey{} err := privateKey.SetLittleEndian(nodeIDBytes) dRand.priKey = &privateKey dRand.pubKey = privateKey.GetPublicKey() // VRF keys priKey, pubKey := p256.GenerateKey() dRand.vrfPriKey = &priKey dRand.vrfPubKey = &pubKey myShardID, err := strconv.Atoi(ShardID) if err != nil { panic("Unparseable shard Id" + ShardID) } dRand.ShardID = uint32(myShardID) return &dRand } // AddPeers adds new peers into the validator map of the consensus // and add the public keys func (dRand *DRand) AddPeers(peers []*p2p.Peer) int { count := 0 for _, peer := range peers { _, ok := dRand.validators.Load(utils.GetUniqueIDFromPeer(*peer)) if !ok { dRand.validators.Store(utils.GetUniqueIDFromPeer(*peer), *peer) dRand.pubKeyLock.Lock() dRand.PublicKeys = append(dRand.PublicKeys, peer.ConsensusPubKey) dRand.pubKeyLock.Unlock() utils.GetLogInstance().Debug("[DRAND]", "AddPeers", *peer) } count++ } return count } // Sign on the drand message signature field. func (dRand *DRand) signDRandMessage(message *drand_proto.Message) error { message.Signature = nil // TODO: use custom serialization method rather than protobuf marshaledMessage, err := protobuf.Marshal(message) if err != nil { return err } // 64 byte of signature on previous data hash := sha256.Sum256(marshaledMessage) signature := dRand.priKey.SignHash(hash[:]) message.Signature = signature.Serialize() return nil } // Signs the drand message and returns the marshaled message. func (dRand *DRand) signAndMarshalDRandMessage(message *drand_proto.Message) ([]byte, error) { err := dRand.signDRandMessage(message) if err != nil { return []byte{}, err } marshaledMessage, err := protobuf.Marshal(message) if err != nil { return []byte{}, err } return marshaledMessage, nil } func (dRand *DRand) vrf(blockHash [32]byte) (rand [32]byte, proof []byte) { rand, proof = (*dRand.vrfPriKey).Evaluate(blockHash[:]) return } // GetValidatorPeers returns list of validator peers. func (dRand *DRand) GetValidatorPeers() []p2p.Peer { validatorPeers := make([]p2p.Peer, 0) dRand.validators.Range(func(k, v interface{}) bool { if peer, ok := v.(p2p.Peer); ok { validatorPeers = append(validatorPeers, peer) return true } return false }) return validatorPeers } // Verify the signature of the message are valid from the signer's public key. func verifyMessageSig(signerPubKey *bls.PublicKey, message drand_proto.Message) error { signature := message.Signature message.Signature = nil messageBytes, err := protobuf.Marshal(&message) if err != nil { return err } msgSig := bls.Sign{} err = msgSig.Deserialize(signature) if err != nil { return err } msgHash := sha256.Sum256(messageBytes) if !msgSig.VerifyHash(signerPubKey, msgHash[:]) { return errors.New("failed to verify the signature") } return nil } // Gets the validator peer based on validator ID. func (dRand *DRand) getValidatorPeerByID(validatorID uint32) *p2p.Peer { v, ok := dRand.validators.Load(validatorID) if !ok { utils.GetLogInstance().Warn("Unrecognized validator", "validatorID", validatorID, "dRand", dRand) return nil } value, ok := v.(p2p.Peer) if !ok { utils.GetLogInstance().Warn("Invalid validator", "validatorID", validatorID, "dRand", dRand) return nil } return &value } // ResetState resets the state of the randomness protocol func (dRand *DRand) ResetState() { dRand.vrfs = &map[uint32][]byte{} bitmap, _ := bls_cosi.NewMask(dRand.PublicKeys, dRand.leader.ConsensusPubKey) dRand.bitmap = bitmap dRand.pRand = nil dRand.rand = nil } // SetLeaderPubKey deserialize the public key of drand leader func (dRand *DRand) SetLeaderPubKey(k []byte) error { dRand.leader.ConsensusPubKey = &bls.PublicKey{} return dRand.leader.ConsensusPubKey.Deserialize(k) } // UpdatePublicKeys updates the PublicKeys variable, protected by a mutex func (dRand *DRand) UpdatePublicKeys(pubKeys []*bls.PublicKey) int { dRand.pubKeyLock.Lock() dRand.PublicKeys = append(pubKeys[:0:0], pubKeys...) dRand.pubKeyLock.Unlock() return len(dRand.PublicKeys) }