package chain import ( "encoding/binary" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/rlp" "github.com/harmony-one/bls/ffi/go/bls" "github.com/harmony-one/harmony/block" "github.com/harmony-one/harmony/consensus/engine" "github.com/harmony-one/harmony/consensus/reward" "github.com/harmony-one/harmony/core/state" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/internal/ctxerror" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/shard" "github.com/harmony-one/harmony/shard/committee" staking "github.com/harmony-one/harmony/staking/types" "github.com/pkg/errors" "golang.org/x/crypto/sha3" ) type engineImpl struct { d reward.Distributor } // Engine is an algorithm-agnostic consensus engine. var Engine = &engineImpl{nil} // Rewarder handles the distribution of block rewards func (e *engineImpl) Rewarder() reward.Distributor { return e.d } // SetRewarder .. func (e *engineImpl) SetRewarder(d reward.Distributor) { e.d = d } // SealHash returns the hash of a block prior to it being sealed. func (e *engineImpl) SealHash(header *block.Header) (hash common.Hash) { hasher := sha3.NewLegacyKeccak256() // TODO: update with new fields if err := rlp.Encode(hasher, []interface{}{ header.ParentHash(), header.Coinbase(), header.Root(), header.TxHash(), header.ReceiptHash(), header.Bloom(), header.Number(), header.GasLimit(), header.GasUsed(), header.Time(), header.Extra(), }); err != nil { utils.Logger().Warn().Err(err).Msg("rlp.Encode failed") } hasher.Sum(hash[:0]) return hash } // Seal is to seal final block. func (e *engineImpl) Seal(chain engine.ChainReader, block *types.Block, results chan<- *types.Block, stop <-chan struct{}) error { // TODO: implement final block sealing return nil } // Author returns the author of the block header. func (e *engineImpl) Author(header *block.Header) (common.Address, error) { // TODO: implement this return common.Address{}, nil } // Prepare is to prepare ... // TODO(RJ): fix it. func (e *engineImpl) Prepare(chain engine.ChainReader, header *block.Header) error { // TODO: implement prepare method return nil } // VerifyHeader checks whether a header conforms to the consensus rules of the bft engine. // Note that each block header contains the bls signature of the parent block func (e *engineImpl) VerifyHeader(chain engine.ChainReader, header *block.Header, seal bool) error { parentHeader := chain.GetHeader(header.ParentHash(), header.Number().Uint64()-1) if parentHeader == nil { return engine.ErrUnknownAncestor } if seal { if err := e.VerifySeal(chain, header); err != nil { return err } } return nil } // VerifyHeaders is similar to VerifyHeader, but verifies a batch of headers // concurrently. The method returns a quit channel to abort the operations and // a results channel to retrieve the async verifications. func (e *engineImpl) VerifyHeaders(chain engine.ChainReader, headers []*block.Header, seals []bool) (chan<- struct{}, <-chan error) { abort, results := make(chan struct{}), make(chan error, len(headers)) go func() { for i, header := range headers { err := e.VerifyHeader(chain, header, seals[i]) select { case <-abort: return case results <- err: } } }() return abort, results } // ReadPublicKeysFromLastBlock finds the public keys of last block's committee func ReadPublicKeysFromLastBlock(bc engine.ChainReader, header *block.Header) ([]*bls.PublicKey, error) { parentHeader := bc.GetHeaderByHash(header.ParentHash()) return GetPublicKeys(bc, parentHeader, false) } // VerifySeal implements Engine, checking whether the given block's parent block satisfies // the PoS difficulty requirements, i.e. >= 2f+1 valid signatures from the committee // Note that each block header contains the bls signature of the parent block func (e *engineImpl) VerifySeal(chain engine.ChainReader, header *block.Header) error { if chain.CurrentHeader().Number().Uint64() <= uint64(1) { return nil } publicKeys, err := ReadPublicKeysFromLastBlock(chain, header) if err != nil { return ctxerror.New("[VerifySeal] Cannot retrieve publickeys from last block").WithCause(err) } sig := header.LastCommitSignature() payload := append(sig[:], header.LastCommitBitmap()...) aggSig, mask, err := ReadSignatureBitmapByPublicKeys(payload, publicKeys) if err != nil { return ctxerror.New("[VerifySeal] Unable to deserialize the LastCommitSignature and LastCommitBitmap in Block Header").WithCause(err) } parentHash := header.ParentHash() parentHeader := chain.GetHeader(parentHash, header.Number().Uint64()-1) parentQuorum, err := QuorumForBlock(chain, parentHeader, false) if err != nil { return errors.Wrapf(err, "cannot calculate quorum for block %s", header.Number()) } if count := utils.CountOneBits(mask.Bitmap); count < int64(parentQuorum) { return ctxerror.New("[VerifySeal] Not enough signature in LastCommitSignature from Block Header", "need", parentQuorum, "got", count) } blockNumHash := make([]byte, 8) binary.LittleEndian.PutUint64(blockNumHash, header.Number().Uint64()-1) lastCommitPayload := append(blockNumHash, parentHash[:]...) if !aggSig.VerifyHash(mask.AggregatePublic, lastCommitPayload) { return ctxerror.New("[VerifySeal] Unable to verify aggregated signature from last block", "lastBlockNum", header.Number().Uint64()-1, "lastBlockHash", parentHash) } return nil } // Finalize implements Engine, accumulating the block rewards, // setting the final state and assembling the block. func (e *engineImpl) Finalize( chain engine.ChainReader, header *block.Header, state *state.DB, txs []*types.Transaction, receipts []*types.Receipt, outcxs []*types.CXReceipt, incxs []*types.CXReceiptsProof, stks []*staking.StakingTransaction) (*types.Block, error) { // Accumulate any block and uncle rewards and commit the final state root // Header seems complete, assemble into a block and return // TODO: Block rewards should be done only in beacon chain based on cross-links if err := AccumulateRewards(chain, state, header, e.Rewarder()); err != nil { return nil, ctxerror.New("cannot pay block reward").WithCause(err) } // Withdraw unlocked tokens to the delegators' accounts // Only do such at the last block of an epoch if len(header.ShardState()) > 0 { // TODO: make sure we are using the correct validator list validators := chain.ActiveValidatorAddresses() for _, validator := range validators { wrapper := state.GetStakingInfo(validator) if wrapper != nil { for i := range wrapper.Delegations { delegation := wrapper.Delegations[i] totalWithdraw := big.NewInt(0) count := 0 for j := range delegation.Entries { if delegation.Entries[j].Epoch.Cmp(header.Epoch()) > 14 { // need to wait at least 14 epochs to withdraw; totalWithdraw.Add(totalWithdraw, delegation.Entries[j].Amount) count++ } else { break } } state.AddBalance(delegation.DelegatorAddress, totalWithdraw) delegation.Entries = delegation.Entries[count:] } if err := state.UpdateStakingInfo(validator, wrapper); err != nil { return nil, ctxerror.New("failed update validator info").WithCause(err) } } } } header.SetRoot(state.IntermediateRoot(chain.Config().IsS3(header.Epoch()))) return types.NewBlock(header, txs, receipts, outcxs, incxs, stks), nil } // QuorumForBlock returns the quorum for the given block header. func QuorumForBlock(chain engine.ChainReader, h *block.Header, reCalculate bool) (quorum int, err error) { var ss shard.State if reCalculate { ss, _ = committee.WithStakingEnabled.Compute(h.Epoch(), *chain.Config(), nil) } else { ss, err = chain.ReadShardState(h.Epoch()) if err != nil { return 0, ctxerror.New("failed to read shard state of epoch", "epoch", h.Epoch().Uint64()).WithCause(err) } } c := ss.FindCommitteeByID(h.ShardID()) if c == nil { return 0, errors.Errorf( "cannot find shard %d in shard state", h.ShardID()) } return (len(c.NodeList))*2/3 + 1, nil } // Similiar to VerifyHeader, which is only for verifying the block headers of one's own chain, this verification // is used for verifying "incoming" block header against commit signature and bitmap sent from the other chain cross-shard via libp2p. // i.e. this header verification api is more flexible since the caller specifies which commit signature and bitmap to use // for verifying the block header, which is necessary for cross-shard block header verification. Example of such is cross-shard transaction. func (e *engineImpl) VerifyHeaderWithSignature(chain engine.ChainReader, header *block.Header, commitSig []byte, commitBitmap []byte, reCalculate bool) error { publicKeys, err := GetPublicKeys(chain, header, reCalculate) if err != nil { return ctxerror.New("[VerifyHeaderWithSignature] Cannot get publickeys for block header").WithCause(err) } payload := append(commitSig[:], commitBitmap[:]...) aggSig, mask, err := ReadSignatureBitmapByPublicKeys(payload, publicKeys) if err != nil { return ctxerror.New("[VerifyHeaderWithSignature] Unable to deserialize the commitSignature and commitBitmap in Block Header").WithCause(err) } hash := header.Hash() quorum, err := QuorumForBlock(chain, header, reCalculate) if err != nil { return errors.Wrapf(err, "cannot calculate quorum for block %s", header.Number()) } if count := utils.CountOneBits(mask.Bitmap); count < int64(quorum) { return ctxerror.New("[VerifyHeaderWithSignature] Not enough signature in commitSignature from Block Header", "need", quorum, "got", count) } blockNumHash := make([]byte, 8) binary.LittleEndian.PutUint64(blockNumHash, header.Number().Uint64()) commitPayload := append(blockNumHash, hash[:]...) if !aggSig.VerifyHash(mask.AggregatePublic, commitPayload) { return ctxerror.New("[VerifySeal] Unable to verify aggregated signature for block", "blockNum", header.Number().Uint64()-1, "blockHash", hash) } return nil } // GetPublicKeys finds the public keys of the committee that signed the block header func GetPublicKeys(chain engine.ChainReader, header *block.Header, reCalculate bool) ([]*bls.PublicKey, error) { var shardState shard.State var err error if reCalculate { shardState, _ = committee.WithStakingEnabled.Compute(header.Epoch(), *chain.Config(), nil) } else { shardState, err = chain.ReadShardState(header.Epoch()) if err != nil { return nil, ctxerror.New("failed to read shard state of epoch", "epoch", header.Epoch().Uint64()) } } committee := shardState.FindCommitteeByID(header.ShardID()) if committee == nil { return nil, ctxerror.New("cannot find shard in the shard state", "blockNumber", header.Number(), "shardID", header.ShardID(), ) } var committerKeys []*bls.PublicKey for _, member := range committee.NodeList { committerKey := new(bls.PublicKey) err := member.BlsPublicKey.ToLibBLSPublicKey(committerKey) if err != nil { return nil, ctxerror.New("cannot convert BLS public key", "blsPublicKey", member.BlsPublicKey).WithCause(err) } committerKeys = append(committerKeys, committerKey) } return committerKeys, nil }