package node import ( "bytes" "encoding/gob" "net" "os" "time" "github.com/simple-rules/harmony-benchmark/blockchain" "github.com/simple-rules/harmony-benchmark/p2p" "github.com/simple-rules/harmony-benchmark/proto" "github.com/simple-rules/harmony-benchmark/proto/client" "github.com/simple-rules/harmony-benchmark/proto/consensus" proto_node "github.com/simple-rules/harmony-benchmark/proto/node" ) const ( // The max number of transaction per a block. MaxNumberOfTransactionsPerBlock = 3000 ) // NodeHandler handles a new incoming connection. func (node *Node) NodeHandler(conn net.Conn) { defer conn.Close() // Read p2p message payload content, err := p2p.ReadMessageContent(conn) if err != nil { node.log.Error("Read p2p data failed", "err", err, "node", node) return } consensusObj := node.Consensus msgCategory, err := proto.GetMessageCategory(content) if err != nil { node.log.Error("Read node type failed", "err", err, "node", node) return } msgType, err := proto.GetMessageType(content) if err != nil { node.log.Error("Read action type failed", "err", err, "node", node) return } msgPayload, err := proto.GetMessagePayload(content) if err != nil { node.log.Error("Read message payload failed", "err", err, "node", node) return } switch msgCategory { case proto.CONSENSUS: actionType := consensus.ConsensusMessageType(msgType) switch actionType { case consensus.CONSENSUS: if consensusObj.IsLeader { consensusObj.ProcessMessageLeader(msgPayload) } else { consensusObj.ProcessMessageValidator(msgPayload) } } case proto.NODE: actionType := proto_node.NodeMessageType(msgType) switch actionType { case proto_node.TRANSACTION: node.transactionMessageHandler(msgPayload) case proto_node.BLOCK: if node.Client != nil { blockMsgType := proto_node.BlockMessageType(msgPayload[0]) switch blockMsgType { case proto_node.SYNC: decoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the SYNC messge type blocks := new([]*blockchain.Block) decoder.Decode(blocks) if node.Client != nil && blocks != nil { node.Client.UpdateBlocks(*blocks) } } } case proto_node.CONTROL: controlType := msgPayload[0] if proto_node.ControlMessageType(controlType) == proto_node.STOP { node.log.Debug("Stopping Node", "node", node, "numBlocks", len(node.blockchain.Blocks), "numTxsProcessed", node.countNumTransactionsInBlockchain()) sizeInBytes := node.UtxoPool.GetSizeInByteOfUtxoMap() node.log.Debug("UtxoPool Report", "numEntries", len(node.UtxoPool.UtxoMap), "sizeInBytes", sizeInBytes) avgBlockSizeInBytes := 0 txCount := 0 avgTxSize := 0 for _, block := range node.blockchain.Blocks { byteBuffer := bytes.NewBuffer([]byte{}) encoder := gob.NewEncoder(byteBuffer) encoder.Encode(block) avgBlockSizeInBytes += len(byteBuffer.Bytes()) txCount += len(block.Transactions) byteBuffer = bytes.NewBuffer([]byte{}) encoder = gob.NewEncoder(byteBuffer) encoder.Encode(block.Transactions) avgTxSize += len(byteBuffer.Bytes()) } avgBlockSizeInBytes = avgBlockSizeInBytes / len(node.blockchain.Blocks) avgTxSize = avgTxSize / txCount node.log.Debug("Blockchain Report", "numBlocks", len(node.blockchain.Blocks), "avgBlockSize", avgBlockSizeInBytes, "numTxs", txCount, "avgTxSzie", avgTxSize) os.Exit(0) } } case proto.CLIENT: actionType := client.ClientMessageType(msgType) switch actionType { case client.TRANSACTION: if node.Client != nil { node.Client.TransactionMessageHandler(msgPayload) } } } } func (node *Node) transactionMessageHandler(msgPayload []byte) { txMessageType := proto_node.TransactionMessageType(msgPayload[0]) switch txMessageType { case proto_node.SEND: txDecoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the SEND messge type txList := new([]*blockchain.Transaction) err := txDecoder.Decode(&txList) if err != nil { node.log.Error("Failed deserializing transaction list", "node", node) } node.addPendingTransactions(*txList) case proto_node.REQUEST: reader := bytes.NewBuffer(msgPayload[1:]) var txIds map[[32]byte]bool buf := make([]byte, 32) // 32 byte hash Id for { _, err := reader.Read(buf) if err != nil { break } var txId [32]byte copy(txId[:], buf) txIds[txId] = true } var txToReturn []*blockchain.Transaction for _, tx := range node.pendingTransactions { if txIds[tx.ID] { txToReturn = append(txToReturn, tx) } } // TODO: return the transaction list to requester case proto_node.UNLOCK: txAndProofDecoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the UNLOCK messge type txAndProofs := new([]*blockchain.Transaction) err := txAndProofDecoder.Decode(&txAndProofs) if err != nil { node.log.Error("Failed deserializing transaction and proofs list", "node", node) } node.log.Debug("RECEIVED UNLOCK MESSAGE", "num", len(*txAndProofs)) node.addPendingTransactions(*txAndProofs) } } // WaitForConsensusReady ... func (node *Node) WaitForConsensusReady(readySignal chan int) { node.log.Debug("Waiting for Consensus ready", "node", node) var newBlock *blockchain.Block timeoutCount := 0 for { // keep waiting for Consensus ready retry := false select { case <-readySignal: time.Sleep(100 * time.Millisecond) // Delay a bit so validator is catched up. case <-time.After(8 * time.Second): retry = true node.Consensus.ResetState() timeoutCount++ node.log.Debug("Consensus timeout, retry!", "count", timeoutCount, "node", node) } //node.log.Debug("Adding new block", "currentChainSize", len(node.blockchain.Blocks), "numTxs", len(node.blockchain.GetLatestBlock().Transactions), "PrevHash", node.blockchain.GetLatestBlock().PrevBlockHash, "Hash", node.blockchain.GetLatestBlock().Hash) if !retry { for { // Once we have more than 100 transactions pending we will try creating a new block if len(node.pendingTransactions) >= 100 { selectedTxs, crossShardTxAndProofs := node.getTransactionsForNewBlock(MaxNumberOfTransactionsPerBlock) if len(selectedTxs) == 0 { node.log.Debug("No valid transactions exist", "pendingTx", len(node.pendingTransactions)) } else { node.log.Debug("Creating new block", "numTxs", len(selectedTxs), "pendingTxs", len(node.pendingTransactions), "currentChainSize", len(node.blockchain.Blocks)) node.transactionInConsensus = selectedTxs node.log.Debug("CROSS SHARD TX", "num", len(crossShardTxAndProofs)) node.CrossTxsInConsensus = crossShardTxAndProofs newBlock = blockchain.NewBlock(selectedTxs, node.blockchain.GetLatestBlock().Hash, node.Consensus.ShardID) break } } // If not enough transactions to run Consensus, // periodically check whether we have enough transactions to package into block. time.Sleep(1 * time.Second) } } // Send the new block to Consensus so it can be confirmed. if newBlock != nil { node.BlockChannel <- *newBlock } } } // This is called by consensus participants to verify the block they are running consensus on func (node *Node) SendBackProofOfAcceptOrReject() { if node.ClientPeer != nil && len(node.CrossTxsToReturn) != 0 { node.crossTxToReturnMutex.Lock() proofs := []blockchain.CrossShardTxProof{} for _, txAndProof := range node.CrossTxsToReturn { proofs = append(proofs, *txAndProof.Proof) } node.CrossTxsToReturn = nil node.crossTxToReturnMutex.Unlock() node.log.Debug("SENDING PROOF TO CLIENT", "proofs", len(proofs)) p2p.SendMessage(*node.ClientPeer, client.ConstructProofOfAcceptOrRejectMessage(proofs)) } } // This is called by consensus leader to sync new blocks with other clients/nodes. // NOTE: For now, just send to the client (basically not broadcasting) func (node *Node) BroadcastNewBlock(newBlock *blockchain.Block) { if node.ClientPeer != nil { node.log.Debug("SENDING NEW BLOCK TO CLIENT") p2p.SendMessage(*node.ClientPeer, proto_node.ConstructBlocksSyncMessage([]blockchain.Block{*newBlock})) } } // This is called by consensus participants to verify the block they are running consensus on func (node *Node) VerifyNewBlock(newBlock *blockchain.Block) bool { return node.UtxoPool.VerifyTransactions(newBlock.Transactions) } // This is called by consensus participants, after consensus is done, to: // 1. add the new block to blockchain // 2. [leader] move cross shard tx and proof to the list where they wait to be sent to the client func (node *Node) PostConsensusProcessing(newBlock *blockchain.Block) { node.AddNewBlock(newBlock) if node.Consensus.IsLeader { // Move crossTx-in-consensus into the list to be returned to client for _, crossTxAndProof := range node.CrossTxsInConsensus { crossTxAndProof.Proof.BlockHash = newBlock.Hash // TODO: fill in the signature proofs } if len(node.CrossTxsInConsensus) != 0 { node.addCrossTxsToReturn(node.CrossTxsInConsensus) node.CrossTxsInConsensus = []*blockchain.CrossShardTxAndProof{} } node.SendBackProofOfAcceptOrReject() node.BroadcastNewBlock(newBlock) } } func (node *Node) AddNewBlock(newBlock *blockchain.Block) { // Add it to blockchain node.blockchain.Blocks = append(node.blockchain.Blocks, newBlock) // Update UTXO pool node.UtxoPool.Update(newBlock.Transactions) // Clear transaction-in-Consensus list node.transactionInConsensus = []*blockchain.Transaction{} }