// Package consensus implements the Cosi PBFT consensus package consensus // consensus import ( "fmt" "reflect" "strconv" "sync" "github.com/dedis/kyber" "github.com/dedis/kyber/sign/schnorr" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto/sha3" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" "github.com/harmony-one/harmony/core/state" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/crypto" "github.com/harmony-one/harmony/crypto/pki" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/log" "github.com/harmony-one/harmony/p2p" "github.com/harmony-one/harmony/p2p/host" proto_node "github.com/harmony-one/harmony/api/proto/node" ) // Consensus is the main struct with all states and data related to consensus process. type Consensus struct { // The current state of the consensus state State // Commits collected from validators. commitments *map[uint32]kyber.Point finalCommitments *map[uint32]kyber.Point aggregatedCommitment kyber.Point aggregatedFinalCommitment kyber.Point bitmap *crypto.Mask finalBitmap *crypto.Mask // Challenges for the validators challenge [32]byte finalChallenge [32]byte // Responses collected from validators responses *map[uint32]kyber.Scalar finalResponses *map[uint32]kyber.Scalar // map of nodeID to validator Peer object // FIXME: should use PubKey of p2p.Peer as the hashkey validators sync.Map // key is uint16, value is p2p.Peer // Minimal number of peers in the shard // If the number of validators is less than minPeers, the consensus won't start MinPeers int // Leader's address leader p2p.Peer // Public keys of the committee including leader and validators PublicKeys []kyber.Point pubKeyLock sync.Mutex // private/public keys of current node priKey kyber.Scalar pubKey kyber.Point // Whether I am leader. False means I am validator IsLeader bool // Leader or validator Id - 4 byte nodeID uint32 // Consensus Id (View Id) - 4 byte consensusID uint32 // Blockhash - 32 byte blockHash [32]byte // Block to run consensus on block []byte // Array of block hashes. blockHashes [][32]byte // Shard Id which this node belongs to ShardID uint32 // global consensus mutex mutex sync.Mutex // Validator specific fields // Blocks received but not done with consensus yet blocksReceived map[uint32]*BlockConsensusStatus // Commitment secret secret map[uint32]kyber.Scalar // Signal channel for starting a new consensus process ReadySignal chan struct{} // The verifier func passed from Node object BlockVerifier func(*types.Block) bool // The post-consensus processing func passed from Node object // Called when consensus on a new block is done OnConsensusDone func(*types.Block) Log log.Logger uniqueIDInstance *utils.UniqueValidatorID // The p2p host used to send/receive p2p messages host host.Host // Signal channel for lost validators OfflinePeers chan p2p.Peer // List of offline Peers OfflinePeerList []p2p.Peer } // BlockConsensusStatus used to keep track of the consensus status of multiple blocks received so far // This is mainly used in the case that this node is lagging behind and needs to catch up. // For example, the consensus moved to round N and this node received message(N). // However, this node may still not finished with round N-1, so the newly received message(N) // should be stored in this temporary structure. In case the round N-1 finishes, it can catch // up to the latest state of round N by using this structure. type BlockConsensusStatus struct { block []byte // the block data state State // the latest state of the consensus } // New creates a new Consensus object func New(host host.Host, ShardID string, peers []p2p.Peer, leader p2p.Peer) *Consensus { consensus := Consensus{} consensus.host = host selfPeer := host.GetSelfPeer() if leader.Port == selfPeer.Port && leader.IP == selfPeer.IP { consensus.IsLeader = true } else { consensus.IsLeader = false } consensus.commitments = &map[uint32]kyber.Point{} consensus.finalCommitments = &map[uint32]kyber.Point{} consensus.responses = &map[uint32]kyber.Scalar{} consensus.finalResponses = &map[uint32]kyber.Scalar{} consensus.leader = leader for _, peer := range peers { consensus.validators.Store(utils.GetUniqueIDFromPeer(peer), peer) } // Initialize cosign bitmap allPublicKeys := make([]kyber.Point, 0) for _, validatorPeer := range peers { allPublicKeys = append(allPublicKeys, validatorPeer.PubKey) } allPublicKeys = append(allPublicKeys, leader.PubKey) mask, err := crypto.NewMask(crypto.Ed25519Curve, allPublicKeys, consensus.leader.PubKey) if err != nil { panic("Failed to create mask") } finalMask, err := crypto.NewMask(crypto.Ed25519Curve, allPublicKeys, consensus.leader.PubKey) if err != nil { panic("Failed to create final mask") } consensus.PublicKeys = allPublicKeys consensus.bitmap = mask consensus.finalBitmap = finalMask consensus.secret = map[uint32]kyber.Scalar{} // For now use socket address as ID // TODO: populate Id derived from address consensus.nodeID = utils.GetUniqueIDFromPeer(selfPeer) // Set private key for myself so that I can sign messages. consensus.priKey = crypto.Ed25519Curve.Scalar().SetInt64(int64(consensus.nodeID)) consensus.pubKey = pki.GetPublicKeyFromScalar(consensus.priKey) consensus.consensusID = 0 // or view Id in the original pbft paper myShardID, err := strconv.Atoi(ShardID) if err != nil { panic("Unparseable shard Id" + ShardID) } consensus.ShardID = uint32(myShardID) // For validators to keep track of all blocks received but not yet committed, so as to catch up to latest consensus if lagged behind. consensus.blocksReceived = make(map[uint32]*BlockConsensusStatus) if consensus.IsLeader { consensus.ReadySignal = make(chan struct{}) // send a signal to indicate it's ready to run consensus // this signal is consumed by node object to create a new block and in turn trigger a new consensus on it // this is a goroutine because go channel without buffer will block go func() { consensus.ReadySignal <- struct{}{} }() } consensus.Log = log.New() consensus.uniqueIDInstance = utils.GetUniqueValidatorIDInstance() consensus.OfflinePeerList = make([]p2p.Peer, 0) // consensus.Log.Info("New Consensus", "IP", ip, "Port", port, "NodeID", consensus.nodeID, "priKey", consensus.priKey, "pubKey", consensus.pubKey) return &consensus } // Author returns the author of the block header. func (consensus *Consensus) Author(header *types.Header) (common.Address, error) { // TODO: implement this return common.Address{}, nil } // TODO: switch to BLS-based signature func (consensus *Consensus) signMessage(message []byte) []byte { signature, err := schnorr.Sign(crypto.Ed25519Curve, consensus.priKey, message) if err != nil { panic("Failed to sign message with Schnorr signature.") } return signature } // GetValidatorPeers returns list of validator peers. func (consensus *Consensus) GetValidatorPeers() []p2p.Peer { validatorPeers := make([]p2p.Peer, 0) consensus.validators.Range(func(k, v interface{}) bool { if peer, ok := v.(p2p.Peer); ok { validatorPeers = append(validatorPeers, peer) return true } return false }) return validatorPeers } // ResetState resets the state of the consensus func (consensus *Consensus) ResetState() { consensus.state = Finished consensus.commitments = &map[uint32]kyber.Point{} consensus.finalCommitments = &map[uint32]kyber.Point{} consensus.responses = &map[uint32]kyber.Scalar{} consensus.finalResponses = &map[uint32]kyber.Scalar{} mask, _ := crypto.NewMask(crypto.Ed25519Curve, consensus.PublicKeys, consensus.leader.PubKey) finalMask, _ := crypto.NewMask(crypto.Ed25519Curve, consensus.PublicKeys, consensus.leader.PubKey) consensus.bitmap = mask consensus.finalBitmap = finalMask consensus.bitmap.SetMask([]byte{}) consensus.finalBitmap.SetMask([]byte{}) consensus.aggregatedCommitment = nil consensus.aggregatedFinalCommitment = nil consensus.secret = map[uint32]kyber.Scalar{} // Clear the OfflinePeersList again consensus.OfflinePeerList = make([]p2p.Peer, 0) } // Returns a string representation of this consensus func (consensus *Consensus) String() string { var duty string if consensus.IsLeader { duty = "LDR" // leader } else { duty = "VLD" // validator } return fmt.Sprintf("[duty:%s, priKey:%s, ShardID:%v, nodeID:%v, state:%s]", duty, consensus.priKey.String(), consensus.ShardID, consensus.nodeID, consensus.state) } // AddPeers adds new peers into the validator map of the consensus // and add the public keys func (consensus *Consensus) AddPeers(peers []*p2p.Peer) int { count := 0 for _, peer := range peers { _, ok := consensus.validators.Load(utils.GetUniqueIDFromPeer(*peer)) if !ok { if peer.ValidatorID == -1 { peer.ValidatorID = int(consensus.uniqueIDInstance.GetUniqueID()) } consensus.validators.Store(utils.GetUniqueIDFromPeer(*peer), *peer) consensus.pubKeyLock.Lock() consensus.PublicKeys = append(consensus.PublicKeys, peer.PubKey) consensus.pubKeyLock.Unlock() } count++ } return count } // RemovePeers will remove the peer from the validator list and PublicKeys // It will be called when leader/node lost connection to peers func (consensus *Consensus) RemovePeers(peers []p2p.Peer) int { // early return as most of the cases no peers to remove if len(peers) == 0 { return 0 } count := 0 count2 := 0 newList := append(consensus.PublicKeys[:0:0], consensus.PublicKeys...) for _, peer := range peers { consensus.validators.Range(func(k, v interface{}) bool { if p, ok := v.(p2p.Peer); ok { // We are using peer.IP and peer.Port to identify the unique peer // FIXME (lc): use a generic way to identify a peer if p.IP == peer.IP && p.Port == peer.Port { consensus.validators.Delete(k) count++ } return true } return false }) for i, pp := range newList { // Not Found the pubkey, if found pubkey, ignore it if reflect.DeepEqual(peer.PubKey, pp) { // consensus.Log.Debug("RemovePeers", "i", i, "pp", pp, "peer.PubKey", peer.PubKey) newList = append(newList[:i], newList[i+1:]...) count2++ } } } if count2 > 0 { consensus.UpdatePublicKeys(newList) // Send out Pong messages to everyone in the shard to keep the publickeys in sync // Or the shard won't be able to reach consensus if public keys are mismatch validators := consensus.GetValidatorPeers() pong := proto_node.NewPongMessage(validators, consensus.PublicKeys) buffer := pong.ConstructPongMessage() host.BroadcastMessageFromLeader(consensus.host, validators, buffer, consensus.OfflinePeers) } return count2 } // DebugPrintPublicKeys print all the PublicKeys in string format in Consensus func (consensus *Consensus) DebugPrintPublicKeys() { for _, k := range consensus.PublicKeys { str := fmt.Sprintf("%s", k) consensus.Log.Debug("pk:", "string", str) } consensus.Log.Debug("PublicKeys:", "#", len(consensus.PublicKeys)) } // DebugPrintValidators print all validator ip/port/key in string format in Consensus func (consensus *Consensus) DebugPrintValidators() { count := 0 consensus.validators.Range(func(k, v interface{}) bool { if p, ok := v.(p2p.Peer); ok { str2 := fmt.Sprintf("%s", p.PubKey) consensus.Log.Debug("validator:", "IP", p.IP, "Port", p.Port, "VID", p.ValidatorID, "Key", str2) count++ return true } return false }) consensus.Log.Debug("Validators", "#", count) } // UpdatePublicKeys updates the PublicKeys variable, protected by a mutex func (consensus *Consensus) UpdatePublicKeys(pubKeys []kyber.Point) int { consensus.pubKeyLock.Lock() // consensus.PublicKeys = make([]kyber.Point, len(pubKeys)) consensus.PublicKeys = append(pubKeys[:0:0], pubKeys...) consensus.pubKeyLock.Unlock() return len(consensus.PublicKeys) } // NewFaker returns a faker consensus. func NewFaker() *Consensus { return &Consensus{} } // VerifyHeader checks whether a header conforms to the consensus rules of the // stock bft engine. func (consensus *Consensus) VerifyHeader(chain ChainReader, header *types.Header, seal bool) error { // TODO: implement this return nil } // VerifyHeaders is similar to VerifyHeader, but verifies a batch of headers // concurrently. The method returns a quit channel to abort the operations and // a results channel to retrieve the async verifications. func (consensus *Consensus) VerifyHeaders(chain ChainReader, headers []*types.Header, seals []bool) (chan<- struct{}, <-chan error) { abort, results := make(chan struct{}), make(chan error, len(headers)) for i := 0; i < len(headers); i++ { results <- nil } return abort, results } func (consensus *Consensus) verifyHeaderWorker(chain ChainReader, headers []*types.Header, seals []bool, index int) error { var parent *types.Header if index == 0 { parent = chain.GetHeader(headers[0].ParentHash, headers[0].Number.Uint64()-1) } else if headers[index-1].Hash() == headers[index].ParentHash { parent = headers[index-1] } if parent == nil { return ErrUnknownAncestor } if chain.GetHeader(headers[index].Hash(), headers[index].Number.Uint64()) != nil { return nil // known block } return consensus.verifyHeader(chain, headers[index], parent, false, seals[index]) } // verifyHeader checks whether a header conforms to the consensus rules of the // stock bft engine. func (consensus *Consensus) verifyHeader(chain ChainReader, header, parent *types.Header, uncle bool, seal bool) error { return nil } // VerifySeal implements consensus.Engine, checking whether the given block satisfies // the PoW difficulty requirements. func (consensus *Consensus) VerifySeal(chain ChainReader, header *types.Header) error { return nil } // Finalize implements consensus.Engine, accumulating the block and uncle rewards, // setting the final state and assembling the block. func (consensus *Consensus) Finalize(chain ChainReader, header *types.Header, state *state.StateDB, txs []*types.Transaction, receipts []*types.Receipt) (*types.Block, error) { // Accumulate any block and uncle rewards and commit the final state root // Header seems complete, assemble into a block and return accumulateRewards(chain.Config(), state, header) header.Root = state.IntermediateRoot(false) return types.NewBlock(header, txs, receipts), nil } // SealHash returns the hash of a block prior to it being sealed. func (consensus *Consensus) SealHash(header *types.Header) (hash common.Hash) { hasher := sha3.NewKeccak256() rlp.Encode(hasher, []interface{}{ header.ParentHash, header.Coinbase, header.Root, header.TxHash, header.ReceiptHash, header.Bloom, header.Difficulty, header.Number, header.GasLimit, header.GasUsed, header.Time, header.Extra, }) hasher.Sum(hash[:0]) return hash } // Seal is to seal final block. func (consensus *Consensus) Seal(chain ChainReader, block *types.Block, results chan<- *types.Block, stop <-chan struct{}) error { // TODO: implement final block sealing return nil } // Prepare is to prepare ... // TODO(RJ): fix it. func (consensus *Consensus) Prepare(chain ChainReader, header *types.Header) error { // TODO: implement prepare method return nil } // AccumulateRewards credits the coinbase of the given block with the mining // reward. The total reward consists of the static block reward and rewards for // included uncles. The coinbase of each uncle block is also rewarded. func accumulateRewards(config *params.ChainConfig, state *state.StateDB, header *types.Header) { // TODO: implement mining rewards } // GetNodeID returns the nodeID func (consensus *Consensus) GetNodeID() uint32 { return consensus.nodeID } // SendMessage sends message thru p2p host to peer. func (consensus *Consensus) SendMessage(peer p2p.Peer, message []byte) { host.SendMessage(consensus.host, peer, message, nil) }