package node import ( "math/big" "sort" "time" "github.com/ethereum/go-ethereum/common" "github.com/harmony-one/harmony/core" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/internal/ctxerror" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/shard" ) // Constants of proposing a new block const ( PeriodicBlock = 200 * time.Millisecond IncomingReceiptsLimit = 6000 // 2000 * (numShards - 1) ) // WaitForConsensusReadyV2 listen for the readiness signal from consensus and generate new block for consensus. // only leader will receive the ready signal // TODO: clean pending transactions for validators; or validators not prepare pending transactions func (node *Node) WaitForConsensusReadyV2(readySignal chan struct{}, stopChan chan struct{}, stoppedChan chan struct{}) { go func() { // Setup stoppedChan defer close(stoppedChan) utils.Logger().Debug(). Msg("Waiting for Consensus ready") // TODO: make local net start faster time.Sleep(30 * time.Second) // Wait for other nodes to be ready (test-only) // Set up the very first deadline. deadline := time.Now().Add(node.BlockPeriod) for { // keep waiting for Consensus ready select { case <-stopChan: utils.Logger().Debug(). Msg("Consensus new block proposal: STOPPED!") return case <-readySignal: for { time.Sleep(PeriodicBlock) if time.Now().Before(deadline) { continue } utils.Logger().Debug(). Uint64("blockNum", node.Blockchain().CurrentBlock().NumberU64()+1). Msg("PROPOSING NEW BLOCK ------------------------------------------------") newBlock, err := node.proposeNewBlock() if err == nil { utils.Logger().Debug(). Uint64("blockNum", newBlock.NumberU64()). Int("numTxs", newBlock.Transactions().Len()). Int("crossShardReceipts", newBlock.IncomingReceipts().Len()). Msg("=========Successfully Proposed New Block==========") // Set deadline will be BlockPeriod from now at this place. Announce stage happens right after this. deadline = time.Now().Add(node.BlockPeriod) // Send the new block to Consensus so it can be confirmed. node.BlockChannel <- newBlock break } else { utils.Logger().Err(err). Msg("!!!!!!!!!cannot commit new block!!!!!!!!!") } } } } }() } func (node *Node) proposeNewBlock() (*types.Block, error) { // Update worker's current header and state data in preparation to propose/process new transactions coinbase := node.Consensus.SelfAddress // Prepare transactions selectedTxs := node.getTransactionsForNewBlock(coinbase) if err := node.Worker.CommitTransactions(selectedTxs, coinbase); err != nil { ctxerror.Log15(utils.GetLogger().Error, ctxerror.New("cannot commit transactions"). WithCause(err)) return nil, err } // Prepare cross shard transaction receipts receiptsList := node.proposeReceiptsProof() if len(receiptsList) != 0 { if err := node.Worker.CommitReceipts(receiptsList); err != nil { ctxerror.Log15(utils.GetLogger().Error, ctxerror.New("cannot commit receipts"). WithCause(err)) } } // Prepare cross links var crossLinks types.CrossLinks if node.NodeConfig.ShardID == 0 { crossLinksToPropose, localErr := node.ProposeCrossLinkDataForBeaconchain() if localErr == nil { crossLinks = crossLinksToPropose } else { utils.Logger().Debug().Err(localErr).Msg("Failed to propose cross links") } } // Prepare shard state shardState := node.Worker.ProposeShardStateWithoutBeaconSync() // Prepare last commit signatures sig, mask, err := node.Consensus.LastCommitSig() if err != nil { ctxerror.Log15(utils.GetLogger().Error, ctxerror.New("Cannot get commit signatures from last block"). WithCause(err)) return nil, err } return node.Worker.FinalizeNewBlock(sig, mask, node.Consensus.GetViewID(), coinbase, crossLinks, shardState) } func (node *Node) proposeShardStateWithoutBeaconSync(block *types.Block) shard.State { if block == nil || !core.IsEpochLastBlock(block) { return nil } nextEpoch := new(big.Int).Add(block.Header().Epoch(), common.Big1) return core.GetShardState(nextEpoch) } func (node *Node) proposeShardState(block *types.Block) error { switch node.Consensus.ShardID { case 0: return node.proposeBeaconShardState(block) default: node.proposeLocalShardState(block) return nil } } func (node *Node) proposeBeaconShardState(block *types.Block) error { // TODO ek - replace this with variable epoch logic. if !core.IsEpochLastBlock(block) { // We haven't reached the end of this epoch; don't propose yet. return nil } nextEpoch := new(big.Int).Add(block.Header().Epoch(), common.Big1) shardState, err := core.CalculateNewShardState( node.Blockchain(), nextEpoch, &node.CurrentStakes) if err != nil { return err } return block.AddShardState(shardState) } func (node *Node) proposeLocalShardState(block *types.Block) { logger := block.Logger(utils.Logger()) // TODO ek – read this from beaconchain once BC sync is fixed if node.nextShardState.master == nil { logger.Debug().Msg("yet to receive master proposal from beaconchain") return } nlogger := logger.With(). Uint64("nextEpoch", node.nextShardState.master.Epoch). Time("proposeTime", node.nextShardState.proposeTime). Logger() logger = &nlogger if time.Now().Before(node.nextShardState.proposeTime) { logger.Debug().Msg("still waiting for shard state to propagate") return } masterShardState := node.nextShardState.master.ShardState var localShardState shard.State committee := masterShardState.FindCommitteeByID(block.ShardID()) if committee != nil { logger.Info().Msg("found local shard info; proposing it") localShardState = append(localShardState, *committee) } else { logger.Info().Msg("beacon committee disowned us; proposing nothing") // Leave local proposal empty to signal the end of shard (disbanding). } err := block.AddShardState(localShardState) if err != nil { logger.Error().Err(err).Msg("Failed proposin local shard state") } } func (node *Node) proposeReceiptsProof() []*types.CXReceiptsProof { numProposed := 0 validReceiptsList := []*types.CXReceiptsProof{} pendingReceiptsList := []*types.CXReceiptsProof{} node.pendingCXMutex.Lock() sort.Slice(node.pendingCXReceipts, func(i, j int) bool { return node.pendingCXReceipts[i].MerkleProof.ShardID < node.pendingCXReceipts[j].MerkleProof.ShardID || (node.pendingCXReceipts[i].MerkleProof.ShardID == node.pendingCXReceipts[j].MerkleProof.ShardID && node.pendingCXReceipts[i].MerkleProof.BlockNum.Cmp(node.pendingCXReceipts[j].MerkleProof.BlockNum) < 0) }) m := make(map[common.Hash]bool) Loop: for _, cxp := range node.pendingCXReceipts { if numProposed > IncomingReceiptsLimit { pendingReceiptsList = append(pendingReceiptsList, cxp) continue } // check double spent if node.Blockchain().IsSpent(cxp) { utils.Logger().Debug().Interface("cxp", cxp).Msg("[proposeReceiptsProof] CXReceipt is spent") continue } hash := cxp.MerkleProof.BlockHash // ignore duplicated receipts if _, ok := m[hash]; ok { continue } else { m[hash] = true } for _, item := range cxp.Receipts { if item.ToShardID != node.Blockchain().ShardID() { continue Loop } } if err := core.IsValidCXReceiptsProof(cxp); err != nil { utils.Logger().Error().Err(err).Msg("[proposeReceiptsProof] Invalid CXReceiptsProof") continue } utils.Logger().Debug().Interface("cxp", cxp).Msg("[proposeReceiptsProof] CXReceipts Added") validReceiptsList = append(validReceiptsList, cxp) numProposed = numProposed + len(cxp.Receipts) } node.pendingCXReceipts = pendingReceiptsList node.pendingCXMutex.Unlock() utils.Logger().Debug().Msgf("[proposeReceiptsProof] number of validReceipts %d", len(validReceiptsList)) return validReceiptsList }