package effective import ( "bytes" "encoding/json" "math/big" "sort" "github.com/ethereum/go-ethereum/common" common2 "github.com/harmony-one/harmony/internal/common" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/numeric" "github.com/harmony-one/harmony/shard" ) // medium.com/harmony-one/introducing-harmonys-effective-proof-of-stake-epos-2d39b4b8d58 var ( two = numeric.NewDecFromBigInt(big.NewInt(2)) c, _ = numeric.NewDecFromStr("0.15") onePlusC = numeric.OneDec().Add(c) oneMinusC = numeric.OneDec().Sub(c) ) func effectiveStake(median, actual numeric.Dec) numeric.Dec { left := numeric.MinDec(onePlusC.Mul(median), actual) right := oneMinusC.Mul(median) return numeric.MaxDec(left, right) } // SlotPurchase .. type SlotPurchase struct { common.Address `json:"slot-owner"` shard.BlsPublicKey `json:"bls-public-key"` numeric.Dec `json:"eposed-stake"` } // SlotOrder .. type SlotOrder struct { Stake *big.Int SpreadAmong []shard.BlsPublicKey } // Slots .. type Slots []SlotPurchase // JSON is a plain JSON dump func (s Slots) JSON() string { type t struct { Address string `json:"slot-owner"` Key string `json:"bls-public-key"` Stake string `json:"actual-stake"` } type v struct { Slots []t `json:"slots"` } data := v{} for i := range s { newData := t{ common2.MustAddressToBech32(s[i].Address), s[i].BlsPublicKey.Hex(), s[i].Dec.String(), } data.Slots = append(data.Slots, newData) } b, _ := json.Marshal(data) return string(b) } // Median .. func Median(stakes []SlotPurchase) numeric.Dec { if len(stakes) == 0 { utils.Logger().Error().Int("non-zero", len(stakes)). Msg("Input to median has len 0, check caller") } sort.SliceStable( stakes, func(i, j int) bool { return stakes[i].Dec.GT(stakes[j].Dec) }, ) const isEven = 0 switch l := len(stakes); l % 2 { case isEven: left := (l / 2) - 1 right := (l / 2) utils.Logger().Info().Int("left", left).Int("right", right) return stakes[left].Dec.Add(stakes[right].Dec).Quo(two) default: utils.Logger().Info().Int("median index", l/2) return stakes[l/2].Dec } } // Compute .. func Compute( shortHand map[common.Address]SlotOrder, pull int, ) (numeric.Dec, Slots) { eposedSlots := Slots{} if len(shortHand) == 0 { return numeric.ZeroDec(), eposedSlots } type t struct { addr common.Address slot SlotOrder } shorter := []t{} for key, value := range shortHand { shorter = append(shorter, t{key, value}) } sort.SliceStable( shorter, func(i, j int) bool { return bytes.Compare( shorter[i].addr.Bytes(), shorter[j].addr.Bytes(), ) == -1 }, ) // Expand for _, staker := range shorter { slotsCount := len(staker.slot.SpreadAmong) spread := numeric.NewDecFromBigInt(staker.slot.Stake). QuoInt64(int64(slotsCount)) for i := 0; i < slotsCount; i++ { eposedSlots = append(eposedSlots, SlotPurchase{ staker.addr, staker.slot.SpreadAmong[i], spread, }) } } sort.SliceStable( eposedSlots, func(i, j int) bool { return eposedSlots[i].Dec.GT(eposedSlots[j].Dec) }, ) if l := len(eposedSlots); l < pull { pull = l } picks := eposedSlots[:pull] if len(picks) == 0 { return numeric.ZeroDec(), Slots{} } return Median(picks), picks } // Apply .. func Apply(shortHand map[common.Address]SlotOrder, pull int) Slots { median, picks := Compute(shortHand, pull) for i := range picks { picks[i].Dec = effectiveStake(median, picks[i].Dec) } return picks }