// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "math/big" "time" lru "github.com/hashicorp/golang-lru" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/rlp" "github.com/harmony-one/harmony/block" consensus_engine "github.com/harmony-one/harmony/consensus/engine" "github.com/harmony-one/harmony/consensus/reward" "github.com/harmony-one/harmony/core/state" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/core/vm" "github.com/harmony-one/harmony/internal/params" "github.com/harmony-one/harmony/internal/utils" "github.com/harmony-one/harmony/shard" "github.com/harmony-one/harmony/staking/slash" staking "github.com/harmony-one/harmony/staking/types" "github.com/pkg/errors" ) const ( resultCacheLimit = 64 // The number of cached results from processing blocks ) // StateProcessor is a basic Processor, which takes care of transitioning // state from one point to another. // // StateProcessor implements Processor. type StateProcessor struct { config *params.ChainConfig // Chain configuration options bc *BlockChain // Canonical block chain engine consensus_engine.Engine // Consensus engine used for block rewards resultCache *lru.Cache // Cache for result after a certain block is processed } // this structure is cached, and each individual element is returned type ProcessorResult struct { Receipts types.Receipts CxReceipts types.CXReceipts StakeMsgs []staking.StakeMsg Logs []*types.Log UsedGas uint64 Reward reward.Reader State *state.DB } // NewStateProcessor initialises a new StateProcessor. func NewStateProcessor( config *params.ChainConfig, bc *BlockChain, engine consensus_engine.Engine, ) *StateProcessor { resultCache, _ := lru.New(resultCacheLimit) return &StateProcessor{ config: config, bc: bc, engine: engine, resultCache: resultCache, } } // Process processes the state changes according to the Ethereum rules by running // the transaction messages using the statedb and applying any rewards to both // the processor (coinbase) and any included uncles. // // Process returns the receipts and logs accumulated during the process and // returns the amount of gas that was used in the process. If any of the // transactions failed to execute due to insufficient gas it will return an error. func (p *StateProcessor) Process( block *types.Block, statedb *state.DB, cfg vm.Config, readCache bool, ) ( types.Receipts, types.CXReceipts, []staking.StakeMsg, []*types.Log, uint64, reward.Reader, *state.DB, error, ) { cacheKey := block.Hash() if readCache { if cached, ok := p.resultCache.Get(cacheKey); ok { // Return the cached result to avoid process the same block again. // Only the successful results are cached in case for retry. result := cached.(*ProcessorResult) utils.Logger().Info().Str("block num", block.Number().String()).Msg("result cache hit.") return result.Receipts, result.CxReceipts, result.StakeMsgs, result.Logs, result.UsedGas, result.Reward, result.State, nil } } var ( receipts types.Receipts outcxs types.CXReceipts incxs = block.IncomingReceipts() usedGas = new(uint64) header = block.Header() allLogs []*types.Log gp = new(GasPool).AddGas(block.GasLimit()) blockStakeMsgs []staking.StakeMsg = make([]staking.StakeMsg, 0) ) beneficiary, err := p.bc.GetECDSAFromCoinbase(header) if err != nil { return nil, nil, nil, nil, 0, nil, statedb, err } startTime := time.Now() // Iterate over and process the individual transactions for i, tx := range block.Transactions() { statedb.Prepare(tx.Hash(), block.Hash(), i) receipt, cxReceipt, stakeMsgs, _, err := ApplyTransaction( p.config, p.bc, &beneficiary, gp, statedb, header, tx, usedGas, cfg, ) if err != nil { return nil, nil, nil, nil, 0, nil, statedb, err } receipts = append(receipts, receipt) if cxReceipt != nil { outcxs = append(outcxs, cxReceipt) } if len(stakeMsgs) > 0 { blockStakeMsgs = append(blockStakeMsgs, stakeMsgs...) } allLogs = append(allLogs, receipt.Logs...) } utils.Logger().Debug().Int64("elapsed time", time.Now().Sub(startTime).Milliseconds()).Msg("Process Normal Txns") startTime = time.Now() // Iterate over and process the staking transactions L := len(block.Transactions()) for i, tx := range block.StakingTransactions() { statedb.Prepare(tx.Hash(), block.Hash(), i+L) receipt, _, err := ApplyStakingTransaction( p.config, p.bc, &beneficiary, gp, statedb, header, tx, usedGas, cfg, ) if err != nil { return nil, nil, nil, nil, 0, nil, statedb, err } receipts = append(receipts, receipt) allLogs = append(allLogs, receipt.Logs...) } utils.Logger().Debug().Int64("elapsed time", time.Now().Sub(startTime).Milliseconds()).Msg("Process Staking Txns") // incomingReceipts should always be processed // after transactions (to be consistent with the block proposal) for _, cx := range block.IncomingReceipts() { if err := ApplyIncomingReceipt( p.config, statedb, header, cx, ); err != nil { return nil, nil, nil, nil, 0, nil, statedb, errors.New("[Process] Cannot apply incoming receipts") } } slashes := slash.Records{} if s := header.Slashes(); len(s) > 0 { if err := rlp.DecodeBytes(s, &slashes); err != nil { return nil, nil, nil, nil, 0, nil, statedb, errors.New( "[Process] Cannot finalize block", ) } } // Finalize the block, applying any consensus engine specific extras (e.g. block rewards) sigsReady := make(chan bool) go func() { // Block processing don't need to block on reward computation as in block proposal sigsReady <- true }() _, payout, err := p.engine.Finalize( p.bc, header, statedb, block.Transactions(), receipts, outcxs, incxs, block.StakingTransactions(), slashes, sigsReady, func() uint64 { return header.ViewID().Uint64() }, ) if err != nil { return nil, nil, nil, nil, 0, nil, statedb, errors.New("[Process] Cannot finalize block") } result := &ProcessorResult{ Receipts: receipts, CxReceipts: outcxs, StakeMsgs: blockStakeMsgs, Logs: allLogs, UsedGas: *usedGas, Reward: payout, State: statedb, } p.resultCache.Add(cacheKey, result) return receipts, outcxs, blockStakeMsgs, allLogs, *usedGas, payout, statedb, nil } // CacheProcessorResult caches the process result on the cache key. func (p *StateProcessor) CacheProcessorResult(cacheKey interface{}, result *ProcessorResult) { p.resultCache.Add(cacheKey, result) } // return true if it is valid func getTransactionType( config *params.ChainConfig, header *block.Header, tx *types.Transaction, ) types.TransactionType { if header.ShardID() == tx.ShardID() && (!config.AcceptsCrossTx(header.Epoch()) || tx.ShardID() == tx.ToShardID()) { return types.SameShardTx } numShards := shard.Schedule.InstanceForEpoch(header.Epoch()).NumShards() // Assuming here all the shards are consecutive from 0 to n-1, n is total number of shards if tx.ShardID() != tx.ToShardID() && header.ShardID() == tx.ShardID() && tx.ToShardID() < numShards { return types.SubtractionOnly } return types.InvalidTx } // ApplyTransaction attempts to apply a transaction to the given state database // and uses the input parameters for its environment. It returns the receipt // for the transaction, gas used and an error if the transaction failed, // indicating the block was invalid. func ApplyTransaction(config *params.ChainConfig, bc ChainContext, author *common.Address, gp *GasPool, statedb *state.DB, header *block.Header, tx *types.Transaction, usedGas *uint64, cfg vm.Config) (*types.Receipt, *types.CXReceipt, []staking.StakeMsg, uint64, error) { txType := getTransactionType(config, header, tx) if txType == types.InvalidTx { return nil, nil, nil, 0, errors.New("Invalid Transaction Type") } if txType != types.SameShardTx && !config.AcceptsCrossTx(header.Epoch()) { return nil, nil, nil, 0, errors.Errorf( "cannot handle cross-shard transaction until after epoch %v (now %v)", config.CrossTxEpoch, header.Epoch(), ) } var signer types.Signer if tx.IsEthCompatible() { if !config.IsEthCompatible(header.Epoch()) { return nil, nil, nil, 0, errors.New("ethereum compatible transactions not supported at current epoch") } signer = types.NewEIP155Signer(config.EthCompatibleChainID) } else { signer = types.MakeSigner(config, header.Epoch()) } msg, err := tx.AsMessage(signer) // skip signer err for additiononly tx if err != nil { return nil, nil, nil, 0, err } // Create a new context to be used in the EVM environment context := NewEVMContext(msg, header, bc, author) context.TxType = txType // Create a new environment which holds all relevant information // about the transaction and calling mechanisms. vmenv := vm.NewEVM(context, statedb, config, cfg) // Apply the transaction to the current state (included in the env) result, err := ApplyMessage(vmenv, msg, gp) if err != nil { return nil, nil, nil, 0, err } // Update the state with pending changes var root []byte if config.IsS3(header.Epoch()) { statedb.Finalise(true) } else { root = statedb.IntermediateRoot(config.IsS3(header.Epoch())).Bytes() } *usedGas += result.UsedGas failedExe := result.VMErr != nil // Create a new receipt for the transaction, storing the intermediate root and gas used by the tx // based on the eip phase, we're passing whether the root touch-delete accounts. receipt := types.NewReceipt(root, failedExe, *usedGas) receipt.TxHash = tx.Hash() receipt.GasUsed = result.UsedGas // if the transaction created a contract, store the creation address in the receipt. if msg.To() == nil { receipt.ContractAddress = crypto.CreateAddress(vmenv.Context.Origin, tx.Nonce()) } // Set the receipt logs and create a bloom for filtering if config.IsReceiptLog(header.Epoch()) { receipt.Logs = statedb.GetLogs(tx.Hash()) } receipt.Bloom = types.CreateBloom(types.Receipts{receipt}) var cxReceipt *types.CXReceipt // Do not create cxReceipt if EVM call failed if txType == types.SubtractionOnly && !failedExe { cxReceipt = &types.CXReceipt{TxHash: tx.Hash(), From: msg.From(), To: msg.To(), ShardID: tx.ShardID(), ToShardID: tx.ToShardID(), Amount: msg.Value()} } else { cxReceipt = nil } return receipt, cxReceipt, vmenv.StakeMsgs, result.UsedGas, err } // ApplyStakingTransaction attempts to apply a staking transaction to the given state database // and uses the input parameters for its environment. It returns the receipt // for the staking transaction, gas used and an error if the transaction failed, // indicating the block was invalid. // staking transaction will use the code field in the account to store the staking information func ApplyStakingTransaction( config *params.ChainConfig, bc ChainContext, author *common.Address, gp *GasPool, statedb *state.DB, header *block.Header, tx *staking.StakingTransaction, usedGas *uint64, cfg vm.Config) (receipt *types.Receipt, gas uint64, err error) { msg, err := StakingToMessage(tx, header.Number()) if err != nil { return nil, 0, err } // Create a new context to be used in the EVM environment context := NewEVMContext(msg, header, bc, author) // Create a new environment which holds all relevant information // about the transaction and calling mechanisms. vmenv := vm.NewEVM(context, statedb, config, cfg) // Apply the transaction to the current state (included in the env) gas, err = ApplyStakingMessage(vmenv, msg, gp, bc) if err != nil { return nil, 0, err } // Update the state with pending changes var root []byte if config.IsS3(header.Epoch()) { statedb.Finalise(true) } else { root = statedb.IntermediateRoot(config.IsS3(header.Epoch())).Bytes() } *usedGas += gas receipt = types.NewReceipt(root, false, *usedGas) receipt.TxHash = tx.Hash() receipt.GasUsed = gas if config.IsReceiptLog(header.Epoch()) { receipt.Logs = statedb.GetLogs(tx.Hash()) utils.Logger().Info().Interface("CollectReward", receipt.Logs) } return receipt, gas, nil } // ApplyIncomingReceipt will add amount into ToAddress in the receipt func ApplyIncomingReceipt( config *params.ChainConfig, db *state.DB, header *block.Header, cxp *types.CXReceiptsProof, ) error { if cxp == nil { return nil } for _, cx := range cxp.Receipts { if cx == nil || cx.To == nil { // should not happend return errors.Errorf( "ApplyIncomingReceipts: Invalid incomingReceipt! %v", cx, ) } utils.Logger().Info().Interface("receipt", cx). Msgf("ApplyIncomingReceipts: ADDING BALANCE %d", cx.Amount) if !db.Exist(*cx.To) { db.CreateAccount(*cx.To) } db.AddBalance(*cx.To, cx.Amount) db.IntermediateRoot(config.IsS3(header.Epoch())) } return nil } // StakingToMessage returns the staking transaction as a core.Message. // requires a signer to derive the sender. // put it here to avoid cyclic import func StakingToMessage( tx *staking.StakingTransaction, blockNum *big.Int, ) (types.Message, error) { payload, err := tx.RLPEncodeStakeMsg() if err != nil { return types.Message{}, err } from, err := tx.SenderAddress() if err != nil { return types.Message{}, err } msg := types.NewStakingMessage(from, tx.Nonce(), tx.GasLimit(), tx.GasPrice(), payload, blockNum) stkType := tx.StakingType() if _, ok := types.StakingTypeMap[stkType]; !ok { return types.Message{}, staking.ErrInvalidStakingKind } msg.SetType(types.StakingTypeMap[stkType]) return msg, nil }