package node import ( "bytes" "encoding/gob" "fmt" "net" "os" "strconv" "time" "github.com/dedis/kyber" "github.com/ethereum/go-ethereum/rlp" "github.com/harmony-one/harmony/blockchain" "github.com/harmony-one/harmony/core/types" hmy_crypto "github.com/harmony-one/harmony/crypto" "github.com/harmony-one/harmony/crypto/pki" "github.com/harmony-one/harmony/p2p" "github.com/harmony-one/harmony/proto" "github.com/harmony-one/harmony/proto/client" "github.com/harmony-one/harmony/proto/consensus" proto_identity "github.com/harmony-one/harmony/proto/identity" proto_node "github.com/harmony-one/harmony/proto/node" ) const ( // MinNumberOfTransactionsPerBlock is the min number of transaction per a block. MinNumberOfTransactionsPerBlock = 6000 // MaxNumberOfTransactionsPerBlock is the max number of transaction per a block. MaxNumberOfTransactionsPerBlock = 8000 // NumBlocksBeforeStateBlock is the number of blocks allowed before generating state block NumBlocksBeforeStateBlock = 1000 ) // MaybeBroadcastAsValidator returns if the node is a validator node. func (node *Node) MaybeBroadcastAsValidator(content []byte) { if node.SelfPeer.ValidatorID > 0 && node.SelfPeer.ValidatorID <= p2p.MaxBroadCast { go p2p.BroadcastMessageFromValidator(node.SelfPeer, node.Consensus.GetValidatorPeers(), content) } } // NodeHandler handles a new incoming connection. func (node *Node) NodeHandler(conn net.Conn) { defer conn.Close() // Read p2p message payload content, err := p2p.ReadMessageContent(conn) if err != nil { node.log.Error("Read p2p data failed", "err", err, "node", node) return } // TODO: this is tree broadcasting. this needs to be removed later. Actually the whole logic needs to be replaced by p2p. node.MaybeBroadcastAsValidator(content) consensusObj := node.Consensus msgCategory, err := proto.GetMessageCategory(content) if err != nil { node.log.Error("Read node type failed", "err", err, "node", node) return } msgType, err := proto.GetMessageType(content) if err != nil { node.log.Error("Read action type failed", "err", err, "node", node) return } msgPayload, err := proto.GetMessagePayload(content) if err != nil { node.log.Error("Read message payload failed", "err", err, "node", node) return } switch msgCategory { case proto.Identity: actionType := proto_identity.IDMessageType(msgType) switch actionType { case proto_identity.Identity: messageType := proto_identity.MessageType(msgPayload[0]) switch messageType { case proto_identity.Register: fmt.Println("received a identity message") // TODO(ak): fix it. // node.processPOWMessage(msgPayload) node.log.Info("NET: received message: IDENTITY/REGISTER") default: node.log.Error("Announce message should be sent to IdentityChain") } } case proto.Consensus: actionType := consensus.ConMessageType(msgType) switch actionType { case consensus.Consensus: if consensusObj.IsLeader { node.log.Info("NET: received message: Consensus/Leader") consensusObj.ProcessMessageLeader(msgPayload) } else { node.log.Info("NET: received message: Consensus/Validator") consensusObj.ProcessMessageValidator(msgPayload) } } case proto.Node: actionType := proto_node.MessageType(msgType) switch actionType { case proto_node.Transaction: node.log.Info("NET: received message: Node/Transaction") node.transactionMessageHandler(msgPayload) case proto_node.Block: node.log.Info("NET: received message: Node/Block") blockMsgType := proto_node.BlockMessageType(msgPayload[0]) switch blockMsgType { case proto_node.Sync: decoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the Sync messge type blocks := new([]*blockchain.Block) decoder.Decode(blocks) if node.Client != nil && node.Client.UpdateBlocks != nil && blocks != nil { node.Client.UpdateBlocks(*blocks) } } case proto_node.Client: node.log.Info("NET: received message: Node/Client") clientMsgType := proto_node.ClientMessageType(msgPayload[0]) switch clientMsgType { case proto_node.LookupUtxo: decoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the LookupUtxo messge type fetchUtxoMessage := new(proto_node.FetchUtxoMessage) decoder.Decode(fetchUtxoMessage) utxoMap := node.UtxoPool.GetUtxoMapByAddresses(fetchUtxoMessage.Addresses) p2p.SendMessage(fetchUtxoMessage.Sender, client.ConstructFetchUtxoResponseMessage(&utxoMap, node.UtxoPool.ShardID)) } case proto_node.Control: node.log.Info("NET: received message: Node/Control") controlType := msgPayload[0] if proto_node.ControlMessageType(controlType) == proto_node.STOP { if node.Chain == nil { node.log.Debug("Stopping Node", "node", node, "numBlocks", len(node.blockchain.Blocks), "numTxsProcessed", node.countNumTransactionsInBlockchain()) sizeInBytes := node.UtxoPool.GetSizeInByteOfUtxoMap() node.log.Debug("UtxoPool Report", "numEntries", len(node.UtxoPool.UtxoMap), "sizeInBytes", sizeInBytes) avgBlockSizeInBytes := 0 txCount := 0 blockCount := 0 totalTxCount := 0 totalBlockCount := 0 avgTxSize := 0 for _, block := range node.blockchain.Blocks { if block.IsStateBlock() { totalTxCount += int(block.State.NumTransactions) totalBlockCount += int(block.State.NumBlocks) } else { byteBuffer := bytes.NewBuffer([]byte{}) encoder := gob.NewEncoder(byteBuffer) encoder.Encode(block) avgBlockSizeInBytes += len(byteBuffer.Bytes()) txCount += len(block.Transactions) blockCount++ totalTxCount += len(block.TransactionIds) totalBlockCount++ byteBuffer = bytes.NewBuffer([]byte{}) encoder = gob.NewEncoder(byteBuffer) encoder.Encode(block.Transactions) avgTxSize += len(byteBuffer.Bytes()) } } if blockCount != 0 { avgBlockSizeInBytes = avgBlockSizeInBytes / blockCount avgTxSize = avgTxSize / txCount } node.log.Debug("Blockchain Report", "totalNumBlocks", totalBlockCount, "avgBlockSizeInCurrentEpoch", avgBlockSizeInBytes, "totalNumTxs", totalTxCount, "avgTxSzieInCurrentEpoch", avgTxSize) } else { node.log.Debug("Stopping Node (Account Model)", "node", node, "CurBlockNum", node.Chain.CurrentHeader().Number, "numTxsProcessed", node.countNumTransactionsInBlockchainAccount()) } os.Exit(0) } case proto_node.PING: node.pingMessageHandler(msgPayload) case proto_node.PONG: node.pongMessageHandler(msgPayload) } case proto.Client: actionType := client.MessageType(msgType) node.log.Info("NET: received message: Client/Transaction") switch actionType { case client.Transaction: if node.Client != nil { node.Client.TransactionMessageHandler(msgPayload) } } default: node.log.Error("Unknown", "MsgCateory:", msgCategory) } } func (node *Node) transactionMessageHandler(msgPayload []byte) { txMessageType := proto_node.TransactionMessageType(msgPayload[0]) switch txMessageType { case proto_node.Send: if node.Chain != nil { txs := types.Transactions{} err := rlp.Decode(bytes.NewReader(msgPayload[1:]), &txs) // skip the Send messge type if err != nil { node.log.Error("Failed to deserialize transaction list", "error", err) } node.addPendingTransactionsAccount(txs) } else { txDecoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the Send messge type txList := new([]*blockchain.Transaction) err := txDecoder.Decode(&txList) if err != nil { node.log.Error("Failed to deserialize transaction list", "error", err) } node.addPendingTransactions(*txList) } case proto_node.Request: reader := bytes.NewBuffer(msgPayload[1:]) txIDs := make(map[[32]byte]bool) buf := make([]byte, 32) // 32 byte hash Id for { _, err := reader.Read(buf) if err != nil { break } var txID [32]byte copy(txID[:], buf) txIDs[txID] = true } var txToReturn []*blockchain.Transaction for _, tx := range node.pendingTransactions { if txIDs[tx.ID] { txToReturn = append(txToReturn, tx) } } // TODO: return the transaction list to requester case proto_node.Unlock: txAndProofDecoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the Unlock messge type txAndProofs := new([]*blockchain.Transaction) err := txAndProofDecoder.Decode(&txAndProofs) if err != nil { node.log.Error("Failed deserializing transaction and proofs list", "node", node) } node.log.Debug("RECEIVED Unlock MESSAGE", "num", len(*txAndProofs)) node.addPendingTransactions(*txAndProofs) } } // WaitForConsensusReady ... func (node *Node) WaitForConsensusReady(readySignal chan struct{}) { node.log.Debug("Waiting for Consensus ready", "node", node) var newBlock *blockchain.Block timeoutCount := 0 for { // keep waiting for Consensus ready retry := false // TODO(minhdoan, rj): Refactor by sending signal in channel instead of waiting for 10 seconds. select { case <-readySignal: time.Sleep(100 * time.Millisecond) // Delay a bit so validator is catched up. case <-time.After(200 * time.Second): retry = true node.Consensus.ResetState() timeoutCount++ node.log.Debug("Consensus timeout, retry!", "count", timeoutCount, "node", node) } //node.log.Debug("Adding new block", "currentChainSize", len(node.blockchain.Blocks), "numTxs", len(node.blockchain.GetLatestBlock().Transactions), "PrevHash", node.blockchain.GetLatestBlock().PrevBlockHash, "Hash", node.blockchain.GetLatestBlock().Hash) if !retry { if len(node.blockchain.Blocks) > NumBlocksBeforeStateBlock { // Generate state block and run consensus on it newBlock = node.blockchain.CreateStateBlock(node.UtxoPool) } else { // Normal tx block consensus for { // Once we have pending transactions we will try creating a new block if len(node.pendingTransactions) >= MaxNumberOfTransactionsPerBlock { node.log.Debug("Start selecting transactions") selectedTxs, crossShardTxAndProofs := node.getTransactionsForNewBlock(MaxNumberOfTransactionsPerBlock) if len(selectedTxs) < MinNumberOfTransactionsPerBlock { node.log.Debug("No valid transactions exist", "pendingTx", len(node.pendingTransactions)) } else { node.log.Debug("Creating new block", "numAllTxs", len(selectedTxs), "numCrossTxs", len(crossShardTxAndProofs), "pendingTxs", len(node.pendingTransactions), "currentChainSize", len(node.blockchain.Blocks)) node.transactionInConsensus = selectedTxs node.CrossTxsInConsensus = crossShardTxAndProofs newBlock = blockchain.NewBlock(selectedTxs, node.blockchain.GetLatestBlock().Hash, node.Consensus.ShardID) break } } // If not enough transactions to run Consensus, // periodically check whether we have enough transactions to package into block. time.Sleep(1 * time.Second) } } } // Send the new block to Consensus so it can be confirmed. if newBlock != nil { node.BlockChannel <- *newBlock } } } // WaitForConsensusReadyAccount ... func (node *Node) WaitForConsensusReadyAccount(readySignal chan struct{}) { node.log.Debug("Waiting for Consensus ready", "node", node) var newBlock *types.Block timeoutCount := 0 for { // keep waiting for Consensus ready retry := false select { case <-readySignal: time.Sleep(100 * time.Millisecond) // Delay a bit so validator is catched up. case <-time.After(200 * time.Second): retry = true node.Consensus.ResetState() timeoutCount++ node.log.Debug("Consensus timeout, retry!", "count", timeoutCount, "node", node) } if !retry { for { if len(node.pendingTransactionsAccount) >= 1000 { // Normal tx block consensus selectedTxs, _ := node.getTransactionsForNewBlockAccount(MaxNumberOfTransactionsPerBlock) err := node.Worker.UpdateCurrent() if err != nil { node.log.Debug("Failed updating worker's state", "Error", err) } err = node.Worker.CommitTransactions(selectedTxs, pki.GetAddressFromPublicKey(node.SelfPeer.PubKey)) if err == nil { block, err := node.Worker.Commit() if err != nil { node.log.Debug("Failed commiting new block", "Error", err) } else { newBlock = block break } } else { node.log.Debug("Failed to create new block", "Error", err) } } // If not enough transactions to run Consensus, // periodically check whether we have enough transactions to package into block. time.Sleep(1 * time.Second) } } // Send the new block to Consensus so it can be confirmed. if newBlock != nil { node.BlockChannelAccount <- newBlock } } } // SendBackProofOfAcceptOrReject is called by consensus participants to verify the block they are running consensus on func (node *Node) SendBackProofOfAcceptOrReject() { if node.ClientPeer != nil && len(node.CrossTxsToReturn) != 0 { node.crossTxToReturnMutex.Lock() proofs := []blockchain.CrossShardTxProof{} for _, txAndProof := range node.CrossTxsToReturn { proofs = append(proofs, *txAndProof.Proof) } node.CrossTxsToReturn = nil node.crossTxToReturnMutex.Unlock() node.log.Debug("SENDING PROOF TO CLIENT", "proofs", len(proofs)) p2p.SendMessage(*node.ClientPeer, client.ConstructProofOfAcceptOrRejectMessage(proofs)) } } // BroadcastNewBlock is called by consensus leader to sync new blocks with other clients/nodes. // NOTE: For now, just send to the client (basically not broadcasting) func (node *Node) BroadcastNewBlock(newBlock *blockchain.Block) { if node.ClientPeer != nil { node.log.Debug("NET: SENDING NEW BLOCK TO CLIENT") p2p.SendMessage(*node.ClientPeer, proto_node.ConstructBlocksSyncMessage([]blockchain.Block{*newBlock})) } } // VerifyNewBlock is called by consensus participants to verify the block they are running consensus on func (node *Node) VerifyNewBlock(newBlock *blockchain.Block) bool { if newBlock.AccountBlock != nil { accountBlock := new(types.Block) err := rlp.DecodeBytes(newBlock.AccountBlock, accountBlock) if err != nil { node.log.Error("Failed decoding the block with RLP") } return node.VerifyNewBlockAccount(accountBlock) } if newBlock.IsStateBlock() { return node.UtxoPool.VerifyStateBlock(newBlock) } return node.UtxoPool.VerifyTransactions(newBlock.Transactions) } // VerifyNewBlockAccount is called by consensus participants to verify the block (account model) they are running consensus on func (node *Node) VerifyNewBlockAccount(newBlock *types.Block) bool { err := node.Chain.ValidateNewBlock(newBlock, pki.GetAddressFromPublicKey(node.SelfPeer.PubKey)) if err != nil { node.log.Debug("Failed verifying new block", "Error", err, "tx", newBlock.Transactions()[0]) return false } return true } // PostConsensusProcessing is called by consensus participants, after consensus is done, to: // 1. add the new block to blockchain // 2. [leader] move cross shard tx and proof to the list where they wait to be sent to the client func (node *Node) PostConsensusProcessing(newBlock *blockchain.Block) { if newBlock.IsStateBlock() { // Clear out old tx blocks and put state block as genesis if node.db != nil { node.log.Info("Deleting old blocks.") for i := 1; i <= len(node.blockchain.Blocks); i++ { blockchain.Delete(node.db, strconv.Itoa(i)) } } node.blockchain.Blocks = []*blockchain.Block{} } if node.Consensus.IsLeader { // Move crossTx-in-consensus into the list to be returned to client for _, crossTxAndProof := range node.CrossTxsInConsensus { crossTxAndProof.Proof.BlockHash = newBlock.Hash // TODO: fill in the signature proofs } if len(node.CrossTxsInConsensus) != 0 { node.addCrossTxsToReturn(node.CrossTxsInConsensus) node.CrossTxsInConsensus = []*blockchain.CrossShardTxAndProof{} } node.SendBackProofOfAcceptOrReject() node.BroadcastNewBlock(newBlock) } accountBlock := new(types.Block) err := rlp.DecodeBytes(newBlock.AccountBlock, accountBlock) if err != nil { node.log.Error("Failed decoding the block with RLP") } node.AddNewBlock(newBlock) node.UpdateUtxoAndState(newBlock) } // AddNewBlockAccount is usedd to add new block into the blockchain. func (node *Node) AddNewBlockAccount(newBlock *types.Block) { num, err := node.Chain.InsertChain([]*types.Block{newBlock}) if err != nil { node.log.Debug("Error adding to chain", "numBlocks", num, "Error", err) if node.Consensus != nil { fmt.Println("SHARD ID", node.Consensus.ShardID) } } } // AddNewBlock is usedd to add new block into the utxo-based blockchain. func (node *Node) AddNewBlock(newBlock *blockchain.Block) { // Add it to blockchain node.blockchain.Blocks = append(node.blockchain.Blocks, newBlock) // Store it into leveldb. if node.db != nil { node.log.Info("Writing new block into disk.") newBlock.Write(node.db, strconv.Itoa(len(node.blockchain.Blocks))) } // Account model accountBlock := new(types.Block) err := rlp.DecodeBytes(newBlock.AccountBlock, accountBlock) if err != nil { node.log.Error("Failed decoding the block with RLP") } node.AddNewBlockAccount(accountBlock) } // UpdateUtxoAndState updates Utxo and state. func (node *Node) UpdateUtxoAndState(newBlock *blockchain.Block) { // Update UTXO pool if newBlock.IsStateBlock() { newUtxoPool := blockchain.CreateUTXOPoolFromGenesisBlock(newBlock) node.UtxoPool.UtxoMap = newUtxoPool.UtxoMap } else { node.UtxoPool.Update(newBlock.Transactions) } // Clear transaction-in-Consensus list node.transactionInConsensus = []*blockchain.Transaction{} if node.Consensus.IsLeader { node.log.Info("TX in New BLOCK", "num", len(newBlock.Transactions), "ShardID", node.UtxoPool.ShardID, "IsStateBlock", newBlock.IsStateBlock()) node.log.Info("LEADER CURRENT UTXO", "num", node.UtxoPool.CountNumOfUtxos(), "ShardID", node.UtxoPool.ShardID) node.log.Info("LEADER LOCKED UTXO", "num", node.UtxoPool.CountNumOfLockedUtxos(), "ShardID", node.UtxoPool.ShardID) } } func (node *Node) pingMessageHandler(msgPayload []byte) int { ping, err := proto_node.GetPingMessage(msgPayload) if err != nil { node.log.Error("Can't get Ping Message") return -1 } // node.log.Info("Ping", "Msg", ping) peer := new(p2p.Peer) peer.IP = ping.Node.IP peer.Port = ping.Node.Port peer.ValidatorID = ping.Node.ValidatorID peer.PubKey = hmy_crypto.Ed25519Curve.Point() err = peer.PubKey.UnmarshalBinary(ping.Node.PubKey[:]) if err != nil { node.log.Error("UnmarshalBinary Failed", "error", err) return -1 } // Add to Node's peer list node.AddPeers([]p2p.Peer{*peer}) // Send a Pong message back peers := node.Consensus.GetValidatorPeers() pong := proto_node.NewPongMessage(peers, node.Consensus.PublicKeys) buffer := pong.ConstructPongMessage() for _, p := range peers { p2p.SendMessage(p, buffer) } return len(peers) } func (node *Node) pongMessageHandler(msgPayload []byte) int { pong, err := proto_node.GetPongMessage(msgPayload) if err != nil { node.log.Error("Can't get Pong Message") return -1 } // node.log.Info("Pong", "Msg", pong) // TODO (lc) state syncing, and wait for all public keys node.State = NodeJoinedShard peers := make([]p2p.Peer, 0) for _, p := range pong.Peers { peer := new(p2p.Peer) peer.IP = p.IP peer.Port = p.Port peer.ValidatorID = p.ValidatorID peer.PubKey = hmy_crypto.Ed25519Curve.Point() err = peer.PubKey.UnmarshalBinary(p.PubKey[:]) if err != nil { node.log.Error("UnmarshalBinary Failed", "error", err) continue } peers = append(peers, *peer) } if len(peers) > 0 { node.AddPeers(peers) } // Reset Validator PublicKeys every time we receive PONG message from Leader // The PublicKeys has to be idential across the shard on every node // TODO (lc): we need to handle RemovePeer situation publicKeys := make([]kyber.Point, 0) // Create the the PubKey from the []byte sent from leader for _, k := range pong.PubKeys { key := hmy_crypto.Ed25519Curve.Point() err = key.UnmarshalBinary(k[:]) if err != nil { node.log.Error("UnmarshalBinary Failed PubKeys", "error", err) continue } publicKeys = append(publicKeys, key) } return node.Consensus.UpdatePublicKeys(publicKeys) }