// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package vm import ( "math/big" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/internal/params" stakingTypes "github.com/harmony-one/harmony/staking/types" ) // emptyCodeHash is used by create to ensure deployment is disallowed to already // deployed contract addresses (relevant after the account abstraction). var emptyCodeHash = crypto.Keccak256Hash(nil) type RosettaLogAddressItem struct { Account, SubAccount *common.Address Metadata map[string]interface{} } type RosettaTracer interface { AddRosettaLog(op OpCode, from, to *RosettaLogAddressItem, val *big.Int) } type ( // CanTransferFunc is the signature of a transfer guard function CanTransferFunc func(StateDB, common.Address, *big.Int) bool // IsValidatorFunc is the signature of IsValidator function IsValidatorFunc func(StateDB, common.Address) bool // TransferFunc is the signature of a transfer function TransferFunc func(StateDB, common.Address, common.Address, *big.Int, types.TransactionType) // GetHashFunc returns the nth block hash in the blockchain // and is used by the BLOCKHASH EVM op code. GetHashFunc func(uint64) common.Hash // GetVRFFunc returns the nth block vrf in the blockchain // and is used by the precompile VRF contract. GetVRFFunc func(uint64) common.Hash // Below functions are used by staking precompile, and state transition CreateValidatorFunc func(db StateDB, rosettaTracer RosettaTracer, stakeMsg *stakingTypes.CreateValidator) error EditValidatorFunc func(db StateDB, rosettaTracer RosettaTracer, stakeMsg *stakingTypes.EditValidator) error DelegateFunc func(db StateDB, rosettaTracer RosettaTracer, stakeMsg *stakingTypes.Delegate) error UndelegateFunc func(db StateDB, rosettaTracer RosettaTracer, stakeMsg *stakingTypes.Undelegate) error CollectRewardsFunc func(db StateDB, rosettaTracer RosettaTracer, stakeMsg *stakingTypes.CollectRewards) error // Used for migrating delegations via the staking precompile //MigrateDelegationsFunc func(db StateDB, migrationMsg *stakingTypes.MigrationMsg) ([]interface{}, error) CalculateMigrationGasFunc func(db StateDB, migrationMsg *stakingTypes.MigrationMsg, homestead bool, istanbul bool) (uint64, error) ) // run runs the given contract and takes care of running precompiles with a fallback to the byte code interpreter. func run(evm *EVM, contract *Contract, input []byte, readOnly bool) ([]byte, error) { if contract.CodeAddr != nil { precompiles := PrecompiledContractsHomestead // assign empty write capable precompiles till they are available in the fork var writeCapablePrecompiles map[common.Address]WriteCapablePrecompiledContract if evm.ChainConfig().IsS3(evm.EpochNumber) { precompiles = PrecompiledContractsByzantium } if evm.chainRules.IsIstanbul { precompiles = PrecompiledContractsIstanbul } if evm.chainRules.IsVRF { precompiles = PrecompiledContractsVRF } if evm.chainRules.IsSHA3 { precompiles = PrecompiledContractsSHA3FIPS } if evm.chainRules.IsStakingPrecompile { precompiles = PrecompiledContractsStaking writeCapablePrecompiles = WriteCapablePrecompiledContractsStaking } if evm.chainRules.IsCrossShardXferPrecompile { writeCapablePrecompiles = WriteCapablePrecompiledContractsCrossXfer } if p := precompiles[*contract.CodeAddr]; p != nil { if _, ok := p.(*vrf); ok { if evm.chainRules.IsPrevVRF { requestedBlockNum := big.NewInt(0).SetBytes(input) minBlockNum := big.NewInt(0).Sub(evm.BlockNumber, common.Big257) if requestedBlockNum.Cmp(evm.BlockNumber) == 0 { input = evm.Context.VRF.Bytes() } else if requestedBlockNum.Cmp(minBlockNum) > 0 && requestedBlockNum.Cmp(evm.BlockNumber) < 0 { // requested block number is in range input = evm.GetVRF(requestedBlockNum.Uint64()).Bytes() } else { // else default to the current block's VRF input = evm.Context.VRF.Bytes() } } else { // Override the input with vrf data of the requested block so it can be returned to the contract program. input = evm.Context.VRF.Bytes() } } else if _, ok := p.(*epoch); ok { input = evm.EpochNumber.Bytes() } return RunPrecompiledContract(p, input, contract) } if len(writeCapablePrecompiles) > 0 { if p := writeCapablePrecompiles[*contract.CodeAddr]; p != nil { return RunWriteCapablePrecompiledContract(p, evm, contract, input, readOnly) } } } for _, interpreter := range evm.interpreters { if interpreter.CanRun(contract.Code) { if evm.interpreter != interpreter { // Ensure that the interpreter pointer is set back // to its current value upon return. defer func(i Interpreter) { evm.interpreter = i }(evm.interpreter) evm.interpreter = interpreter } if evm.ChainConfig().IsDataCopyFixEpoch(evm.EpochNumber) { contract.WithDataCopyFix = true } return interpreter.Run(contract, input, readOnly) } } return nil, ErrNoCompatibleInterpreter } // Context provides the EVM with auxiliary information. Once provided // it shouldn't be modified. type Context struct { // CanTransfer returns whether the account contains // sufficient ether to transfer the value CanTransfer CanTransferFunc // Transfer transfers ether from one account to the other Transfer TransferFunc // GetHash returns the hash corresponding to n GetHash GetHashFunc // GetVRF returns the VRF corresponding to n GetVRF GetVRFFunc // IsValidator determines whether the address corresponds to a validator or a smart contract // true: is a validator address; false: is smart contract address IsValidator IsValidatorFunc // Message information Origin common.Address // Provides information for ORIGIN GasPrice *big.Int // Provides information for GASPRICE // Block information Coinbase common.Address // Provides information for COINBASE GasLimit uint64 // Provides information for GASLIMIT BlockNumber *big.Int // Provides information for NUMBER EpochNumber *big.Int // Provides information for EPOCH Time *big.Int // Provides information for TIME VRF common.Hash // Provides information for VRF TxType types.TransactionType CreateValidator CreateValidatorFunc EditValidator EditValidatorFunc Delegate DelegateFunc Undelegate UndelegateFunc CollectRewards CollectRewardsFunc CalculateMigrationGas CalculateMigrationGasFunc ShardID uint32 // Used by staking and cross shard transfer precompile NumShards uint32 // Used by cross shard transfer precompile } // EVM is the Ethereum Virtual Machine base object and provides // the necessary tools to run a contract on the given state with // the provided context. It should be noted that any error // generated through any of the calls should be considered a // revert-state-and-consume-all-gas operation, no checks on // specific errors should ever be performed. The interpreter makes // sure that any errors generated are to be considered faulty code. // // The EVM should never be reused and is not thread safe. type EVM struct { // Context provides auxiliary blockchain related information Context // DB gives access to the underlying state StateDB StateDB // Depth is the current call stack depth int // chainConfig contains information about the current chain chainConfig *params.ChainConfig // chain rules contains the chain rules for the current epoch chainRules params.Rules // virtual machine configuration options used to initialise the // evm. vmConfig Config // global (to this context) ethereum virtual machine // used throughout the execution of the tx. interpreters []Interpreter interpreter Interpreter // abort is used to abort the EVM calling operations // NOTE: must be set atomically abort int32 // callGasTemp holds the gas available for the current call. This is needed because the // available gas is calculated in gasCall* according to the 63/64 rule and later // applied in opCall*. callGasTemp uint64 // stored temporarily by stakingPrecompile and cleared immediately after return // (although the EVM object itself is ephemeral) StakeMsgs []stakingTypes.StakeMsg CXReceipt *types.CXReceipt } // NewEVM returns a new EVM. The returned EVM is not thread safe and should // only ever be used *once*. func NewEVM(ctx Context, statedb StateDB, chainConfig *params.ChainConfig, vmConfig Config) *EVM { evm := &EVM{ Context: ctx, StateDB: statedb, vmConfig: vmConfig, chainConfig: chainConfig, chainRules: chainConfig.Rules(ctx.EpochNumber), interpreters: make([]Interpreter, 0, 1), } //if chainConfig.IsS3(ctx.EpochNumber) { // to be implemented by EVM-C and Wagon PRs. // if vmConfig.EWASMInterpreter != "" { // extIntOpts := strings.Split(vmConfig.EWASMInterpreter, ":") // path := extIntOpts[0] // options := []string{} // if len(extIntOpts) > 1 { // options = extIntOpts[1..] // } // evm.interpreters = append(evm.interpreters, NewEVMVCInterpreter(evm, vmConfig, options)) // } else { // evm.interpreters = append(evm.interpreters, NewEWASMInterpreter(evm, vmConfig)) // } // panic("No supported ewasm interpreter yet.") //} // vmConfig.EVMInterpreter will be used by EVM-C, it won't be checked here // as we always want to have the built-in EVM as the failover option. evm.interpreters = append(evm.interpreters, NewEVMInterpreter(evm, vmConfig)) evm.interpreter = evm.interpreters[0] return evm } // Cancel cancels any running EVM operation. This may be called concurrently and // it's safe to be called multiple times. func (evm *EVM) Cancel() { atomic.StoreInt32(&evm.abort, 1) } // Cancelled returns true if Cancel has been called func (evm *EVM) Cancelled() bool { return atomic.LoadInt32(&evm.abort) == 1 } // Interpreter returns the current interpreter func (evm *EVM) Interpreter() Interpreter { return evm.interpreter } // Call executes the contract associated with the addr with the given input as // parameters. It also handles any necessary value transfer required and takes // the necessary steps to create accounts and reverses the state in case of an // execution error or failed value transfer. func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas uint64, value *big.Int) (ret []byte, leftOverGas uint64, err error) { if evm.vmConfig.NoRecursion && evm.depth > 0 { return nil, gas, nil } // Fail if we're trying to execute above the call depth limit if evm.depth > int(params.CallCreateDepth) { return nil, gas, ErrDepth } txType := evm.Context.TxType // Fail if we're trying to transfer more than the available balance if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) { return nil, gas, ErrInsufficientBalance } var ( to = AccountRef(addr) snapshot = evm.StateDB.Snapshot() ) if !evm.StateDB.Exist(addr) && txType != types.SubtractionOnly { precompiles := PrecompiledContractsHomestead var writeCapablePrecompiles map[common.Address]WriteCapablePrecompiledContract if evm.ChainConfig().IsS3(evm.EpochNumber) { precompiles = PrecompiledContractsByzantium } if evm.chainRules.IsIstanbul { precompiles = PrecompiledContractsIstanbul } if evm.chainRules.IsVRF { precompiles = PrecompiledContractsVRF } if evm.chainRules.IsSHA3 { precompiles = PrecompiledContractsSHA3FIPS } if evm.chainRules.IsStakingPrecompile { precompiles = PrecompiledContractsStaking writeCapablePrecompiles = WriteCapablePrecompiledContractsStaking } if evm.chainRules.IsCrossShardXferPrecompile { writeCapablePrecompiles = WriteCapablePrecompiledContractsCrossXfer } if (len(writeCapablePrecompiles) == 0 || writeCapablePrecompiles[addr] == nil) && precompiles[addr] == nil && evm.ChainConfig().IsS3(evm.EpochNumber) && value.Sign() == 0 { // Calling a non existing account, don't do anything, but ping the tracer if evm.vmConfig.Debug && evm.depth == 0 { evm.vmConfig.Tracer.CaptureStart(evm, caller.Address(), addr, false, input, gas, value) evm.vmConfig.Tracer.CaptureEnd(ret, 0, 0, nil) } return nil, gas, nil } evm.StateDB.CreateAccount(addr) } evm.Transfer(evm.StateDB, caller.Address(), to.Address(), value, txType) codeHash := evm.StateDB.GetCodeHash(addr) code := evm.StateDB.GetCode(addr, false) // If address is a validator address, then it's not a smart contract address // we don't use its code and codeHash fields if evm.Context.IsValidator(evm.StateDB, addr) { codeHash = emptyCodeHash code = nil } // Initialise a new contract and set the code that is to be used by the EVM. // The contract is a scoped environment for this execution context only. contract := NewContract(caller, to, value, gas) contract.SetCallCode(&addr, codeHash, code) // Even if the account has no code, we need to continue because it might be a precompile start := time.Now() // Capture the tracer start/end events in debug mode if evm.vmConfig.Debug && evm.depth == 0 { evm.vmConfig.Tracer.CaptureStart(evm, caller.Address(), addr, false, input, gas, value) defer func() { // Lazy evaluation of the parameters evm.vmConfig.Tracer.CaptureEnd(ret, gas-contract.Gas, time.Since(start), err) }() } ret, err = run(evm, contract, input, false) // When an error was returned by the EVM or when setting the creation code // above we revert to the snapshot and consume any gas remaining. Additionally // when we're in homestead this also counts for code storage gas errors. if err != nil { evm.StateDB.RevertToSnapshot(snapshot) if err != ErrExecutionReverted { contract.UseGas(contract.Gas) } } return ret, contract.Gas, err } // CallCode executes the contract associated with the addr with the given input // as parameters. It also handles any necessary value transfer required and takes // the necessary steps to create accounts and reverses the state in case of an // execution error or failed value transfer. // // CallCode differs from Call in the sense that it executes the given address' // code with the caller as context. func (evm *EVM) CallCode(caller ContractRef, addr common.Address, input []byte, gas uint64, value *big.Int) (ret []byte, leftOverGas uint64, err error) { if evm.vmConfig.NoRecursion && evm.depth > 0 { return nil, gas, nil } // Fail if we're trying to execute above the call depth limit if evm.depth > int(params.CallCreateDepth) { return nil, gas, ErrDepth } // Fail if we're trying to transfer more than the available balance if !evm.CanTransfer(evm.StateDB, caller.Address(), value) { return nil, gas, ErrInsufficientBalance } var ( snapshot = evm.StateDB.Snapshot() to = AccountRef(caller.Address()) ) // initialise a new contract and set the code that is to be used by the // EVM. The contract is a scoped environment for this execution context // only. contract := NewContract(caller, to, value, gas) contract.SetCallCode(&addr, evm.StateDB.GetCodeHash(addr), evm.StateDB.GetCode(addr, false)) ret, err = run(evm, contract, input, false) if err != nil { evm.StateDB.RevertToSnapshot(snapshot) if err != ErrExecutionReverted { contract.UseGas(contract.Gas) } } return ret, contract.Gas, err } // DelegateCall executes the contract associated with the addr with the given input // as parameters. It reverses the state in case of an execution error. // // DelegateCall differs from CallCode in the sense that it executes the given address' // code with the caller as context and the caller is set to the caller of the caller. func (evm *EVM) DelegateCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) { if evm.vmConfig.NoRecursion && evm.depth > 0 { return nil, gas, nil } // Fail if we're trying to execute above the call depth limit if evm.depth > int(params.CallCreateDepth) { return nil, gas, ErrDepth } var ( snapshot = evm.StateDB.Snapshot() to = AccountRef(caller.Address()) ) // Initialise a new contract and make initialise the delegate values contract := NewContract(caller, to, nil, gas).AsDelegate() contract.SetCallCode(&addr, evm.StateDB.GetCodeHash(addr), evm.StateDB.GetCode(addr, false)) ret, err = run(evm, contract, input, false) if err != nil { evm.StateDB.RevertToSnapshot(snapshot) if err != ErrExecutionReverted { contract.UseGas(contract.Gas) } } return ret, contract.Gas, err } // StaticCall executes the contract associated with the addr with the given input // as parameters while disallowing any modifications to the state during the call. // Opcodes that attempt to perform such modifications will result in exceptions // instead of performing the modifications. func (evm *EVM) StaticCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) { if evm.vmConfig.NoRecursion && evm.depth > 0 { return nil, gas, nil } // Fail if we're trying to execute above the call depth limit if evm.depth > int(params.CallCreateDepth) { return nil, gas, ErrDepth } var ( to = AccountRef(addr) snapshot = evm.StateDB.Snapshot() ) // Initialise a new contract and set the code that is to be used by the // EVM. The contract is a scoped environment for this execution context // only. contract := NewContract(caller, to, new(big.Int), gas) contract.SetCallCode(&addr, evm.StateDB.GetCodeHash(addr), evm.StateDB.GetCode(addr, false)) // We do an AddBalance of zero here, just in order to trigger a touch. // This doesn't matter on Mainnet, where all empties are gone at the time of Byzantium, // but is the correct thing to do and matters on other networks, in tests, and potential // future scenarios evm.StateDB.AddBalance(addr, bigZero) // When an error was returned by the EVM or when setting the creation code // above we revert to the snapshot and consume any gas remaining. Additionally // when we're in Homestead this also counts for code storage gas errors. ret, err = run(evm, contract, input, true) if err != nil { evm.StateDB.RevertToSnapshot(snapshot) if err != ErrExecutionReverted { contract.UseGas(contract.Gas) } } return ret, contract.Gas, err } type codeAndHash struct { code []byte hash common.Hash } func (c *codeAndHash) Hash() common.Hash { if c.hash == (common.Hash{}) { c.hash = crypto.Keccak256Hash(c.code) } return c.hash } // create creates a new contract using code as deployment code. func (evm *EVM) create(caller ContractRef, codeAndHash *codeAndHash, gas uint64, value *big.Int, address common.Address) ([]byte, common.Address, uint64, error) { // Depth check execution. Fail if we're trying to execute above the // limit. if evm.depth > int(params.CallCreateDepth) { return nil, common.Address{}, gas, ErrDepth } if !evm.CanTransfer(evm.StateDB, caller.Address(), value) { return nil, common.Address{}, gas, ErrInsufficientBalance } nonce := evm.StateDB.GetNonce(caller.Address()) evm.StateDB.SetNonce(caller.Address(), nonce+1) // Ensure there's no existing contract already at the designated address contractHash := evm.StateDB.GetCodeHash(address) if evm.StateDB.GetNonce(address) != 0 || (contractHash != (common.Hash{}) && contractHash != emptyCodeHash) { return nil, common.Address{}, 0, ErrContractAddressCollision } // Create a new account on the state snapshot := evm.StateDB.Snapshot() evm.StateDB.CreateAccount(address) if evm.ChainConfig().IsEIP155(evm.EpochNumber) { evm.StateDB.SetNonce(address, 1) } evm.Transfer(evm.StateDB, caller.Address(), address, value, types.SameShardTx) // initialise a new contract and set the code that is to be used by the // EVM. The contract is a scoped environment for this execution context // only. contract := NewContract(caller, AccountRef(address), value, gas) contract.SetCodeOptionalHash(&address, codeAndHash) if evm.vmConfig.NoRecursion && evm.depth > 0 { return nil, address, gas, nil } if evm.vmConfig.Debug && evm.depth == 0 { evm.vmConfig.Tracer.CaptureStart(evm, caller.Address(), address, true, codeAndHash.code, gas, value) } start := time.Now() ret, err := run(evm, contract, nil, false) // check whether the max code size has been exceeded maxCodeSizeExceeded := evm.ChainConfig().IsEIP155(evm.EpochNumber) && len(ret) > params.MaxCodeSize // if the contract creation ran successfully and no errors were returned // calculate the gas required to store the code. If the code could not // be stored due to not enough gas set an error and let it be handled // by the error checking condition below. if err == nil && !maxCodeSizeExceeded { createDataGas := uint64(len(ret)) * params.CreateDataGas if contract.UseGas(createDataGas) { evm.StateDB.SetCode(address, ret, false) } else { err = ErrCodeStoreOutOfGas } } // When an error was returned by the EVM or when setting the creation code // above we revert to the snapshot and consume any gas remaining. Additionally // when we're in homestead this also counts for code storage gas errors. if maxCodeSizeExceeded || (err != nil && (evm.ChainConfig().IsS3(evm.EpochNumber) || err != ErrCodeStoreOutOfGas)) { evm.StateDB.RevertToSnapshot(snapshot) if err != ErrExecutionReverted { contract.UseGas(contract.Gas) } } // Assign err if contract code size exceeds the max while the err is still empty. if maxCodeSizeExceeded && err == nil { err = errMaxCodeSizeExceeded } if evm.vmConfig.Debug && evm.depth == 0 { evm.vmConfig.Tracer.CaptureEnd(ret, gas-contract.Gas, time.Since(start), err) } return ret, address, contract.Gas, err } // Create creates a new contract using code as deployment code. func (evm *EVM) Create(caller ContractRef, code []byte, gas uint64, value *big.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) { contractAddr = crypto.CreateAddress(caller.Address(), evm.StateDB.GetNonce(caller.Address())) return evm.create(caller, &codeAndHash{code: code}, gas, value, contractAddr) } // Create2 creates a new contract using code as deployment code. // // The different between Create2 with Create is Create2 uses sha3(0xff ++ msg.sender ++ salt ++ sha3(init_code))[12:] // instead of the usual sender-and-nonce-hash as the address where the contract is initialized at. func (evm *EVM) Create2(caller ContractRef, code []byte, gas uint64, endowment *big.Int, salt *big.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) { codeAndHash := &codeAndHash{code: code} contractAddr = crypto.CreateAddress2(caller.Address(), common.BigToHash(salt), codeAndHash.Hash().Bytes()) return evm.create(caller, codeAndHash, gas, endowment, contractAddr) } // ChainConfig returns the environment's chain configuration func (evm *EVM) ChainConfig() *params.ChainConfig { return evm.chainConfig }