// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "fmt" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/harmony-one/harmony/block" consensus_engine "github.com/harmony-one/harmony/consensus/engine" "github.com/harmony-one/harmony/core/state" "github.com/harmony-one/harmony/core/types" "github.com/harmony-one/harmony/core/vm" "github.com/harmony-one/harmony/internal/ctxerror" "github.com/harmony-one/harmony/internal/params" "github.com/harmony-one/harmony/internal/utils" staking "github.com/harmony-one/harmony/staking/types" ) // StateProcessor is a basic Processor, which takes care of transitioning // state from one point to another. // // StateProcessor implements Processor. type StateProcessor struct { config *params.ChainConfig // Chain configuration options bc *BlockChain // Canonical block chain engine consensus_engine.Engine // Consensus engine used for block rewards } // NewStateProcessor initialises a new StateProcessor. func NewStateProcessor(config *params.ChainConfig, bc *BlockChain, engine consensus_engine.Engine) *StateProcessor { return &StateProcessor{ config: config, bc: bc, engine: engine, } } // Process processes the state changes according to the Ethereum rules by running // the transaction messages using the statedb and applying any rewards to both // the processor (coinbase) and any included uncles. // // Process returns the receipts and logs accumulated during the process and // returns the amount of gas that was used in the process. If any of the // transactions failed to execute due to insufficient gas it will return an error. func (p *StateProcessor) Process(block *types.Block, statedb *state.DB, cfg vm.Config) (types.Receipts, types.CXReceipts, []*types.Log, uint64, error) { var ( receipts types.Receipts outcxs types.CXReceipts incxs = block.IncomingReceipts() usedGas = new(uint64) header = block.Header() coinbase = block.Header().Coinbase() allLogs []*types.Log gp = new(GasPool).AddGas(block.GasLimit()) ) // Iterate over and process the individual transactions for i, tx := range block.Transactions() { statedb.Prepare(tx.Hash(), block.Hash(), i) receipt, cxReceipt, _, err := ApplyTransaction(p.config, p.bc, &coinbase, gp, statedb, header, tx, usedGas, cfg) if err != nil { return nil, nil, nil, 0, err } receipts = append(receipts, receipt) if cxReceipt != nil { outcxs = append(outcxs, cxReceipt) } allLogs = append(allLogs, receipt.Logs...) } // incomingReceipts should always be processed after transactions (to be consistent with the block proposal) for _, cx := range block.IncomingReceipts() { err := ApplyIncomingReceipt(p.config, statedb, header, cx) if err != nil { return nil, nil, nil, 0, ctxerror.New("cannot apply incoming receipts").WithCause(err) } } // Finalize the block, applying any consensus engine specific extras (e.g. block rewards) _, err := p.engine.Finalize(p.bc, header, statedb, block.Transactions(), block.StakingTransactions(), receipts, outcxs, incxs) if err != nil { return nil, nil, nil, 0, ctxerror.New("cannot finalize block").WithCause(err) } return receipts, outcxs, allLogs, *usedGas, nil } // return true if it is valid func getTransactionType(config *params.ChainConfig, header *block.Header, tx *types.Transaction) types.TransactionType { if header.ShardID() == tx.ShardID() && (!config.IsCrossTx(header.Epoch()) || tx.ShardID() == tx.ToShardID()) { return types.SameShardTx } numShards := ShardingSchedule.InstanceForEpoch(header.Epoch()).NumShards() // Assuming here all the shards are consecutive from 0 to n-1, n is total number of shards if tx.ShardID() != tx.ToShardID() && header.ShardID() == tx.ShardID() && tx.ToShardID() < numShards { return types.SubtractionOnly } return types.InvalidTx } // ApplyTransaction attempts to apply a transaction to the given state database // and uses the input parameters for its environment. It returns the receipt // for the transaction, gas used and an error if the transaction failed, // indicating the block was invalid. func ApplyTransaction(config *params.ChainConfig, bc ChainContext, author *common.Address, gp *GasPool, statedb *state.DB, header *block.Header, tx *types.Transaction, usedGas *uint64, cfg vm.Config) (*types.Receipt, *types.CXReceipt, uint64, error) { txType := getTransactionType(config, header, tx) if txType == types.InvalidTx { return nil, nil, 0, fmt.Errorf("Invalid Transaction Type") } if txType != types.SameShardTx && !config.IsCrossTx(header.Epoch()) { return nil, nil, 0, fmt.Errorf( "cannot handle cross-shard transaction until after epoch %v (now %v)", config.CrossTxEpoch, header.Epoch()) } msg, err := tx.AsMessage(types.MakeSigner(config, header.Epoch())) // skip signer err for additiononly tx if err != nil { return nil, nil, 0, err } // Create a new context to be used in the EVM environment context := NewEVMContext(msg, header, bc, author) context.TxType = txType // Create a new environment which holds all relevant information // about the transaction and calling mechanisms. vmenv := vm.NewEVM(context, statedb, config, cfg) // Apply the transaction to the current state (included in the env) _, gas, failed, err := ApplyMessage(vmenv, msg, gp) if err != nil { return nil, nil, 0, err } // Update the state with pending changes var root []byte if config.IsS3(header.Epoch()) { statedb.Finalise(true) } else { root = statedb.IntermediateRoot(config.IsS3(header.Epoch())).Bytes() } *usedGas += gas // Create a new receipt for the transaction, storing the intermediate root and gas used by the tx // based on the eip phase, we're passing whether the root touch-delete accounts. receipt := types.NewReceipt(root, failed, *usedGas) receipt.TxHash = tx.Hash() receipt.GasUsed = gas // if the transaction created a contract, store the creation address in the receipt. if msg.To() == nil { receipt.ContractAddress = crypto.CreateAddress(vmenv.Context.Origin, tx.Nonce()) } // Set the receipt logs and create a bloom for filtering //receipt.Logs = statedb.GetLogs(tx.Hash()) receipt.Bloom = types.CreateBloom(types.Receipts{receipt}) var cxReceipt *types.CXReceipt if txType == types.SubtractionOnly { cxReceipt = &types.CXReceipt{tx.Hash(), msg.From(), msg.To(), tx.ShardID(), tx.ToShardID(), msg.Value()} } else { cxReceipt = nil } return receipt, cxReceipt, gas, err } // ApplyStakingTransaction attempts to apply a staking transaction to the given state database // and uses the input parameters for its environment. It returns the receipt // for the staking transaction, gas used and an error if the transaction failed, // indicating the block was invalid. // staking transaction will use the storage field in the account to store the staking information func ApplyStakingTransaction( config *params.ChainConfig, bc ChainContext, author *common.Address, gp *GasPool, statedb *state.DB, header *block.Header, tx *staking.StakingTransaction, usedGas *uint64, cfg vm.Config) (receipt *types.Receipt, gas uint64, err error) { msg, err := StakingToMessage(tx) if err != nil { return nil, 0, err } stkType := tx.StakingType() if _, ok := types.StakingTypeMap[stkType]; !ok { return nil, 0, staking.ErrInvalidStakingKind } msg.SetType(types.StakingTypeMap[stkType]) // Create a new context to be used in the EVM environment context := NewEVMContext(msg, header, bc, author) // Create a new environment which holds all relevant information // about the transaction and calling mechanisms. vmenv := vm.NewEVM(context, statedb, config, cfg) // Apply the transaction to the current state (included in the env) gas, err = ApplyStakingMessage(vmenv, msg, gp) // even there is error, we charge it if err != nil { return nil, gas, err } // Update the state with pending changes var root []byte if config.IsS3(header.Epoch()) { statedb.Finalise(true) } else { root = statedb.IntermediateRoot(config.IsS3(header.Epoch())).Bytes() } *usedGas += gas receipt = types.NewReceipt(root, false, *usedGas) receipt.TxHash = tx.Hash() receipt.GasUsed = gas return receipt, gas, nil } // ApplyIncomingReceipt will add amount into ToAddress in the receipt func ApplyIncomingReceipt(config *params.ChainConfig, db *state.DB, header *block.Header, cxp *types.CXReceiptsProof) error { if cxp == nil { return nil } for _, cx := range cxp.Receipts { if cx == nil || cx.To == nil { // should not happend return ctxerror.New("ApplyIncomingReceipts: Invalid incomingReceipt!", "receipt", cx) } utils.Logger().Info().Msgf("ApplyIncomingReceipts: ADDING BALANCE %d", cx.Amount) if !db.Exist(*cx.To) { db.CreateAccount(*cx.To) } db.AddBalance(*cx.To, cx.Amount) db.IntermediateRoot(config.IsS3(header.Epoch())) } return nil } // StakingToMessage returns the staking transaction as a core.Message. // requires a signer to derive the sender. // put it here to avoid cyclic import func StakingToMessage(tx *staking.StakingTransaction) (types.Message, error) { payload, err := tx.StakingMsgToBytes() if err != nil { return types.Message{}, err } from, err := tx.SenderAddress() if err != nil { return types.Message{}, err } msg := types.NewStakingMessage(from, tx.Nonce(), tx.Gas(), tx.Price(), payload) return msg, nil }