The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/core/blockchain_impl.go

3661 lines
119 KiB

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package core implements the Ethereum consensus protocol.
package core
import (
"bytes"
"encoding/json"
"fmt"
"io"
"log"
"math/big"
"os"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
bls2 "github.com/harmony-one/bls/ffi/go/bls"
"github.com/harmony-one/harmony/block"
consensus_engine "github.com/harmony-one/harmony/consensus/engine"
"github.com/harmony-one/harmony/consensus/reward"
"github.com/harmony-one/harmony/consensus/votepower"
"github.com/harmony-one/harmony/core/rawdb"
"github.com/harmony-one/harmony/core/state"
"github.com/harmony-one/harmony/core/state/snapshot"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/core/vm"
"github.com/harmony-one/harmony/crypto/bls"
harmonyconfig "github.com/harmony-one/harmony/internal/configs/harmony"
"github.com/harmony-one/harmony/internal/params"
"github.com/harmony-one/harmony/internal/tikv"
"github.com/harmony-one/harmony/internal/tikv/redis_helper"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/numeric"
"github.com/harmony-one/harmony/shard"
"github.com/harmony-one/harmony/hmy/tracers"
"github.com/harmony-one/harmony/shard/committee"
"github.com/harmony-one/harmony/staking/apr"
"github.com/harmony-one/harmony/staking/effective"
"github.com/harmony-one/harmony/staking/slash"
staking "github.com/harmony-one/harmony/staking/types"
lru "github.com/hashicorp/golang-lru"
"github.com/pkg/errors"
)
var (
headBlockGauge = metrics.NewRegisteredGauge("chain/head/block", nil)
headHeaderGauge = metrics.NewRegisteredGauge("chain/head/header", nil)
headFastBlockGauge = metrics.NewRegisteredGauge("chain/head/receipt", nil)
accountReadTimer = metrics.NewRegisteredTimer("chain/account/reads", nil)
accountHashTimer = metrics.NewRegisteredTimer("chain/account/hashes", nil)
accountUpdateTimer = metrics.NewRegisteredTimer("chain/account/updates", nil)
accountCommitTimer = metrics.NewRegisteredTimer("chain/account/commits", nil)
storageReadTimer = metrics.NewRegisteredTimer("chain/storage/reads", nil)
storageHashTimer = metrics.NewRegisteredTimer("chain/storage/hashes", nil)
storageUpdateTimer = metrics.NewRegisteredTimer("chain/storage/updates", nil)
storageCommitTimer = metrics.NewRegisteredTimer("chain/storage/commits", nil)
blockInsertTimer = metrics.NewRegisteredTimer("chain/inserts", nil)
blockValidationTimer = metrics.NewRegisteredTimer("chain/validation", nil)
blockExecutionTimer = metrics.NewRegisteredTimer("chain/execution", nil)
blockWriteTimer = metrics.NewRegisteredTimer("chain/write", nil)
// ErrNoGenesis is the error when there is no genesis.
ErrNoGenesis = errors.New("Genesis not found in chain")
// errExceedMaxPendingSlashes ..
errExceedMaxPendingSlashes = errors.New("exceeed max pending slashes")
errNilEpoch = errors.New("nil epoch for voting power computation")
errAlreadyExist = errors.New("crosslink already exist")
errDoubleSpent = errors.New("[verifyIncomingReceipts] Double Spent")
)
const (
bodyCacheLimit = 128
blockCacheLimit = 128
receiptsCacheLimit = 32
maxFutureBlocks = 16
maxTimeFutureBlocks = 30
badBlockLimit = 10
triesInRedis = 1000
shardCacheLimit = 10
commitsCacheLimit = 10
epochCacheLimit = 10
randomnessCacheLimit = 10
validatorCacheLimit = 128
validatorStatsCacheLimit = 128
validatorListCacheLimit = 10
validatorListByDelegatorCacheLimit = 128
pendingCrossLinksCacheLimit = 2
blockAccumulatorCacheLimit = 64
leaderPubKeyFromCoinbaseLimit = 8
maxPendingSlashes = 256
// BlockChainVersion ensures that an incompatible database forces a resync from scratch.
BlockChainVersion = 3
pendingCLCacheKey = "pendingCLs"
)
// CacheConfig contains the configuration values for the trie caching/pruning
// that's resident in a blockchain.
type CacheConfig struct {
Disabled bool // Whether to disable trie write caching (archive node)
TrieNodeLimit int // Memory limit (MB) at which to flush the current in-memory trie to disk
TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk
TriesInMemory uint64 // Block number from the head stored in disk before exiting
TrieDirtyLimit int // Memory limit (MB) at which to start flushing dirty trie nodes to disk
TrieDirtyDisabled bool // Whether to disable trie write caching and GC altogether (archive node)
TrieCleanLimit int // Memory allowance (MB) to use for caching trie nodes in memory
TrieCleanJournal string // Disk journal for saving clean cache entries.
Preimages bool // Whether to store preimage of trie key to the disk
SnapshotLimit int // Memory allowance (MB) to use for caching snapshot entries in memory
SnapshotNoBuild bool // Whether the background generation is allowed
SnapshotWait bool // Wait for snapshot construction on startup. TODO(karalabe): This is a dirty hack for testing, nuke it
}
// defaultCacheConfig are the default caching values if none are specified by the
// user (also used during testing).
var defaultCacheConfig = &CacheConfig{
Disabled: false,
TrieCleanLimit: 256,
TrieDirtyLimit: 256,
TrieTimeLimit: 5 * time.Minute,
SnapshotLimit: 256,
SnapshotWait: true,
}
type BlockChainImpl struct {
chainConfig *params.ChainConfig // Chain & network configuration
cacheConfig *CacheConfig // Cache configuration for pruning
pruneBeaconChainEnable bool // pruneBeaconChainEnable is enable prune BeaconChain feature
shardID uint32 // Shard number
db ethdb.Database // Low level persistent database to store final content in
snaps *snapshot.Tree // Snapshot tree for fast trie leaf access
triegc *prque.Prque[int64, common.Hash] // Priority queue mapping block numbers to tries to gc
gcproc time.Duration // Accumulates canonical block processing for trie dumping
triedb *trie.Database // The database handler for maintaining trie nodes.
// The following two variables are used to clean up the cache of redis in tikv mode.
// This can improve the cache hit rate of redis
latestCleanCacheNum uint64 // The most recently cleaned cache of block num
cleanCacheChan chan uint64 // Used to notify blocks that will be cleaned up
// redisPreempt used in tikv mode, write nodes preempt for write permissions and publish updates to reader nodes
redisPreempt *redis_helper.RedisPreempt
hc *HeaderChain
trace bool // atomic?
traceFeed event.Feed // send trace_block result to explorer
rmLogsFeed event.Feed
chainFeed event.Feed
chainSideFeed event.Feed
chainHeadFeed event.Feed
logsFeed event.Feed
scope event.SubscriptionScope
genesisBlock *types.Block
mu sync.RWMutex // global mutex for locking chain operations
chainmu sync.RWMutex // blockchain insertion lock
procmu sync.RWMutex // block processor lock
pendingCrossLinksMutex sync.RWMutex // pending crosslinks lock
pendingSlashingCandidatesMU sync.RWMutex // pending slashing candidates
currentBlock atomic.Value // Current head of the block chain
currentFastBlock atomic.Value // Current head of the fast-sync chain (may be above the block chain!)
stateCache state.Database // State database to reuse between imports (contains state cache)
bodyCache *lru.Cache // Cache for the most recent block bodies
bodyRLPCache *lru.Cache // Cache for the most recent block bodies in RLP encoded format
receiptsCache *lru.Cache // Cache for the most recent receipts per block
blockCache *lru.Cache // Cache for the most recent entire blocks
futureBlocks *lru.Cache // future blocks are blocks added for later processing
shardStateCache *lru.Cache
lastCommitsCache *lru.Cache
epochCache *lru.Cache // Cache epoch number → first block number
randomnessCache *lru.Cache // Cache for vrf/vdf
validatorSnapshotCache *lru.Cache // Cache for validator snapshot
validatorStatsCache *lru.Cache // Cache for validator stats
validatorListCache *lru.Cache // Cache of validator list
validatorListByDelegatorCache *lru.Cache // Cache of validator list by delegator
pendingCrossLinksCache *lru.Cache // Cache of last pending crosslinks
blockAccumulatorCache *lru.Cache // Cache of block accumulators
leaderPubKeyFromCoinbase *lru.Cache // Cache of leader public key from coinbase
quit chan struct{} // blockchain quit channel
running int32 // running must be called atomically
blockchainPruner *blockchainPruner // use to prune beacon chain
// procInterrupt must be atomically called
procInterrupt int32 // interrupt signaler for block processing
engine consensus_engine.Engine
processor Processor // block processor interface
validator Validator // block and state validator interface
vmConfig vm.Config
badBlocks *lru.Cache // Bad block cache
pendingSlashes slash.Records
maxGarbCollectedBlkNum int64
options Options
}
// NewBlockChainWithOptions same as NewBlockChain but can accept additional behaviour options.
func NewBlockChainWithOptions(
db ethdb.Database, stateCache state.Database, beaconChain BlockChain, cacheConfig *CacheConfig, chainConfig *params.ChainConfig,
engine consensus_engine.Engine, vmConfig vm.Config, options Options,
) (*BlockChainImpl, error) {
return newBlockChainWithOptions(db, stateCache, beaconChain, cacheConfig, chainConfig, engine, vmConfig, options)
}
// NewBlockChain returns a fully initialised block chain using information
// available in the database. It initialises the default Ethereum validator and
// Processor.
func NewBlockChain(
db ethdb.Database, stateCache state.Database, beaconChain BlockChain, cacheConfig *CacheConfig, chainConfig *params.ChainConfig,
engine consensus_engine.Engine, vmConfig vm.Config,
) (*BlockChainImpl, error) {
return newBlockChainWithOptions(db, stateCache, beaconChain, cacheConfig, chainConfig, engine, vmConfig, Options{})
}
func newBlockChainWithOptions(
db ethdb.Database, stateCache state.Database, beaconChain BlockChain,
cacheConfig *CacheConfig, chainConfig *params.ChainConfig,
engine consensus_engine.Engine, vmConfig vm.Config, options Options) (*BlockChainImpl, error) {
if cacheConfig == nil {
cacheConfig = defaultCacheConfig
}
// Open trie database with provided config
triedb := trie.NewDatabaseWithConfig(db, &trie.Config{
Cache: cacheConfig.TrieCleanLimit,
Journal: cacheConfig.TrieCleanJournal,
Preimages: cacheConfig.Preimages,
})
if stateCache == nil {
stateCache = state.NewDatabaseWithNodeDB(db, triedb)
}
bodyCache, _ := lru.New(bodyCacheLimit)
bodyRLPCache, _ := lru.New(bodyCacheLimit)
receiptsCache, _ := lru.New(receiptsCacheLimit)
blockCache, _ := lru.New(blockCacheLimit)
futureBlocks, _ := lru.New(maxFutureBlocks)
badBlocks, _ := lru.New(badBlockLimit)
shardCache, _ := lru.New(shardCacheLimit)
commitsCache, _ := lru.New(commitsCacheLimit)
epochCache, _ := lru.New(epochCacheLimit)
randomnessCache, _ := lru.New(randomnessCacheLimit)
validatorCache, _ := lru.New(validatorCacheLimit)
validatorStatsCache, _ := lru.New(validatorStatsCacheLimit)
validatorListCache, _ := lru.New(validatorListCacheLimit)
validatorListByDelegatorCache, _ := lru.New(validatorListByDelegatorCacheLimit)
pendingCrossLinksCache, _ := lru.New(pendingCrossLinksCacheLimit)
blockAccumulatorCache, _ := lru.New(blockAccumulatorCacheLimit)
leaderPubKeyFromCoinbase, _ := lru.New(leaderPubKeyFromCoinbaseLimit)
bc := &BlockChainImpl{
chainConfig: chainConfig,
cacheConfig: cacheConfig,
db: db,
triegc: prque.New[int64, common.Hash](nil),
triedb: triedb,
stateCache: stateCache,
quit: make(chan struct{}),
bodyCache: bodyCache,
bodyRLPCache: bodyRLPCache,
receiptsCache: receiptsCache,
blockCache: blockCache,
futureBlocks: futureBlocks,
shardStateCache: shardCache,
lastCommitsCache: commitsCache,
epochCache: epochCache,
randomnessCache: randomnessCache,
validatorSnapshotCache: validatorCache,
validatorStatsCache: validatorStatsCache,
validatorListCache: validatorListCache,
validatorListByDelegatorCache: validatorListByDelegatorCache,
pendingCrossLinksCache: pendingCrossLinksCache,
blockAccumulatorCache: blockAccumulatorCache,
leaderPubKeyFromCoinbase: leaderPubKeyFromCoinbase,
blockchainPruner: newBlockchainPruner(db),
engine: engine,
vmConfig: vmConfig,
badBlocks: badBlocks,
pendingSlashes: slash.Records{},
maxGarbCollectedBlkNum: -1,
options: options,
}
var err error
bc.hc, err = NewHeaderChain(db, chainConfig, engine, bc.getProcInterrupt)
if err != nil {
return nil, err
}
bc.genesisBlock = bc.GetBlockByNumber(0)
if bc.genesisBlock == nil {
return nil, ErrNoGenesis
}
var nilBlock *types.Block
bc.currentBlock.Store(nilBlock)
bc.currentFastBlock.Store(nilBlock)
if err := bc.loadLastState(); err != nil {
return nil, err
}
bc.shardID = bc.CurrentBlock().ShardID()
if beaconChain == nil && bc.shardID == shard.BeaconChainShardID {
beaconChain = bc
}
bc.SetValidator(NewBlockValidator(chainConfig, bc, engine))
bc.SetProcessor(NewStateProcessor(chainConfig, bc, beaconChain, engine))
// Load any existing snapshot, regenerating it if loading failed
if bc.cacheConfig.SnapshotLimit > 0 {
// If the chain was rewound past the snapshot persistent layer (causing
// a recovery block number to be persisted to disk), check if we're still
// in recovery mode and in that case, don't invalidate the snapshot on a
// head mismatch.
var recover bool
head := bc.CurrentBlock()
if layer := rawdb.ReadSnapshotRecoveryNumber(bc.db); layer != nil && *layer >= head.NumberU64() {
utils.Logger().Warn().Uint64("diskbase", *layer).Uint64("chainhead", head.NumberU64()).Msg("Enabling snapshot recovery")
recover = true
}
snapconfig := snapshot.Config{
CacheSize: bc.cacheConfig.SnapshotLimit,
Recovery: recover,
NoBuild: bc.cacheConfig.SnapshotNoBuild,
AsyncBuild: !bc.cacheConfig.SnapshotWait,
}
bc.snaps, _ = snapshot.New(snapconfig, bc.db, bc.triedb, head.Hash())
}
// Take ownership of this particular state
go bc.update()
return bc, nil
}
// VerifyBlockCrossLinks verifies the crosslinks of the block.
// This function should be called from beacon chain.
func VerifyBlockCrossLinks(blockchain BlockChain, block *types.Block) error {
cxLinksData := block.Header().CrossLinks()
if len(cxLinksData) == 0 {
utils.Logger().Debug().Msgf("[CrossLinkVerification] Zero CrossLinks in the header")
return nil
}
crossLinks := types.CrossLinks{}
err := rlp.DecodeBytes(cxLinksData, &crossLinks)
if err != nil {
return errors.Wrapf(
err, "[CrossLinkVerification] failed to decode cross links",
)
}
if !crossLinks.IsSorted() {
return errors.New("[CrossLinkVerification] cross links are not sorted")
}
for _, crossLink := range crossLinks {
// ReadCrossLink beacon chain usage.
cl, err := blockchain.ReadCrossLink(crossLink.ShardID(), crossLink.BlockNum())
if err == nil && cl != nil {
utils.Logger().Err(errAlreadyExist).
Uint64("beacon-block-number", block.NumberU64()).
Interface("remote", crossLink).
Interface("local", cl).
Msg("[CrossLinkVerification]")
// TODO Add slash for exist same blocknum but different crosslink
return errors.Wrapf(
errAlreadyExist,
"[CrossLinkVerification] shard: %d block: %d on beacon block %d",
crossLink.ShardID(),
crossLink.BlockNum(),
block.NumberU64(),
)
}
if err := VerifyCrossLink(blockchain, crossLink); err != nil {
return errors.Wrapf(err, "cannot VerifyBlockCrossLinks")
}
}
return nil
}
// VerifyCrossLink verifies the header is valid
func VerifyCrossLink(blockchain BlockChain, cl types.CrossLink) error {
if blockchain.ShardID() != shard.BeaconChainShardID {
return errors.New("[VerifyCrossLink] Shard chains should not verify cross links")
}
engine := blockchain.Engine()
if err := engine.VerifyCrossLink(blockchain, cl); err != nil {
return errors.Wrap(err, "[VerifyCrossLink]")
}
return nil
}
func VerifyIncomingReceipts(blockchain BlockChain, block *types.Block) error {
m := make(map[common.Hash]struct{})
cxps := block.IncomingReceipts()
for _, cxp := range cxps {
// double spent
if blockchain.IsSpent(cxp) {
return errDoubleSpent
}
hash := cxp.MerkleProof.BlockHash
// duplicated receipts
if _, ok := m[hash]; ok {
return errDoubleSpent
}
m[hash] = struct{}{}
for _, item := range cxp.Receipts {
if s := blockchain.ShardID(); item.ToShardID != s {
return errors.Errorf(
"[verifyIncomingReceipts] Invalid ToShardID %d expectShardID %d",
s, item.ToShardID,
)
}
}
if err := blockchain.Validator().ValidateCXReceiptsProof(cxp); err != nil {
return errors.Wrapf(err, "[verifyIncomingReceipts] verification failed")
}
}
incomingReceiptHash := types.EmptyRootHash
if len(cxps) > 0 {
incomingReceiptHash = types.DeriveSha(cxps)
}
if incomingReceiptHash != block.Header().IncomingReceiptHash() {
return errors.New("[verifyIncomingReceipts] Invalid IncomingReceiptHash in block header")
}
return nil
}
func (bc *BlockChainImpl) ValidateNewBlock(block *types.Block, beaconChain BlockChain) error {
if block == nil || block.Header() == nil {
return errors.New("nil header or block asked to verify")
}
if block.ShardID() != bc.ShardID() {
utils.Logger().Error().
Uint32("my shard ID", bc.ShardID()).
Uint32("new block's shard ID", block.ShardID()).
Msg("[ValidateNewBlock] Wrong shard ID of the new block")
return errors.New("[ValidateNewBlock] Wrong shard ID of the new block")
}
if block.NumberU64() <= bc.CurrentBlock().NumberU64() {
return errors.Errorf("block with the same block number is already committed: %d", block.NumberU64())
}
if err := bc.Validator().ValidateHeader(block, true); err != nil {
utils.Logger().Error().
Str("blockHash", block.Hash().Hex()).
Err(err).
Msg("[ValidateNewBlock] Cannot validate header for the new block")
return err
}
if err := bc.Engine().VerifyVRF(
bc, block.Header(),
); err != nil {
utils.Logger().Error().
Uint64("blockNum", block.NumberU64()).
Str("blockHash", block.Hash().Hex()).
Err(err).
Msg("[ValidateNewBlock] Cannot verify vrf for the new block")
return errors.Wrap(err,
"[ValidateNewBlock] Cannot verify vrf for the new block",
)
}
err := bc.Engine().VerifyShardState(bc, beaconChain, block.Header())
if err != nil {
utils.Logger().Error().
Str("blockHash", block.Hash().Hex()).
Err(err).
Msg("[ValidateNewBlock] Cannot verify shard state for the new block")
return errors.Wrap(err,
"[ValidateNewBlock] Cannot verify shard state for the new block",
)
}
err = bc.validateNewBlock(block)
if err != nil {
return err
}
if bc.shardID == shard.BeaconChainShardID {
err = VerifyBlockCrossLinks(bc, block)
if err != nil {
utils.Logger().Debug().Err(err).Msg("ops2 VerifyBlockCrossLinks Failed")
return err
}
}
return VerifyIncomingReceipts(bc, block)
}
func (bc *BlockChainImpl) validateNewBlock(block *types.Block) error {
state, err := state.New(bc.CurrentBlock().Root(), bc.stateCache, bc.snaps)
if err != nil {
return err
}
// NOTE Order of mutating state here matters.
// Process block using the parent state as reference point.
// Do not read cache from processor.
receipts, cxReceipts, _, _, usedGas, _, _, err := bc.processor.Process(
block, state, bc.vmConfig, false,
)
if err != nil {
bc.reportBlock(block, receipts, err)
return err
}
// Verify all the hash roots (state, txns, receipts, cross-shard)
if err := bc.Validator().ValidateState(
block, state, receipts, cxReceipts, usedGas,
); err != nil {
bc.reportBlock(block, receipts, err)
return err
}
return nil
}
// IsEpochBlock returns whether this block is the first block of an epoch.
// by checking if the previous block is the last block of the previous epoch
func IsEpochBlock(block *types.Block) bool {
if block.NumberU64() == 0 {
// genesis block is the first epoch block
return true
}
return shard.Schedule.IsLastBlock(block.NumberU64() - 1)
}
func (bc *BlockChainImpl) getProcInterrupt() bool {
return atomic.LoadInt32(&bc.procInterrupt) == 1
}
// loadLastState loads the last known chain state from the database. This method
// assumes that the chain manager mutex is held.
func (bc *BlockChainImpl) loadLastState() error {
// Restore the last known head block
head := rawdb.ReadHeadBlockHash(bc.db)
if head == (common.Hash{}) {
// Corrupt or empty database, init from scratch
utils.Logger().Warn().Msg("Empty database, resetting chain")
return bc.Reset()
}
// Make sure the entire head block is available
currentBlock := bc.GetBlockByHash(head)
if currentBlock == nil {
// Corrupt or empty database, init from scratch
utils.Logger().Warn().Str("hash", head.Hex()).Msg("Head block missing, resetting chain")
return bc.Reset()
}
// Make sure the state associated with the block is available
if _, err := state.New(currentBlock.Root(), bc.stateCache, bc.snaps); err != nil {
// Dangling block without a state associated, init from scratch
utils.Logger().Warn().
Str("number", currentBlock.Number().String()).
Str("hash", currentBlock.Hash().Hex()).
Msg("Head state missing, repairing chain")
if err := bc.repair(&currentBlock); err != nil {
return err
}
}
// Everything seems to be fine, set as the head block
bc.latestCleanCacheNum = currentBlock.NumberU64() - triesInRedis
bc.currentBlock.Store(currentBlock)
headBlockGauge.Update(int64(currentBlock.NumberU64()))
// We don't need the following as we want the current header and block to be consistent
// Restore the last known head header
//currentHeader := currentBlock.Header()
//if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) {
// if header := bc.GetHeaderByHash(head); header != nil {
// currentHeader = header
// }
//}
currentHeader := currentBlock.Header()
if err := bc.hc.SetCurrentHeader(currentHeader); err != nil {
return errors.Wrap(err, "headerChain SetCurrentHeader")
}
// Restore the last known head fast block
bc.currentFastBlock.Store(currentBlock)
headFastBlockGauge.Update(int64(currentBlock.NumberU64()))
if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) {
if block := bc.GetBlockByHash(head); block != nil {
bc.currentFastBlock.Store(block)
headFastBlockGauge.Update(int64(block.NumberU64()))
}
}
// Issue a status log for the user
currentFastBlock := bc.CurrentFastBlock()
headerTd := bc.GetTd(currentHeader.Hash(), currentHeader.Number().Uint64())
blockTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
fastTd := bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64())
utils.Logger().Info().
Str("number", currentHeader.Number().String()).
Str("hash", currentHeader.Hash().Hex()).
Str("td", headerTd.String()).
Str("age", common.PrettyAge(time.Unix(currentHeader.Time().Int64(), 0)).String()).
Msg("Loaded most recent local header")
utils.Logger().Info().
Str("number", currentBlock.Number().String()).
Str("hash", currentBlock.Hash().Hex()).
Str("td", blockTd.String()).
Str("age", common.PrettyAge(time.Unix(currentBlock.Time().Int64(), 0)).String()).
Msg("Loaded most recent local full block")
utils.Logger().Info().
Str("number", currentFastBlock.Number().String()).
Str("hash", currentFastBlock.Hash().Hex()).
Str("td", fastTd.String()).
Str("age", common.PrettyAge(time.Unix(currentFastBlock.Time().Int64(), 0)).String()).
Msg("Loaded most recent local fast block")
return nil
}
func (bc *BlockChainImpl) SetHead(head uint64) error {
utils.Logger().Warn().Uint64("target", head).Msg("Rewinding blockchain")
bc.mu.Lock()
defer bc.mu.Unlock()
// Rewind the header chain, deleting all block bodies until then
delFn := func(db rawdb.DatabaseDeleter, hash common.Hash, num uint64) error {
return rawdb.DeleteBody(db, hash, num)
}
if err := bc.hc.SetHead(head, delFn); err != nil {
return errors.Wrap(err, "headerChain SetHeader")
}
currentHeader := bc.hc.CurrentHeader()
// Clear out any stale content from the caches
bc.bodyCache.Purge()
bc.bodyRLPCache.Purge()
bc.receiptsCache.Purge()
bc.blockCache.Purge()
bc.futureBlocks.Purge()
bc.shardStateCache.Purge()
// Rewind the block chain, ensuring we don't end up with a stateless head block
if currentBlock := bc.CurrentBlock(); currentBlock != nil && currentHeader.Number().Uint64() < currentBlock.NumberU64() {
newHeadBlock := bc.GetBlock(currentHeader.Hash(), currentHeader.Number().Uint64())
bc.currentBlock.Store(newHeadBlock)
headBlockGauge.Update(int64(newHeadBlock.NumberU64()))
}
if currentBlock := bc.CurrentBlock(); currentBlock != nil {
if _, err := state.New(currentBlock.Root(), bc.stateCache, bc.snaps); err != nil {
// Rewound state missing, rolled back to before pivot, reset to genesis
bc.currentBlock.Store(bc.genesisBlock)
headBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
}
}
// Rewind the fast block in a simpleton way to the target head
if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && currentHeader.Number().Uint64() < currentFastBlock.NumberU64() {
newHeadFastBlock := bc.GetBlock(currentHeader.Hash(), currentHeader.Number().Uint64())
bc.currentFastBlock.Store(newHeadFastBlock)
headFastBlockGauge.Update(int64(newHeadFastBlock.NumberU64()))
}
// If either blocks reached nil, reset to the genesis state
if currentBlock := bc.CurrentBlock(); currentBlock == nil {
bc.currentBlock.Store(bc.genesisBlock)
headBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
}
if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock == nil {
bc.currentFastBlock.Store(bc.genesisBlock)
headFastBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
}
currentBlock := bc.CurrentBlock()
currentFastBlock := bc.CurrentFastBlock()
if err := rawdb.WriteHeadBlockHash(bc.db, currentBlock.Hash()); err != nil {
return err
}
if err := rawdb.WriteHeadFastBlockHash(bc.db, currentFastBlock.Hash()); err != nil {
return err
}
return bc.loadLastState()
}
func (bc *BlockChainImpl) ShardID() uint32 {
return bc.shardID
}
func (bc *BlockChainImpl) CurrentBlock() *types.Block {
return bc.currentBlock.Load().(*types.Block)
}
// CurrentFastBlock retrieves the current fast-sync head block of the canonical
// chain. The block is retrieved from the blockchain's internal cache.
func (bc *BlockChainImpl) CurrentFastBlock() *types.Block {
return bc.currentFastBlock.Load().(*types.Block)
}
func (bc *BlockChainImpl) SetProcessor(processor Processor) {
bc.procmu.Lock()
defer bc.procmu.Unlock()
bc.processor = processor
}
func (bc *BlockChainImpl) SetValidator(validator Validator) {
bc.procmu.Lock()
defer bc.procmu.Unlock()
bc.validator = validator
}
func (bc *BlockChainImpl) Validator() Validator {
bc.procmu.RLock()
defer bc.procmu.RUnlock()
return bc.validator
}
func (bc *BlockChainImpl) Processor() Processor {
bc.procmu.RLock()
defer bc.procmu.RUnlock()
return bc.processor
}
func (bc *BlockChainImpl) State() (*state.DB, error) {
return bc.StateAt(bc.CurrentBlock().Root())
}
func (bc *BlockChainImpl) StateAt(root common.Hash) (*state.DB, error) {
return state.New(root, bc.stateCache, bc.snaps)
}
// Snapshots returns the blockchain snapshot tree.
func (bc *BlockChainImpl) Snapshots() *snapshot.Tree {
return bc.snaps
}
func (bc *BlockChainImpl) Reset() error {
return bc.ResetWithGenesisBlock(bc.genesisBlock)
}
func (bc *BlockChainImpl) ResetWithGenesisBlock(genesis *types.Block) error {
// Dump the entire block chain and purge the caches
if err := bc.SetHead(0); err != nil {
return err
}
bc.mu.Lock()
defer bc.mu.Unlock()
// Prepare the genesis block and reinitialise the chain
if err := rawdb.WriteBlock(bc.db, genesis); err != nil {
return err
}
bc.genesisBlock = genesis
if err := bc.insert(bc.genesisBlock); err != nil {
return err
}
bc.hc.SetGenesis(bc.genesisBlock.Header())
if err := bc.hc.SetCurrentHeader(bc.genesisBlock.Header()); err != nil {
return err
}
bc.currentBlock.Store(bc.genesisBlock)
headBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
bc.currentFastBlock.Store(bc.genesisBlock)
headFastBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
return nil
}
// repair tries to repair the current blockchain by rolling back the current block
// until one with associated state is found. This is needed to fix incomplete db
// writes caused either by crashes/power outages, or simply non-committed tries.
//
// This method only rolls back the current block. The current header and current
// fast block are left intact.
func (bc *BlockChainImpl) repair(head **types.Block) error {
valsToRemove := map[common.Address]struct{}{}
for {
// Abort if we've rewound to a head block that does have associated state
if _, err := state.New((*head).Root(), bc.stateCache, bc.snaps); err == nil {
utils.Logger().Info().
Str("number", (*head).Number().String()).
Str("hash", (*head).Hash().Hex()).
Msg("Rewound blockchain to past state")
return bc.removeInValidatorList(valsToRemove)
}
// Repair last commit sigs
lastSig := (*head).Header().LastCommitSignature()
sigAndBitMap := append(lastSig[:], (*head).Header().LastCommitBitmap()...)
bc.WriteCommitSig((*head).NumberU64()-1, sigAndBitMap)
// Otherwise rewind one block and recheck state availability there
for _, stkTxn := range (*head).StakingTransactions() {
if stkTxn.StakingType() == staking.DirectiveCreateValidator {
if addr, err := stkTxn.SenderAddress(); err == nil {
valsToRemove[addr] = struct{}{}
} else {
return err
}
}
}
block := bc.GetBlock((*head).ParentHash(), (*head).NumberU64()-1)
if block == nil {
return fmt.Errorf("missing block %d [%x]", (*head).NumberU64()-1, (*head).ParentHash())
}
*head = block
}
}
// This func is used to remove the validator addresses from the validator list.
func (bc *BlockChainImpl) removeInValidatorList(toRemove map[common.Address]struct{}) error {
if len(toRemove) == 0 {
return nil
}
utils.Logger().Info().
Interface("validators", toRemove).
Msg("Removing validators from validator list")
existingVals, err := bc.ReadValidatorList()
if err != nil {
return err
}
newVals := []common.Address{}
for _, addr := range existingVals {
if _, ok := toRemove[addr]; !ok {
newVals = append(newVals, addr)
}
}
return bc.WriteValidatorList(bc.db, newVals)
}
// Export writes the active chain to the given writer.
func (bc *BlockChainImpl) Export(w io.Writer) error {
return bc.ExportN(w, uint64(0), bc.CurrentBlock().NumberU64())
}
// ExportN writes a subset of the active chain to the given writer.
func (bc *BlockChainImpl) ExportN(w io.Writer, first uint64, last uint64) error {
bc.mu.RLock()
defer bc.mu.RUnlock()
if first > last {
return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last)
}
utils.Logger().Info().Uint64("count", last-first+1).Msg("Exporting batch of blocks")
start, reported := time.Now(), time.Now()
for nr := first; nr <= last; nr++ {
block := bc.GetBlockByNumber(nr)
if block == nil {
return fmt.Errorf("export failed on #%d: not found", nr)
}
if err := block.EncodeRLP(w); err != nil {
return err
}
if time.Since(reported) >= statsReportLimit {
utils.Logger().Info().
Uint64("exported", block.NumberU64()-first).
Str("elapsed", common.PrettyDuration(time.Since(start)).String()).
Msg("Exporting blocks")
reported = time.Now()
}
}
return nil
}
func (bc *BlockChainImpl) WriteHeadBlock(block *types.Block) error {
return bc.writeHeadBlock(block)
}
// writeHeadBlock writes a new head block
func (bc *BlockChainImpl) writeHeadBlock(block *types.Block) error {
// If the block is on a side chain or an unknown one, force other heads onto it too
updateHeads := bc.GetCanonicalHash(block.NumberU64()) != block.Hash()
// Add the block to the canonical chain number scheme and mark as the head
batch := bc.ChainDb().NewBatch()
if err := rawdb.WriteCanonicalHash(batch, block.Hash(), block.NumberU64()); err != nil {
return err
}
if err := rawdb.WriteHeadBlockHash(batch, block.Hash()); err != nil {
return err
}
if err := batch.Write(); err != nil {
return err
}
bc.currentBlock.Store(block)
headBlockGauge.Update(int64(block.NumberU64()))
// If the block is better than our head or is on a different chain, force update heads
if updateHeads {
if err := bc.hc.SetCurrentHeader(block.Header()); err != nil {
return errors.Wrap(err, "HeaderChain SetCurrentHeader")
}
if err := rawdb.WriteHeadFastBlockHash(bc.db, block.Hash()); err != nil {
return err
}
bc.currentFastBlock.Store(block)
headFastBlockGauge.Update(int64(block.NumberU64()))
}
return nil
}
// tikvFastForward writes a new head block in tikv mode, used for reader node or follower writer node
func (bc *BlockChainImpl) tikvFastForward(block *types.Block, logs []*types.Log) error {
bc.currentBlock.Store(block)
headBlockGauge.Update(int64(block.NumberU64()))
if err := bc.hc.SetCurrentHeader(block.Header()); err != nil {
return errors.Wrap(err, "HeaderChain SetCurrentHeader")
}
bc.currentFastBlock.Store(block)
headFastBlockGauge.Update(int64(block.NumberU64()))
var events []interface{}
events = append(events, ChainEvent{block, block.Hash(), logs})
events = append(events, ChainHeadEvent{block})
if block.NumberU64() > triesInRedis {
bc.latestCleanCacheNum = block.NumberU64() - triesInRedis
}
bc.PostChainEvents(events, logs)
return nil
}
// insert injects a new head block into the current block chain. This method
// assumes that the block is indeed a true head. It will also reset the head
// header and the head fast sync block to this very same block if they are older
// or if they are on a different side chain.
//
// Note, this function assumes that the `mu` mutex is held!
func (bc *BlockChainImpl) insert(block *types.Block) error {
return bc.writeHeadBlock(block)
}
// Genesis retrieves the chain's genesis block.
func (bc *BlockChainImpl) Genesis() *types.Block {
return bc.genesisBlock
}
// GetBody retrieves a block body (transactions and uncles) from the database by
// hash, caching it if found.
func (bc *BlockChainImpl) GetBody(hash common.Hash) *types.Body {
// Short circuit if the body's already in the cache, retrieve otherwise
if cached, ok := bc.bodyCache.Get(hash); ok {
body := cached.(*types.Body)
return body
}
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return nil
}
body := rawdb.ReadBody(bc.db, hash, *number)
if body == nil {
return nil
}
// Cache the found body for next time and return
bc.bodyCache.Add(hash, body)
return body
}
// GetBodyRLP retrieves a block body in RLP encoding from the database by hash,
// caching it if found.
func (bc *BlockChainImpl) GetBodyRLP(hash common.Hash) rlp.RawValue {
// Short circuit if the body's already in the cache, retrieve otherwise
if cached, ok := bc.bodyRLPCache.Get(hash); ok {
return cached.(rlp.RawValue)
}
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return nil
}
body := rawdb.ReadBodyRLP(bc.db, hash, *number)
if len(body) == 0 {
return nil
}
// Cache the found body for next time and return
bc.bodyRLPCache.Add(hash, body)
return body
}
func (bc *BlockChainImpl) HasBlock(hash common.Hash, number uint64) bool {
if bc.blockCache.Contains(hash) {
return true
}
return rawdb.HasBody(bc.db, hash, number)
}
func (bc *BlockChainImpl) HasState(hash common.Hash) bool {
_, err := bc.stateCache.OpenTrie(hash)
return err == nil
}
func (bc *BlockChainImpl) HasBlockAndState(hash common.Hash, number uint64) bool {
// Check first that the block itself is known
block := bc.GetBlock(hash, number)
if block == nil {
return false
}
return bc.HasState(block.Root())
}
func (bc *BlockChainImpl) GetBlock(hash common.Hash, number uint64) *types.Block {
// Short circuit if the block's already in the cache, retrieve otherwise
if block, ok := bc.blockCache.Get(hash); ok {
return block.(*types.Block)
}
block := rawdb.ReadBlock(bc.db, hash, number)
if block == nil {
return nil
}
// Cache the found block for next time and return
bc.blockCache.Add(block.Hash(), block)
return block
}
func (bc *BlockChainImpl) GetBlockByHash(hash common.Hash) *types.Block {
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return nil
}
return bc.GetBlock(hash, *number)
}
func (bc *BlockChainImpl) GetBlockByNumber(number uint64) *types.Block {
hash := bc.GetCanonicalHash(number)
if hash == (common.Hash{}) {
return nil
}
return bc.GetBlock(hash, number)
}
func (bc *BlockChainImpl) GetReceiptsByHash(hash common.Hash) types.Receipts {
if receipts, ok := bc.receiptsCache.Get(hash); ok {
return receipts.(types.Receipts)
}
number := rawdb.ReadHeaderNumber(bc.db, hash)
if number == nil {
return nil
}
receipts := rawdb.ReadReceipts(bc.db, hash, *number, nil)
bc.receiptsCache.Add(hash, receipts)
return receipts
}
// GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors.
// [deprecated by eth/62]
func (bc *BlockChainImpl) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) {
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return nil
}
for i := 0; i < n; i++ {
block := bc.GetBlock(hash, *number)
if block == nil {
break
}
blocks = append(blocks, block)
hash = block.ParentHash()
*number--
}
return
}
func (bc *BlockChainImpl) GetUnclesInChain(b *types.Block, length int) []*block.Header {
uncles := []*block.Header{}
for i := 0; b != nil && i < length; i++ {
uncles = append(uncles, b.Uncles()...)
b = bc.GetBlock(b.ParentHash(), b.NumberU64()-1)
}
return uncles
}
// TrieNode retrieves a blob of data associated with a trie node (or code hash)
// either from ephemeral in-memory cache, or from persistent storage.
func (bc *BlockChainImpl) TrieNode(hash common.Hash) ([]byte, error) {
return bc.stateCache.TrieDB().Node(hash)
}
func (bc *BlockChainImpl) Stop() {
if bc == nil {
return
}
// Ensure that the entirety of the state snapshot is journalled to disk.
var snapBase common.Hash
if bc.snaps != nil {
var err error
if snapBase, err = bc.snaps.Journal(bc.CurrentBlock().Header().Root()); err != nil {
utils.Logger().Error().Err(err).Msg("Failed to journal state snapshot")
}
}
if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) {
return
}
bc.chainmu.Lock()
defer bc.chainmu.Unlock()
if err := bc.SavePendingCrossLinks(); err != nil {
utils.Logger().Error().Err(err).Msg("Failed to save pending cross links")
}
// Unsubscribe all subscriptions registered from blockchain
bc.scope.Close()
close(bc.quit)
atomic.StoreInt32(&bc.procInterrupt, 1)
// Ensure the state of a recent block is also stored to disk before exiting.
// We're writing three different states to catch different restart scenarios:
// - HEAD: So we don't need to reprocess any blocks in the general case
// - HEAD-1: So we don't do large reorgs if our HEAD becomes an uncle
// - HEAD-TriesInMemory: So we have a configurable hard limit on the number of blocks reexecuted (default 128)
if !bc.cacheConfig.Disabled {
triedb := bc.stateCache.TrieDB()
for _, offset := range []uint64{0, 1, bc.cacheConfig.TriesInMemory - 1} {
if number := bc.CurrentBlock().NumberU64(); number > offset {
recent := bc.GetHeaderByNumber(number - offset)
if recent != nil {
utils.Logger().Info().
Str("block", recent.Number().String()).
Str("hash", recent.Hash().Hex()).
Str("root", recent.Root().Hex()).
Msg("Writing cached state to disk")
if err := triedb.Commit(recent.Root(), true); err != nil {
utils.Logger().Error().Err(err).Msg("Failed to commit recent state trie")
}
}
}
}
if snapBase != (common.Hash{}) {
utils.Logger().Info().Interface("root", snapBase).Msg("Writing snapshot state to disk")
if err := triedb.Commit(snapBase, true); err != nil {
utils.Logger().Error().Err(err).Msg("Failed to commit recent state trie")
}
}
for !bc.triegc.Empty() {
v := common.Hash(bc.triegc.PopItem())
triedb.Dereference(v)
}
if size, _ := triedb.Size(); size != 0 {
utils.Logger().Error().Msg("Dangling trie nodes after full cleanup")
}
}
// Flush the collected preimages to disk
if err := bc.stateCache.TrieDB().CommitPreimages(); err != nil {
utils.Logger().Error().Interface("err", err).Msg("Failed to commit trie preimages")
}
// Ensure all live cached entries be saved into disk, so that we can skip
// cache warmup when node restarts.
if bc.cacheConfig.TrieCleanJournal != "" {
bc.triedb.SaveCache(bc.cacheConfig.TrieCleanJournal)
}
utils.Logger().Info().Msg("Blockchain manager stopped")
}
func (bc *BlockChainImpl) procFutureBlocks() {
blocks := make([]*types.Block, 0, bc.futureBlocks.Len())
for _, hash := range bc.futureBlocks.Keys() {
if block, exist := bc.futureBlocks.Peek(hash); exist {
blocks = append(blocks, block.(*types.Block))
}
}
if len(blocks) > 0 {
types.BlockBy(types.Number).Sort(blocks)
// Insert one by one as chain insertion needs contiguous ancestry between blocks
for i := range blocks {
bc.InsertChain(blocks[i:i+1], true /* verifyHeaders */)
}
}
}
// WriteStatus status of write
type WriteStatus byte
// Constants for WriteStatus
const (
NonStatTy WriteStatus = iota
CanonStatTy
SideStatTy
)
func (bc *BlockChainImpl) Rollback(chain []common.Hash) error {
bc.mu.Lock()
defer bc.mu.Unlock()
valsToRemove := map[common.Address]struct{}{}
for i := len(chain) - 1; i >= 0; i-- {
hash := chain[i]
currentHeader := bc.hc.CurrentHeader()
if currentHeader != nil && currentHeader.Hash() == hash {
parentHeader := bc.GetHeader(currentHeader.ParentHash(), currentHeader.Number().Uint64()-1)
if parentHeader != nil {
if err := bc.hc.SetCurrentHeader(parentHeader); err != nil {
return errors.Wrap(err, "HeaderChain SetCurrentHeader")
}
}
}
if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && currentFastBlock.Hash() == hash {
newFastBlock := bc.GetBlock(currentFastBlock.ParentHash(), currentFastBlock.NumberU64()-1)
if newFastBlock != nil {
bc.currentFastBlock.Store(newFastBlock)
headFastBlockGauge.Update(int64(newFastBlock.NumberU64()))
rawdb.WriteHeadFastBlockHash(bc.db, newFastBlock.Hash())
}
}
if currentBlock := bc.CurrentBlock(); currentBlock != nil && currentBlock.Hash() == hash {
newBlock := bc.GetBlock(currentBlock.ParentHash(), currentBlock.NumberU64()-1)
if newBlock != nil {
bc.currentBlock.Store(newBlock)
headBlockGauge.Update(int64(newBlock.NumberU64()))
if err := rawdb.WriteHeadBlockHash(bc.db, newBlock.Hash()); err != nil {
return err
}
for _, stkTxn := range currentBlock.StakingTransactions() {
if stkTxn.StakingType() == staking.DirectiveCreateValidator {
if addr, err := stkTxn.SenderAddress(); err == nil {
valsToRemove[addr] = struct{}{}
}
}
}
}
}
}
return bc.removeInValidatorList(valsToRemove)
}
// SetReceiptsData computes all the non-consensus fields of the receipts
func SetReceiptsData(config *params.ChainConfig, block *types.Block, receipts types.Receipts) error {
signer := types.MakeSigner(config, block.Epoch())
ethSigner := types.NewEIP155Signer(config.EthCompatibleChainID)
transactions, stakingTransactions, logIndex := block.Transactions(), block.StakingTransactions(), uint(0)
if len(transactions)+len(stakingTransactions) != len(receipts) {
return errors.New("transaction+stakingTransactions and receipt count mismatch")
}
// The used gas can be calculated based on previous receipts
if len(receipts) > 0 && len(transactions) > 0 {
receipts[0].GasUsed = receipts[0].CumulativeGasUsed
}
for j := 1; j < len(transactions); j++ {
// The transaction hash can be retrieved from the transaction itself
receipts[j].TxHash = transactions[j].Hash()
receipts[j].GasUsed = receipts[j].CumulativeGasUsed - receipts[j-1].CumulativeGasUsed
// The contract address can be derived from the transaction itself
if transactions[j].To() == nil {
// Deriving the signer is expensive, only do if it's actually needed
var from common.Address
if transactions[j].IsEthCompatible() {
from, _ = types.Sender(ethSigner, transactions[j])
} else {
from, _ = types.Sender(signer, transactions[j])
}
receipts[j].ContractAddress = crypto.CreateAddress(from, transactions[j].Nonce())
}
// The derived log fields can simply be set from the block and transaction
for k := 0; k < len(receipts[j].Logs); k++ {
receipts[j].Logs[k].BlockNumber = block.NumberU64()
receipts[j].Logs[k].BlockHash = block.Hash()
receipts[j].Logs[k].TxHash = receipts[j].TxHash
receipts[j].Logs[k].TxIndex = uint(j)
receipts[j].Logs[k].Index = logIndex
logIndex++
}
}
// The used gas can be calculated based on previous receipts
if len(receipts) > len(transactions) && len(stakingTransactions) > 0 {
receipts[len(transactions)].GasUsed = receipts[len(transactions)].CumulativeGasUsed
}
// in a block, txns are processed before staking txns
for j := len(transactions) + 1; j < len(transactions)+len(stakingTransactions); j++ {
// The transaction hash can be retrieved from the staking transaction itself
receipts[j].TxHash = stakingTransactions[j].Hash()
receipts[j].GasUsed = receipts[j].CumulativeGasUsed - receipts[j-1].CumulativeGasUsed
// The derived log fields can simply be set from the block and transaction
for k := 0; k < len(receipts[j].Logs); k++ {
receipts[j].Logs[k].BlockNumber = block.NumberU64()
receipts[j].Logs[k].BlockHash = block.Hash()
receipts[j].Logs[k].TxHash = receipts[j].TxHash
receipts[j].Logs[k].TxIndex = uint(j) + uint(len(transactions))
receipts[j].Logs[k].Index = logIndex
logIndex++
}
}
return nil
}
// InsertReceiptChain attempts to complete an already existing header chain with
// transaction and receipt data.
// Deprecated: no usages of this function found.
// TODO: should be removed
func (bc *BlockChainImpl) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
// Do a sanity check that the provided chain is actually ordered and linked
for i := 1; i < len(blockChain); i++ {
if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() {
utils.Logger().Error().
Str("number", blockChain[i].Number().String()).
Str("hash", blockChain[i].Hash().Hex()).
Str("parent", blockChain[i].ParentHash().Hex()).
Str("prevnumber", blockChain[i-1].Number().String()).
Str("prevhash", blockChain[i-1].Hash().Hex()).
Msg("Non contiguous receipt insert")
return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, blockChain[i-1].NumberU64(),
blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4])
}
}
bc.chainmu.Lock()
defer bc.chainmu.Unlock()
var (
stats = struct{ processed, ignored int32 }{}
start = time.Now()
bytes = 0
batch = bc.db.NewBatch()
)
for i, block := range blockChain {
receipts := receiptChain[i]
// Short circuit insertion if shutting down or processing failed
if atomic.LoadInt32(&bc.procInterrupt) == 1 {
return 0, nil
}
// Short circuit if the owner header is unknown
if !bc.HasHeader(block.Hash(), block.NumberU64()) {
return 0, fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4])
}
// Skip if the entire data is already known
if bc.HasBlock(block.Hash(), block.NumberU64()) {
stats.ignored++
continue
}
// Compute all the non-consensus fields of the receipts
if err := SetReceiptsData(bc.chainConfig, block, receipts); err != nil {
return 0, fmt.Errorf("failed to set receipts data: %v", err)
}
// Write all the data out into the database
if err := rawdb.WriteBody(batch, block.Hash(), block.NumberU64(), block.Body()); err != nil {
return 0, err
}
if err := rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts); err != nil {
return 0, err
}
if err := rawdb.WriteBlockTxLookUpEntries(batch, block); err != nil {
return 0, err
}
if err := rawdb.WriteBlockStxLookUpEntries(batch, block); err != nil {
return 0, err
}
stats.processed++
if batch.ValueSize() >= ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
return 0, err
}
bytes += batch.ValueSize()
batch.Reset()
}
}
if batch.ValueSize() > 0 {
bytes += batch.ValueSize()
if err := batch.Write(); err != nil {
return 0, err
}
}
// Update the head fast sync block if better
bc.mu.Lock()
head := blockChain[len(blockChain)-1]
if td := bc.GetTd(head.Hash(), head.NumberU64()); td != nil { // Rewind may have occurred, skip in that case
currentFastBlock := bc.CurrentFastBlock()
if bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()).Cmp(td) < 0 {
rawdb.WriteHeadFastBlockHash(bc.db, head.Hash())
bc.currentFastBlock.Store(head)
headFastBlockGauge.Update(int64(head.NumberU64()))
}
}
bc.mu.Unlock()
utils.Logger().Info().
Int32("count", stats.processed).
Str("elapsed", common.PrettyDuration(time.Since(start)).String()).
Str("age", common.PrettyAge(time.Unix(head.Time().Int64(), 0)).String()).
Str("head", head.Number().String()).
Str("hash", head.Hash().Hex()).
Str("size", common.StorageSize(bytes).String()).
Int32("ignored", stats.ignored).
Msg("Imported new block receipts")
return 0, nil
}
var lastWrite uint64
func (bc *BlockChainImpl) WriteBlockWithoutState(block *types.Block, td *big.Int) (err error) {
bc.chainmu.Lock()
defer bc.chainmu.Unlock()
if err := bc.hc.WriteTd(block.Hash(), block.NumberU64(), td); err != nil {
return err
}
if err := rawdb.WriteBlock(bc.db, block); err != nil {
return err
}
return nil
}
func (bc *BlockChainImpl) WriteBlockWithState(
block *types.Block, receipts []*types.Receipt,
cxReceipts []*types.CXReceipt,
stakeMsgs []staking.StakeMsg,
paid reward.Reader,
state *state.DB,
) (status WriteStatus, err error) {
// Make sure no inconsistent state is leaked during insertion
bc.mu.Lock()
defer bc.mu.Unlock()
currentBlock := bc.CurrentBlock()
if currentBlock == nil || block.ParentHash() != currentBlock.Hash() {
return NonStatTy, errors.New("Hash of parent block doesn't match the current block hash")
}
// Commit state object changes to in-memory trie
root, err := state.Commit(bc.chainConfig.IsS3(block.Epoch()))
if err != nil {
return NonStatTy, err
}
// Flush trie state into disk if it's archival node or the block is epoch block
triedb := bc.stateCache.TrieDB()
if bc.cacheConfig.Disabled || block.IsLastBlockInEpoch() {
if err := triedb.Commit(root, false); err != nil {
if isUnrecoverableErr(err) {
fmt.Printf("Unrecoverable error when committing triedb: %v\nExitting\n", err)
os.Exit(1)
}
return NonStatTy, err
}
// clean block tire info in redis, used for tikv mode
if block.NumberU64() > triesInRedis {
select {
case bc.cleanCacheChan <- block.NumberU64() - triesInRedis:
default:
}
}
} else {
// Full but not archive node, do proper garbage collection
triedb.Reference(root, common.Hash{}) // metadata reference to keep trie alive
// r := common.Hash(root)
bc.triegc.Push(root, -int64(block.NumberU64()))
if current := block.NumberU64(); current > bc.cacheConfig.TriesInMemory {
// If we exceeded our memory allowance, flush matured singleton nodes to disk
var (
nodes, imgs = triedb.Size()
limit = common.StorageSize(bc.cacheConfig.TrieNodeLimit) * 1024 * 1024
)
if nodes > limit || imgs > 4*1024*1024 {
triedb.Cap(limit - ethdb.IdealBatchSize)
}
// Find the next state trie we need to commit
header := bc.GetHeaderByNumber(current - bc.cacheConfig.TriesInMemory)
if header != nil {
chosen := header.Number().Uint64()
// If we exceeded out time allowance, flush an entire trie to disk
if bc.gcproc > bc.cacheConfig.TrieTimeLimit {
// If we're exceeding limits but haven't reached a large enough memory gap,
// warn the user that the system is becoming unstable.
if chosen < lastWrite+bc.cacheConfig.TriesInMemory && bc.gcproc >= 2*bc.cacheConfig.TrieTimeLimit {
utils.Logger().Info().
Dur("time", bc.gcproc).
Dur("allowance", bc.cacheConfig.TrieTimeLimit).
Float64("optimum", float64(chosen-lastWrite)/float64(bc.cacheConfig.TriesInMemory)).
Msg("State in memory for too long, committing")
}
// Flush an entire trie and restart the counters
triedb.Commit(header.Root(), true)
lastWrite = chosen
bc.gcproc = 0
}
// Garbage collect anything below our required write retention
for !bc.triegc.Empty() {
root, number := bc.triegc.Pop()
if uint64(-number) > chosen {
bc.triegc.Push(root, number)
break
}
if -number > bc.maxGarbCollectedBlkNum {
bc.maxGarbCollectedBlkNum = -number
}
triedb.Dereference(root)
}
}
}
}
batch := bc.db.NewBatch()
// Write the raw block
if err := rawdb.WriteBlock(batch, block); err != nil {
return NonStatTy, err
}
// Write offchain data
if status, err := bc.CommitOffChainData(
batch, block, receipts,
cxReceipts, stakeMsgs,
paid, state,
); err != nil {
return status, err
}
// Write the positional metadata for transaction/receipt lookups and preimages
if err := rawdb.WriteBlockTxLookUpEntries(batch, block); err != nil {
return NonStatTy, err
}
if err := rawdb.WriteBlockStxLookUpEntries(batch, block); err != nil {
return NonStatTy, err
}
if err := rawdb.WriteCxLookupEntries(batch, block); err != nil {
return NonStatTy, err
}
if err := rawdb.WritePreimages(batch, state.Preimages()); err != nil {
return NonStatTy, err
}
if bc.IsEnablePruneBeaconChainFeature() {
if block.Number().Cmp(big.NewInt(pruneBeaconChainBlockBefore)) > 0 && block.Epoch().Cmp(big.NewInt(pruneBeaconChainBeforeEpoch)) > 0 {
maxBlockNum := big.NewInt(0).Sub(block.Number(), big.NewInt(pruneBeaconChainBlockBefore)).Uint64()
maxEpoch := big.NewInt(0).Sub(block.Epoch(), big.NewInt(pruneBeaconChainBeforeEpoch))
go func() {
err := bc.blockchainPruner.Start(maxBlockNum, maxEpoch)
if err != nil {
utils.Logger().Info().Err(err).Msg("pruneBeaconChain init error")
return
}
}()
}
}
if err := batch.Write(); err != nil {
if isUnrecoverableErr(err) {
fmt.Printf("Unrecoverable error when writing leveldb: %v\nExitting\n", err)
os.Exit(1)
}
return NonStatTy, err
}
// Update current block
if err := bc.writeHeadBlock(block); err != nil {
return NonStatTy, errors.Wrap(err, "writeHeadBlock")
}
bc.futureBlocks.Remove(block.Hash())
return CanonStatTy, nil
}
func (bc *BlockChainImpl) GetMaxGarbageCollectedBlockNumber() int64 {
return bc.maxGarbCollectedBlkNum
}
func (bc *BlockChainImpl) InsertChain(chain types.Blocks, verifyHeaders bool) (int, error) {
// if in tikv mode, writer node need preempt master or come be a follower
if bc.isInitTiKV() && !bc.tikvPreemptMaster(bc.rangeBlock(chain)) {
return len(chain), nil
}
n, events, logs, err := bc.insertChain(chain, verifyHeaders)
bc.PostChainEvents(events, logs)
if err == nil {
// there should be only 1 block.
for _, b := range chain {
if b.Epoch().Uint64() > 0 {
err := bc.saveLeaderRotationMeta(b.Header())
if err != nil {
utils.Logger().Error().Err(err).Msg("save leader continuous blocks count error")
return n, err
}
}
}
}
if bc.isInitTiKV() && err != nil {
// if has some error, master writer node will release the permission
_, _ = bc.redisPreempt.Unlock()
}
return n, err
}
func (bc *BlockChainImpl) saveLeaderRotationMeta(h *block.Header) error {
blockPubKey, err := bc.getLeaderPubKeyFromCoinbase(h)
if err != nil {
return err
}
type stored struct {
pub []byte
epoch uint64
count uint64
shifts uint64
}
var s stored
// error is possible here only on the first iteration, so we can ignore it
s.pub, s.epoch, s.count, s.shifts, _ = rawdb.ReadLeaderRotationMeta(bc.db)
// increase counter only if the same leader and epoch
if bytes.Equal(s.pub, blockPubKey.Bytes[:]) && s.epoch == h.Epoch().Uint64() {
s.count++
} else {
s.count = 1
}
// we should increase shifts if the leader is changed.
if !bytes.Equal(s.pub, blockPubKey.Bytes[:]) {
s.shifts++
}
// but set to zero if new
if s.epoch != h.Epoch().Uint64() {
s.shifts = 0
}
err = rawdb.WriteLeaderRotationMeta(bc.db, blockPubKey.Bytes[:], h.Epoch().Uint64(), s.count, s.shifts)
if err != nil {
return err
}
return nil
}
func (bc *BlockChainImpl) LeaderRotationMeta() (publicKeyBytes []byte, epoch, count, shifts uint64, err error) {
return rawdb.ReadLeaderRotationMeta(bc.db)
}
// insertChain will execute the actual chain insertion and event aggregation. The
// only reason this method exists as a separate one is to make locking cleaner
// with deferred statements.
func (bc *BlockChainImpl) insertChain(chain types.Blocks, verifyHeaders bool) (int, []interface{}, []*types.Log, error) {
// Sanity check that we have something meaningful to import
if len(chain) == 0 {
return 0, nil, nil, nil
}
// Do a sanity check that the provided chain is actually ordered and linked
for i := 1; i < len(chain); i++ {
if chain[i].NumberU64() != chain[i-1].NumberU64()+1 || chain[i].ParentHash() != chain[i-1].Hash() {
// Chain broke ancestry, log a message (programming error) and skip insertion
utils.Logger().Error().
Str("number", chain[i].Number().String()).
Str("hash", chain[i].Hash().Hex()).
Str("parent", chain[i].ParentHash().Hex()).
Str("prevnumber", chain[i-1].Number().String()).
Str("prevhash", chain[i-1].Hash().Hex()).
Msg("insertChain: non contiguous block insert")
return 0, nil, nil, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, chain[i-1].NumberU64(),
chain[i-1].Hash().Bytes()[:4], i, chain[i].NumberU64(), chain[i].Hash().Bytes()[:4], chain[i].ParentHash().Bytes()[:4])
}
}
bc.chainmu.Lock()
defer bc.chainmu.Unlock()
// A queued approach to delivering events. This is generally
// faster than direct delivery and requires much less mutex
// acquiring.
var (
stats = insertStats{startTime: mclock.Now()}
events = make([]interface{}, 0, len(chain))
lastCanon *types.Block
coalescedLogs []*types.Log
)
var verifyHeadersResults <-chan error
// If the block header chain has not been verified, conduct header verification here.
if verifyHeaders {
headers := make([]*block.Header, len(chain))
seals := make([]bool, len(chain))
for i, block := range chain {
headers[i] = block.Header()
seals[i] = true
}
// Note that VerifyHeaders verifies headers in the chain in parallel
abort, results := bc.Engine().VerifyHeaders(bc, headers, seals)
verifyHeadersResults = results
defer close(abort)
}
// Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss)
//senderCacher.recoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain)
// Iterate over the blocks and insert when the verifier permits
for i, block := range chain {
// If the chain is terminating, stop processing blocks
if atomic.LoadInt32(&bc.procInterrupt) == 1 {
utils.Logger().Debug().Msg("Premature abort during blocks processing")
break
}
// Wait for the block's verification to complete
bstart := time.Now()
var err error
if verifyHeaders {
err = <-verifyHeadersResults
}
if err == nil {
err = bc.Validator().ValidateBody(block)
}
switch {
case err == ErrKnownBlock:
// Block and state both already known. However if the current block is below
// this number we did a rollback and we should reimport it nonetheless.
if bc.CurrentBlock().NumberU64() >= block.NumberU64() {
stats.ignored++
continue
}
case err == consensus_engine.ErrFutureBlock:
// Allow up to MaxFuture second in the future blocks. If this limit is exceeded
// the chain is discarded and processed at a later time if given.
max := big.NewInt(time.Now().Unix() + maxTimeFutureBlocks)
if block.Time().Cmp(max) > 0 {
return i, events, coalescedLogs, fmt.Errorf("future block: %v > %v", block.Time(), max)
}
bc.futureBlocks.Add(block.Hash(), block)
stats.queued++
continue
case err == consensus_engine.ErrUnknownAncestor && bc.futureBlocks.Contains(block.ParentHash()):
bc.futureBlocks.Add(block.Hash(), block)
stats.queued++
continue
case err == consensus_engine.ErrPrunedAncestor:
// TODO: add fork choice mechanism
// Block competing with the canonical chain, store in the db, but don't process
// until the competitor TD goes above the canonical TD
//currentBlock := bc.CurrentBlock()
//localTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
//externTd := new(big.Int).Add(bc.GetTd(block.ParentHash(), block.NumberU64()-1), block.Difficulty())
//if localTd.Cmp(externTd) > 0 {
// if err = bc.WriteBlockWithoutState(block, externTd); err != nil {
// return i, events, coalescedLogs, err
// }
// continue
//}
// Competitor chain beat canonical, gather all blocks from the common ancestor
var winner []*types.Block
parent := bc.GetBlock(block.ParentHash(), block.NumberU64()-1)
for parent != nil && !bc.HasState(parent.Root()) {
winner = append(winner, parent)
parent = bc.GetBlock(parent.ParentHash(), parent.NumberU64()-1)
}
for j := 0; j < len(winner)/2; j++ {
winner[j], winner[len(winner)-1-j] = winner[len(winner)-1-j], winner[j]
}
// Prune in case non-empty winner chain
if len(winner) > 0 {
// Import all the pruned blocks to make the state available
bc.chainmu.Unlock()
_, evs, logs, err := bc.insertChain(winner, true /* verifyHeaders */)
bc.chainmu.Lock()
events, coalescedLogs = evs, logs
if err != nil {
return i, events, coalescedLogs, err
}
}
case err != nil:
bc.reportBlock(block, nil, err)
return i, events, coalescedLogs, err
}
// Create a new statedb using the parent block and report an
// error if it fails.
var parent *types.Block
if i == 0 {
parent = bc.GetBlock(block.ParentHash(), block.NumberU64()-1)
} else {
parent = chain[i-1]
}
state, err := state.New(parent.Root(), bc.stateCache, bc.snaps)
if err != nil {
return i, events, coalescedLogs, err
}
vmConfig := bc.vmConfig
if bc.trace {
ev := TraceEvent{
Tracer: &tracers.ParityBlockTracer{
Hash: block.Hash(),
Number: block.NumberU64(),
},
}
vmConfig = vm.Config{
Debug: true,
Tracer: ev.Tracer,
}
events = append(events, ev)
}
// Process block using the parent state as reference point.
substart := time.Now()
receipts, cxReceipts, stakeMsgs, logs, usedGas, payout, newState, err := bc.processor.Process(
block, state, vmConfig, true,
)
state = newState // update state in case the new state is cached.
if err != nil {
bc.reportBlock(block, receipts, err)
return i, events, coalescedLogs, err
}
// Update the metrics touched during block processing
accountReadTimer.Update(state.AccountReads) // Account reads are complete, we can mark them
storageReadTimer.Update(state.StorageReads) // Storage reads are complete, we can mark them
accountUpdateTimer.Update(state.AccountUpdates) // Account updates are complete, we can mark them
storageUpdateTimer.Update(state.StorageUpdates) // Storage updates are complete, we can mark them
triehash := state.AccountHashes + state.StorageHashes // Save to not double count in validation
trieproc := state.AccountReads + state.AccountUpdates
trieproc += state.StorageReads + state.StorageUpdates
blockExecutionTimer.Update(time.Since(substart) - trieproc - triehash)
// Validate the state using the default validator
substart = time.Now()
if err := bc.Validator().ValidateState(
block, state, receipts, cxReceipts, usedGas,
); err != nil {
bc.reportBlock(block, receipts, err)
return i, events, coalescedLogs, err
}
proctime := time.Since(bstart)
// Update the metrics touched during block validation
accountHashTimer.Update(state.AccountHashes) // Account hashes are complete, we can mark them
storageHashTimer.Update(state.StorageHashes) // Storage hashes are complete, we can mark them
blockValidationTimer.Update(time.Since(substart) - (state.AccountHashes + state.StorageHashes - triehash))
// Write the block to the chain and get the status.
substart = time.Now()
status, err := bc.WriteBlockWithState(
block, receipts, cxReceipts, stakeMsgs, payout, state,
)
if err != nil {
return i, events, coalescedLogs, err
}
logger := utils.Logger().With().
Str("number", block.Number().String()).
Str("hash", block.Hash().Hex()).
Int("uncles", len(block.Uncles())).
Int("txs", len(block.Transactions())).
Int("stakingTxs", len(block.StakingTransactions())).
Uint64("gas", block.GasUsed()).
Str("elapsed", common.PrettyDuration(time.Since(bstart)).String()).
Logger()
// Update the metrics touched during block commit
accountCommitTimer.Update(state.AccountCommits) // Account commits are complete, we can mark them
storageCommitTimer.Update(state.StorageCommits) // Storage commits are complete, we can mark them
blockWriteTimer.Update(time.Since(substart) - state.AccountCommits - state.StorageCommits)
blockInsertTimer.UpdateSince(bstart)
switch status {
case CanonStatTy:
logger.Info().Msg("Inserted new block")
coalescedLogs = append(coalescedLogs, logs...)
blockInsertTimer.UpdateSince(bstart)
events = append(events, ChainEvent{block, block.Hash(), logs})
lastCanon = block
// used for tikv mode, writer node will publish update to all reader node
if bc.isInitTiKV() {
err = redis_helper.PublishShardUpdate(bc.ShardID(), block.NumberU64(), logs)
if err != nil {
utils.Logger().Warn().Err(err).Msg("redis publish shard update error")
}
}
// Only count canonical blocks for GC processing time
bc.gcproc += proctime
}
stats.processed++
stats.usedGas += usedGas
cache, _ := bc.stateCache.TrieDB().Size()
stats.report(chain, i, cache)
}
// Append a single chain head event if we've progressed the chain
if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() {
events = append(events, ChainHeadEvent{lastCanon})
}
return 0, events, coalescedLogs, nil
}
// insertStats tracks and reports on block insertion.
type insertStats struct {
queued, processed, ignored int
usedGas uint64
lastIndex int
startTime mclock.AbsTime
}
// statsReportLimit is the time limit during import and export after which we
// always print out progress. This avoids the user wondering what's going on.
const statsReportLimit = 8 * time.Second
// report prints statistics if some number of blocks have been processed
// or more than a few seconds have passed since the last message.
func (st *insertStats) report(chain []*types.Block, index int, cache common.StorageSize) {
// Fetch the timings for the batch
var (
now = mclock.Now()
elapsed = time.Duration(now) - time.Duration(st.startTime)
)
// If we're at the last block of the batch or report period reached, log
if index == len(chain)-1 || elapsed >= statsReportLimit {
var (
end = chain[index]
txs = countTransactions(chain[st.lastIndex : index+1])
)
context := utils.Logger().With().
Int("blocks", st.processed).
Int("txs", txs).
Float64("mgas", float64(st.usedGas)/1000000).
Str("elapsed", common.PrettyDuration(elapsed).String()).
Float64("mgasps", float64(st.usedGas)*1000/float64(elapsed)).
Str("number", end.Number().String()).
Str("hash", end.Hash().Hex()).
Str("cache", cache.String())
if timestamp := time.Unix(end.Time().Int64(), 0); time.Since(timestamp) > time.Minute {
context = context.Str("age", common.PrettyAge(timestamp).String())
}
if st.queued > 0 {
context = context.Int("queued", st.queued)
}
if st.ignored > 0 {
context = context.Int("ignored", st.ignored)
}
logger := context.Logger()
logger.Info().Msg("Imported new chain segment")
*st = insertStats{startTime: now, lastIndex: index + 1}
}
}
func countTransactions(chain []*types.Block) (c int) {
for _, b := range chain {
c += len(b.Transactions())
}
return c
}
// PostChainEvents iterates over the events generated by a chain insertion and
// posts them into the event feed.
// TODO: Should not expose PostChainEvents. The chain events should be posted in WriteBlock.
func (bc *BlockChainImpl) PostChainEvents(events []interface{}, logs []*types.Log) {
// post event logs for further processing
if logs != nil {
bc.logsFeed.Send(logs)
}
for _, event := range events {
switch ev := event.(type) {
case ChainEvent:
bc.chainFeed.Send(ev)
case ChainHeadEvent:
bc.chainHeadFeed.Send(ev)
case ChainSideEvent:
bc.chainSideFeed.Send(ev)
case TraceEvent:
bc.traceFeed.Send(ev)
}
}
}
func (bc *BlockChainImpl) update() {
futureTimer := time.NewTicker(5 * time.Second)
defer futureTimer.Stop()
for {
select {
case <-futureTimer.C:
bc.procFutureBlocks()
case <-bc.quit:
return
}
}
}
// BadBlock ..
type BadBlock struct {
Block *types.Block
Reason error
}
// MarshalJSON ..
func (b BadBlock) MarshalJSON() ([]byte, error) {
return json.Marshal(struct {
Block *block.Header `json:"header"`
Reason string `json:"error-cause"`
}{
b.Block.Header(),
b.Reason.Error(),
})
}
func (bc *BlockChainImpl) BadBlocks() []BadBlock {
blocks := make([]BadBlock, bc.badBlocks.Len())
for _, hash := range bc.badBlocks.Keys() {
if blk, exist := bc.badBlocks.Peek(hash); exist {
blocks = append(blocks, blk.(BadBlock))
}
}
return blocks
}
// addBadBlock adds a bad block to the bad-block LRU cache
func (bc *BlockChainImpl) addBadBlock(block *types.Block, reason error) {
bc.badBlocks.Add(block.Hash(), BadBlock{block, reason})
}
// reportBlock logs a bad block error.
func (bc *BlockChainImpl) reportBlock(
block *types.Block, receipts types.Receipts, err error,
) {
bc.addBadBlock(block, err)
var receiptString string
for _, receipt := range receipts {
receiptString += fmt.Sprintf("\t%v\n", receipt)
}
utils.Logger().Error().Msgf(`
########## BAD BLOCK #########
Chain config: %v
Number: %v
Epoch: %v
NumTxn: %v
NumStkTxn: %v
Hash: 0x%x
%v
Error: %v
##############################
`, bc.chainConfig,
block.Number(),
block.Epoch(),
len(block.Transactions()),
len(block.StakingTransactions()),
block.Hash(),
receiptString,
err,
)
for i, tx := range block.StakingTransactions() {
utils.Logger().Error().
Msgf("StakingTxn %d: %s, %v", i, tx.StakingType().String(), tx.StakingMessage())
}
}
// InsertHeaderChain attempts to insert the given header chain in to the local
// chain, possibly creating a reorg. If an error is returned, it will return the
// index number of the failing header as well an error describing what went wrong.
//
// The verify parameter can be used to fine tune whether nonce verification
// should be done or not. The reason behind the optional check is because some
// of the header retrieval mechanisms already need to verify nonces, as well as
// because nonces can be verified sparsely, not needing to check each.
func (bc *BlockChainImpl) InsertHeaderChain(chain []*block.Header, checkFreq int) (int, error) {
start := time.Now()
if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq); err != nil {
return i, err
}
// Make sure only one thread manipulates the chain at once
bc.chainmu.Lock()
defer bc.chainmu.Unlock()
whFunc := func(header *block.Header) error {
bc.mu.Lock()
defer bc.mu.Unlock()
_, err := bc.hc.WriteHeader(header)
return err
}
return bc.hc.InsertHeaderChain(chain, whFunc, start)
}
func (bc *BlockChainImpl) CurrentHeader() *block.Header {
return bc.hc.CurrentHeader()
}
// GetTd retrieves a block's total difficulty in the canonical chain from the
// database by hash and number, caching it if found.
func (bc *BlockChainImpl) GetTd(hash common.Hash, number uint64) *big.Int {
return bc.hc.GetTd(hash, number)
}
// GetTdByHash retrieves a block's total difficulty in the canonical chain from the
// database by hash, caching it if found.
func (bc *BlockChainImpl) GetTdByHash(hash common.Hash) *big.Int {
return bc.hc.GetTdByHash(hash)
}
func (bc *BlockChainImpl) GetHeader(hash common.Hash, number uint64) *block.Header {
return bc.hc.GetHeader(hash, number)
}
func (bc *BlockChainImpl) GetHeaderByHash(hash common.Hash) *block.Header {
return bc.hc.GetHeaderByHash(hash)
}
// HasHeader checks if a block header is present in the database or not, caching
// it if present.
func (bc *BlockChainImpl) HasHeader(hash common.Hash, number uint64) bool {
return bc.hc.HasHeader(hash, number)
}
// GetBlockHashesFromHash retrieves a number of block hashes starting at a given
// hash, fetching towards the genesis block.
func (bc *BlockChainImpl) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash {
return bc.hc.GetBlockHashesFromHash(hash, max)
}
func (bc *BlockChainImpl) GetCanonicalHash(number uint64) common.Hash {
return bc.hc.GetCanonicalHash(number)
}
// GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or
// a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the
// number of blocks to be individually checked before we reach the canonical chain.
//
// Note: ancestor == 0 returns the same block, 1 returns its parent and so on.
func (bc *BlockChainImpl) GetAncestor(hash common.Hash, number, ancestor uint64, maxNonCanonical *uint64) (common.Hash, uint64) {
bc.chainmu.Lock()
defer bc.chainmu.Unlock()
return bc.hc.GetAncestor(hash, number, ancestor, maxNonCanonical)
}
func (bc *BlockChainImpl) GetHeaderByNumber(number uint64) *block.Header {
return bc.hc.GetHeaderByNumber(number)
}
func (bc *BlockChainImpl) Config() *params.ChainConfig { return bc.chainConfig }
func (bc *BlockChainImpl) Engine() consensus_engine.Engine { return bc.engine }
func (bc *BlockChainImpl) SubscribeRemovedLogsEvent(ch chan<- RemovedLogsEvent) event.Subscription {
return bc.scope.Track(bc.rmLogsFeed.Subscribe(ch))
}
func (bc *BlockChainImpl) SubscribeTraceEvent(ch chan<- TraceEvent) event.Subscription {
bc.trace = true
return bc.scope.Track(bc.traceFeed.Subscribe(ch))
}
func (bc *BlockChainImpl) SubscribeChainEvent(ch chan<- ChainEvent) event.Subscription {
return bc.scope.Track(bc.chainFeed.Subscribe(ch))
}
func (bc *BlockChainImpl) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription {
return bc.scope.Track(bc.chainHeadFeed.Subscribe(ch))
}
func (bc *BlockChainImpl) SubscribeChainSideEvent(ch chan<- ChainSideEvent) event.Subscription {
return bc.scope.Track(bc.chainSideFeed.Subscribe(ch))
}
func (bc *BlockChainImpl) SubscribeLogsEvent(ch chan<- []*types.Log) event.Subscription {
return bc.scope.Track(bc.logsFeed.Subscribe(ch))
}
func (bc *BlockChainImpl) ReadShardState(epoch *big.Int) (*shard.State, error) {
cacheKey := string(epoch.Bytes())
if cached, ok := bc.shardStateCache.Get(cacheKey); ok {
shardState := cached.(*shard.State)
return shardState, nil
}
shardState, err := rawdb.ReadShardState(bc.db, epoch)
if err != nil {
if strings.Contains(err.Error(), rawdb.MsgNoShardStateFromDB) &&
shard.Schedule.IsSkippedEpoch(bc.ShardID(), epoch) {
return nil, fmt.Errorf("epoch skipped on chain: %w", err)
}
return nil, err
}
bc.shardStateCache.Add(cacheKey, shardState)
return shardState, nil
}
func (bc *BlockChainImpl) WriteShardStateBytes(db rawdb.DatabaseWriter,
epoch *big.Int, shardState []byte,
) (*shard.State, error) {
decodeShardState, err := shard.DecodeWrapper(shardState)
if err != nil {
return nil, err
}
err = rawdb.WriteShardStateBytes(db, epoch, shardState)
if err != nil {
return nil, err
}
cacheKey := string(epoch.Bytes())
bc.shardStateCache.Add(cacheKey, decodeShardState)
return decodeShardState, nil
}
func (bc *BlockChainImpl) ReadCommitSig(blockNum uint64) ([]byte, error) {
if cached, ok := bc.lastCommitsCache.Get(blockNum); ok {
lastCommits := cached.([]byte)
return lastCommits, nil
}
lastCommits, err := rawdb.ReadBlockCommitSig(bc.db, blockNum)
if err != nil {
return nil, err
}
return lastCommits, nil
}
func (bc *BlockChainImpl) WriteCommitSig(blockNum uint64, lastCommits []byte) error {
err := rawdb.WriteBlockCommitSig(bc.db, blockNum, lastCommits)
if err != nil {
return err
}
bc.lastCommitsCache.Add(blockNum, lastCommits)
return nil
}
func (bc *BlockChainImpl) GetVdfByNumber(number uint64) []byte {
header := bc.GetHeaderByNumber(number)
if header == nil {
return []byte{}
}
return header.Vdf()
}
func (bc *BlockChainImpl) GetVrfByNumber(number uint64) []byte {
header := bc.GetHeaderByNumber(number)
if header == nil {
return []byte{}
}
return header.Vrf()
}
func (bc *BlockChainImpl) ChainDb() ethdb.Database { return bc.db }
func (bc *BlockChainImpl) GetEpochBlockNumber(epoch *big.Int) (*big.Int, error) {
// Try cache first
cacheKey := string(epoch.Bytes())
if cachedValue, ok := bc.epochCache.Get(cacheKey); ok {
return (&big.Int{}).SetBytes([]byte(cachedValue.(string))), nil
}
blockNum, err := rawdb.ReadEpochBlockNumber(bc.db, epoch)
if err != nil {
return nil, errors.Wrapf(
err, "cannot read epoch block number from database",
)
}
cachedValue := []byte(blockNum.Bytes())
bc.epochCache.Add(cacheKey, cachedValue)
return blockNum, nil
}
func (bc *BlockChainImpl) StoreEpochBlockNumber(
epoch *big.Int, blockNum *big.Int,
) error {
cacheKey := string(epoch.Bytes())
cachedValue := []byte(blockNum.Bytes())
bc.epochCache.Add(cacheKey, cachedValue)
if err := rawdb.WriteEpochBlockNumber(bc.db, epoch, blockNum); err != nil {
return errors.Wrapf(
err, "cannot write epoch block number to database",
)
}
return nil
}
func (bc *BlockChainImpl) ReadEpochVrfBlockNums(epoch *big.Int) ([]uint64, error) {
vrfNumbers := []uint64{}
if cached, ok := bc.randomnessCache.Get("vrf-" + string(epoch.Bytes())); ok {
encodedVrfNumbers := cached.([]byte)
if err := rlp.DecodeBytes(encodedVrfNumbers, &vrfNumbers); err != nil {
return nil, err
}
return vrfNumbers, nil
}
encodedVrfNumbers, err := rawdb.ReadEpochVrfBlockNums(bc.db, epoch)
if err != nil {
return nil, err
}
if err := rlp.DecodeBytes(encodedVrfNumbers, &vrfNumbers); err != nil {
return nil, err
}
return vrfNumbers, nil
}
func (bc *BlockChainImpl) WriteEpochVrfBlockNums(epoch *big.Int, vrfNumbers []uint64) error {
encodedVrfNumbers, err := rlp.EncodeToBytes(vrfNumbers)
if err != nil {
return err
}
err = rawdb.WriteEpochVrfBlockNums(bc.db, epoch, encodedVrfNumbers)
if err != nil {
return err
}
bc.randomnessCache.Add("vrf-"+string(epoch.Bytes()), encodedVrfNumbers)
return nil
}
func (bc *BlockChainImpl) ReadEpochVdfBlockNum(epoch *big.Int) (*big.Int, error) {
if cached, ok := bc.randomnessCache.Get("vdf-" + string(epoch.Bytes())); ok {
encodedVdfNumber := cached.([]byte)
return new(big.Int).SetBytes(encodedVdfNumber), nil
}
encodedVdfNumber, err := rawdb.ReadEpochVdfBlockNum(bc.db, epoch)
if err != nil {
return nil, err
}
return new(big.Int).SetBytes(encodedVdfNumber), nil
}
func (bc *BlockChainImpl) WriteEpochVdfBlockNum(epoch *big.Int, blockNum *big.Int) error {
err := rawdb.WriteEpochVdfBlockNum(bc.db, epoch, blockNum.Bytes())
if err != nil {
return err
}
bc.randomnessCache.Add("vdf-"+string(epoch.Bytes()), blockNum.Bytes())
return nil
}
func (bc *BlockChainImpl) WriteCrossLinks(batch rawdb.DatabaseWriter, cls []types.CrossLink) error {
var err error
for i := 0; i < len(cls); i++ {
cl := cls[i]
err = rawdb.WriteCrossLinkShardBlock(batch, cl.ShardID(), cl.BlockNum(), cl.Serialize())
}
return err
}
func (bc *BlockChainImpl) DeleteCrossLinks(cls []types.CrossLink) error {
var err error
for i := 0; i < len(cls); i++ {
cl := cls[i]
err = rawdb.DeleteCrossLinkShardBlock(bc.db, cl.ShardID(), cl.BlockNum())
}
return err
}
func (bc *BlockChainImpl) ReadCrossLink(shardID uint32, blockNum uint64) (*types.CrossLink, error) {
bytes, err := rawdb.ReadCrossLinkShardBlock(bc.db, shardID, blockNum)
if err != nil {
return nil, err
}
crossLink, err := types.DeserializeCrossLink(bytes)
return crossLink, err
}
func (bc *BlockChainImpl) LastContinuousCrossLink(batch rawdb.DatabaseWriter, shardID uint32) error {
oldLink, err := bc.ReadShardLastCrossLink(shardID)
if oldLink == nil || err != nil {
return err
}
newLink := oldLink
// Starting from last checkpoint, keeping reading immediate next crosslink until there is a gap
for i := oldLink.BlockNum() + 1; ; i++ {
tmp, err := bc.ReadCrossLink(shardID, i)
if err == nil && tmp != nil && tmp.BlockNum() == i {
newLink = tmp
} else {
break
}
}
if newLink.BlockNum() > oldLink.BlockNum() {
utils.Logger().Debug().Msgf("LastContinuousCrossLink: latest checkpoint blockNum %d", newLink.BlockNum())
return rawdb.WriteShardLastCrossLink(batch, shardID, newLink.Serialize())
}
return nil
}
func (bc *BlockChainImpl) ReadShardLastCrossLink(shardID uint32) (*types.CrossLink, error) {
bytes, err := rawdb.ReadShardLastCrossLink(bc.db, shardID)
if err != nil {
return nil, err
}
return types.DeserializeCrossLink(bytes)
}
func (bc *BlockChainImpl) writeSlashes(processed slash.Records) error {
bytes, err := rlp.EncodeToBytes(processed)
if err != nil {
const msg = "failed to encode slashing candidates"
utils.Logger().Error().Msg(msg)
return err
}
if err := rawdb.WritePendingSlashingCandidates(bc.db, bytes); err != nil {
return err
}
return nil
}
func (bc *BlockChainImpl) DeleteFromPendingSlashingCandidates(
processed slash.Records,
) error {
bc.pendingSlashingCandidatesMU.Lock()
defer bc.pendingSlashingCandidatesMU.Unlock()
current := bc.ReadPendingSlashingCandidates()
bc.pendingSlashes = processed.SetDifference(current)
return bc.writeSlashes(bc.pendingSlashes)
}
func (bc *BlockChainImpl) ReadPendingSlashingCandidates() slash.Records {
if !bc.Config().IsStaking(bc.CurrentHeader().Epoch()) {
return slash.Records{}
}
return append(bc.pendingSlashes[0:0], bc.pendingSlashes...)
}
func (bc *BlockChainImpl) ReadPendingCrossLinks() ([]types.CrossLink, error) {
cls := []types.CrossLink{}
bytes := []byte{}
if cached, ok := bc.pendingCrossLinksCache.Get(pendingCLCacheKey); ok {
cls = cached.([]types.CrossLink)
return cls, nil
} else {
by, err := rawdb.ReadPendingCrossLinks(bc.db)
if err != nil || len(by) == 0 {
return nil, err
}
bytes = by
}
if err := rlp.DecodeBytes(bytes, &cls); err != nil {
utils.Logger().Error().Err(err).Msg("Invalid pending crosslink RLP decoding")
return nil, err
}
bc.pendingCrossLinksCache.Add(pendingCLCacheKey, cls)
return cls, nil
}
func (bc *BlockChainImpl) CachePendingCrossLinks(crossLinks []types.CrossLink) error {
// deduplicate crosslinks if any
m := map[uint32]map[uint64]types.CrossLink{}
for _, cl := range crossLinks {
if _, ok := m[cl.ShardID()]; !ok {
m[cl.ShardID()] = map[uint64]types.CrossLink{}
}
m[cl.ShardID()][cl.BlockNum()] = cl
}
cls := []types.CrossLink{}
for _, m1 := range m {
for _, cl := range m1 {
cls = append(cls, cl)
}
}
utils.Logger().Debug().Msgf("[CachePendingCrossLinks] Before Dedup has %d cls, after Dedup has %d cls", len(crossLinks), len(cls))
bc.pendingCrossLinksCache.Add(pendingCLCacheKey, cls)
return nil
}
func (bc *BlockChainImpl) SavePendingCrossLinks() error {
if cached, ok := bc.pendingCrossLinksCache.Get(pendingCLCacheKey); ok {
cls := cached.([]types.CrossLink)
bytes, err := rlp.EncodeToBytes(cls)
if err != nil {
return err
}
if err := rawdb.WritePendingCrossLinks(bc.db, bytes); err != nil {
return err
}
}
return nil
}
func (bc *BlockChainImpl) AddPendingSlashingCandidates(
candidates slash.Records,
) error {
bc.pendingSlashingCandidatesMU.Lock()
defer bc.pendingSlashingCandidatesMU.Unlock()
current := bc.ReadPendingSlashingCandidates()
state, err := bc.State()
if err != nil {
return err
}
valid := slash.Records{}
for i := range candidates {
if err := slash.Verify(bc, state, &candidates[i]); err == nil {
valid = append(valid, candidates[i])
}
}
pendingSlashes := append(
bc.pendingSlashes, current.SetDifference(valid)...,
)
if l, c := len(pendingSlashes), len(current); l > maxPendingSlashes {
return errors.Wrapf(
errExceedMaxPendingSlashes, "current %d with-additional %d", c, l,
)
}
bc.pendingSlashes = pendingSlashes
return bc.writeSlashes(bc.pendingSlashes)
}
func (bc *BlockChainImpl) AddPendingCrossLinks(pendingCLs []types.CrossLink) (int, error) {
bc.pendingCrossLinksMutex.Lock()
defer bc.pendingCrossLinksMutex.Unlock()
cls, err := bc.ReadPendingCrossLinks()
if err != nil || len(cls) == 0 {
err := bc.CachePendingCrossLinks(pendingCLs)
return len(pendingCLs), err
}
cls = append(cls, pendingCLs...)
err = bc.CachePendingCrossLinks(cls)
return len(cls), err
}
func (bc *BlockChainImpl) DeleteFromPendingCrossLinks(crossLinks []types.CrossLink) (int, error) {
bc.pendingCrossLinksMutex.Lock()
defer bc.pendingCrossLinksMutex.Unlock()
cls, err := bc.ReadPendingCrossLinks()
if err != nil || len(cls) == 0 {
return 0, err
}
m := map[uint32]map[uint64]struct{}{}
for _, cl := range crossLinks {
if _, ok := m[cl.ShardID()]; !ok {
m[cl.ShardID()] = map[uint64]struct{}{}
}
m[cl.ShardID()][cl.BlockNum()] = struct{}{}
}
pendingCLs := []types.CrossLink{}
for _, cl := range cls {
if _, ok := m[cl.ShardID()]; ok {
if _, ok1 := m[cl.ShardID()][cl.BlockNum()]; ok1 {
continue
}
}
pendingCLs = append(pendingCLs, cl)
}
err = bc.CachePendingCrossLinks(pendingCLs)
return len(pendingCLs), err
}
func (bc *BlockChainImpl) IsSameLeaderAsPreviousBlock(block *types.Block) bool {
if IsEpochBlock(block) {
return false
}
previousHeader := bc.GetHeaderByNumber(block.NumberU64() - 1)
if previousHeader == nil {
return false
}
return block.Coinbase() == previousHeader.Coinbase()
}
func (bc *BlockChainImpl) GetVMConfig() *vm.Config {
return &bc.vmConfig
}
func (bc *BlockChainImpl) ReadCXReceipts(shardID uint32, blockNum uint64, blockHash common.Hash) (types.CXReceipts, error) {
cxs, err := rawdb.ReadCXReceipts(bc.db, shardID, blockNum, blockHash)
if err != nil || len(cxs) == 0 {
return nil, err
}
return cxs, nil
}
func (bc *BlockChainImpl) CXMerkleProof(toShardID uint32, block *block.Header) (*types.CXMerkleProof, error) {
proof := &types.CXMerkleProof{BlockNum: block.Number(), BlockHash: block.Hash(), ShardID: block.ShardID(), CXReceiptHash: block.OutgoingReceiptHash(), CXShardHashes: []common.Hash{}, ShardIDs: []uint32{}}
epoch := block.Epoch()
shardingConfig := shard.Schedule.InstanceForEpoch(epoch)
shardNum := int(shardingConfig.NumShards())
for i := 0; i < shardNum; i++ {
receipts, err := bc.ReadCXReceipts(uint32(i), block.NumberU64(), block.Hash())
if err != nil || len(receipts) == 0 {
continue
} else {
hash := types.DeriveSha(receipts)
proof.CXShardHashes = append(proof.CXShardHashes, hash)
proof.ShardIDs = append(proof.ShardIDs, uint32(i))
}
}
if len(proof.ShardIDs) == 0 {
return nil, nil
}
return proof, nil
}
func (bc *BlockChainImpl) WriteCXReceiptsProofSpent(db rawdb.DatabaseWriter, cxps []*types.CXReceiptsProof) error {
for _, cxp := range cxps {
if err := rawdb.WriteCXReceiptsProofSpent(db, cxp); err != nil {
return err
}
}
return nil
}
func (bc *BlockChainImpl) IsSpent(cxp *types.CXReceiptsProof) bool {
shardID := cxp.MerkleProof.ShardID
blockNum := cxp.MerkleProof.BlockNum.Uint64()
by, _ := rawdb.ReadCXReceiptsProofSpent(bc.db, shardID, blockNum)
return by == rawdb.SpentByte
}
func (bc *BlockChainImpl) ReadTxLookupEntry(txID common.Hash) (common.Hash, uint64, uint64) {
return rawdb.ReadTxLookupEntry(bc.db, txID)
}
func (bc *BlockChainImpl) ReadValidatorInformationAtRoot(
addr common.Address, root common.Hash,
) (*staking.ValidatorWrapper, error) {
state, err := bc.StateAt(root)
if err != nil || state == nil {
return nil, errors.Wrapf(err, "at root: %s", root.Hex())
}
return bc.ReadValidatorInformationAtState(addr, state)
}
func (bc *BlockChainImpl) ReadValidatorInformationAtState(
addr common.Address, state *state.DB,
) (*staking.ValidatorWrapper, error) {
if state == nil {
return nil, errors.New("empty state")
}
wrapper, err := state.ValidatorWrapper(addr, true, false)
if err != nil {
return nil, err
}
return wrapper, nil
}
func (bc *BlockChainImpl) ReadValidatorInformation(
addr common.Address,
) (*staking.ValidatorWrapper, error) {
return bc.ReadValidatorInformationAtRoot(addr, bc.CurrentBlock().Root())
}
func (bc *BlockChainImpl) ReadValidatorSnapshotAtEpoch(
epoch *big.Int,
addr common.Address,
) (*staking.ValidatorSnapshot, error) {
return rawdb.ReadValidatorSnapshot(bc.db, addr, epoch)
}
func (bc *BlockChainImpl) ReadValidatorSnapshot(
addr common.Address,
) (*staking.ValidatorSnapshot, error) {
epoch := bc.CurrentBlock().Epoch()
key := addr.Hex() + epoch.String()
if cached, ok := bc.validatorSnapshotCache.Get(key); ok {
return cached.(*staking.ValidatorSnapshot), nil
}
vs, err := rawdb.ReadValidatorSnapshot(bc.db, addr, epoch)
if err != nil {
return nil, err
}
bc.validatorSnapshotCache.Add(key, vs)
return vs, nil
}
func (bc *BlockChainImpl) WriteValidatorSnapshot(
batch rawdb.DatabaseWriter, snapshot *staking.ValidatorSnapshot,
) error {
// Batch write the current data as snapshot
if err := rawdb.WriteValidatorSnapshot(batch, snapshot.Validator, snapshot.Epoch); err != nil {
return err
}
// Update cache
key := snapshot.Validator.Address.Hex() + snapshot.Epoch.String()
bc.validatorSnapshotCache.Add(key, snapshot)
return nil
}
func (bc *BlockChainImpl) ReadValidatorStats(
addr common.Address,
) (*staking.ValidatorStats, error) {
return rawdb.ReadValidatorStats(bc.db, addr)
}
func UpdateValidatorVotingPower(
bc BlockChain,
block *types.Block,
newEpochSuperCommittee, currentEpochSuperCommittee *shard.State,
state *state.DB,
) (map[common.Address]*staking.ValidatorStats, error) {
if newEpochSuperCommittee == nil {
return nil, shard.ErrSuperCommitteeNil
}
validatorStats := map[common.Address]*staking.ValidatorStats{}
existing, replacing :=
currentEpochSuperCommittee.StakedValidators(),
newEpochSuperCommittee.StakedValidators()
// TODO could also keep track of the BLS keys which
// lost a slot because just losing slots doesn't mean that the
// validator was booted, just that some of their keys lost slots
for currentValidator := range existing.LookupSet {
if _, keptSlot := replacing.LookupSet[currentValidator]; !keptSlot {
// NOTE Think carefully about when time comes to delete offchain things
// TODO Someone: collect and then delete every 30 epochs
// rawdb.DeleteValidatorSnapshot(
// bc.db, currentValidator, currentEpochSuperCommittee.Epoch,
// )
// rawdb.DeleteValidatorStats(bc.db, currentValidator)
stats, err := rawdb.ReadValidatorStats(bc.ChainDb(), currentValidator)
if err != nil {
stats = staking.NewEmptyStats()
}
// This means it's already in staking epoch
if currentEpochSuperCommittee.Epoch != nil {
wrapper, err := state.ValidatorWrapper(currentValidator, true, false)
if err != nil {
return nil, err
}
if slash.IsBanned(wrapper) {
stats.BootedStatus = effective.BannedForDoubleSigning
} else if wrapper.Status == effective.Inactive {
stats.BootedStatus = effective.TurnedInactiveOrInsufficientUptime
} else {
stats.BootedStatus = effective.LostEPoSAuction
}
// compute APR for the exiting validators
if err := bc.ComputeAndUpdateAPR(
block, currentEpochSuperCommittee.Epoch, wrapper, stats,
); err != nil {
return nil, err
}
}
validatorStats[currentValidator] = stats
}
}
rosters := make([]*votepower.Roster, len(newEpochSuperCommittee.Shards))
for i := range newEpochSuperCommittee.Shards {
subCommittee := &newEpochSuperCommittee.Shards[i]
if newEpochSuperCommittee.Epoch == nil {
return nil, errors.Wrapf(
errNilEpoch,
"block epoch %v current-committee-epoch %v",
block.Epoch(),
currentEpochSuperCommittee.Epoch,
)
}
roster, err := votepower.Compute(subCommittee, newEpochSuperCommittee.Epoch)
if err != nil {
return nil, err
}
rosters[i] = roster
}
networkWide := votepower.AggregateRosters(rosters)
for key, value := range networkWide {
stats, err := rawdb.ReadValidatorStats(bc.ChainDb(), key)
if err != nil {
stats = staking.NewEmptyStats()
}
total := numeric.ZeroDec()
for i := range value {
total = total.Add(value[i].EffectiveStake)
}
stats.TotalEffectiveStake = total
earningWrapping := make([]staking.VoteWithCurrentEpochEarning, len(value))
for i := range value {
earningWrapping[i] = staking.VoteWithCurrentEpochEarning{
Vote: value[i],
Earned: big.NewInt(0),
}
}
stats.MetricsPerShard = earningWrapping
// fetch raw-stake from snapshot and update per-key metrics
if snapshot, err := bc.ReadValidatorSnapshotAtEpoch(
newEpochSuperCommittee.Epoch, key,
); err == nil {
spread := snapshot.RawStakePerSlot()
for i := range stats.MetricsPerShard {
stats.MetricsPerShard[i].Vote.RawStake = spread
}
}
// This means it's already in staking epoch, and
// compute APR for validators in current committee only
if currentEpochSuperCommittee.Epoch != nil {
if _, ok := existing.LookupSet[key]; ok {
wrapper, err := state.ValidatorWrapper(key, true, false)
if err != nil {
return nil, err
}
if err := bc.ComputeAndUpdateAPR(
block, currentEpochSuperCommittee.Epoch, wrapper, stats,
); err != nil {
return nil, err
}
}
}
validatorStats[key] = stats
}
return validatorStats, nil
}
func (bc *BlockChainImpl) ComputeAndUpdateAPR(
block *types.Block, now *big.Int,
wrapper *staking.ValidatorWrapper, stats *staking.ValidatorStats,
) error {
if aprComputed, err := apr.ComputeForValidator(
bc, block, wrapper,
); err != nil {
if errors.Cause(err) == apr.ErrInsufficientEpoch {
utils.Logger().Info().Err(err).Msg("apr could not be computed")
} else {
return err
}
} else {
// only insert if APR for current epoch does not exists
aprEntry := staking.APREntry{Epoch: now, Value: *aprComputed}
l := len(stats.APRs)
// first time inserting apr for validator or
// apr for current epoch does not exists
// check the last entry's epoch, if not same, insert
if l == 0 || stats.APRs[l-1].Epoch.Cmp(now) != 0 {
stats.APRs = append(stats.APRs, aprEntry)
}
// if history is more than staking.APRHistoryLength, pop front
if l > staking.APRHistoryLength {
stats.APRs = stats.APRs[1:]
}
}
return nil
}
func (bc *BlockChainImpl) UpdateValidatorSnapshots(
batch rawdb.DatabaseWriter, epoch *big.Int, state *state.DB, newValidators []common.Address,
) error {
// Note this is reading the validator list from last block.
// It's fine since the new validators from this block is already snapshot when created.
allValidators, err := bc.ReadValidatorList()
if err != nil {
return err
}
allValidators = append(allValidators, newValidators...)
// Read all validator's current data and snapshot them
for i := range allValidators {
// The snapshot will be captured in the state after the last epoch block is finalized
validator, err := state.ValidatorWrapper(allValidators[i], true, false)
if err != nil {
return err
}
snapshot := &staking.ValidatorSnapshot{Validator: validator, Epoch: epoch}
if err := bc.WriteValidatorSnapshot(batch, snapshot); err != nil {
return err
}
}
return nil
}
func (bc *BlockChainImpl) ReadValidatorList() ([]common.Address, error) {
if cached, ok := bc.validatorListCache.Get("validatorList"); ok {
m, ok := cached.([]common.Address)
if !ok {
return nil, errors.New("failed to get validator list")
}
return m, nil
}
return rawdb.ReadValidatorList(bc.db)
}
func (bc *BlockChainImpl) WriteValidatorList(
db rawdb.DatabaseWriter, addrs []common.Address,
) error {
if err := rawdb.WriteValidatorList(db, addrs); err != nil {
return err
}
bc.validatorListCache.Add("validatorList", addrs)
return nil
}
func (bc *BlockChainImpl) ReadDelegationsByDelegator(
delegator common.Address,
) (m staking.DelegationIndexes, err error) {
rawResult := staking.DelegationIndexes{}
if cached, ok := bc.validatorListByDelegatorCache.Get(string(delegator.Bytes())); ok {
by := cached.([]byte)
if err := rlp.DecodeBytes(by, &rawResult); err != nil {
return nil, err
}
} else {
if rawResult, err = rawdb.ReadDelegationsByDelegator(bc.db, delegator); err != nil {
return nil, err
}
}
blockNum := bc.CurrentBlock().Number()
for _, index := range rawResult {
if index.BlockNum.Cmp(blockNum) <= 0 {
m = append(m, index)
} else {
// Filter out index that's created beyond current height of chain.
// This only happens when there is a chain rollback.
utils.Logger().Warn().Msgf("Future delegation index encountered. Skip: %+v", index)
}
}
return m, nil
}
func (bc *BlockChainImpl) ReadDelegationsByDelegatorAt(
delegator common.Address, blockNum *big.Int,
) (m staking.DelegationIndexes, err error) {
rawResult := staking.DelegationIndexes{}
if cached, ok := bc.validatorListByDelegatorCache.Get(string(delegator.Bytes())); ok {
by := cached.([]byte)
if err := rlp.DecodeBytes(by, &rawResult); err != nil {
return nil, err
}
} else {
if rawResult, err = rawdb.ReadDelegationsByDelegator(bc.db, delegator); err != nil {
return nil, err
}
}
for _, index := range rawResult {
if index.BlockNum.Cmp(blockNum) <= 0 {
m = append(m, index)
} else {
// Filter out index that's created beyond current height of chain.
// This only happens when there is a chain rollback.
utils.Logger().Warn().Msgf("Future delegation index encountered. Skip: %+v", index)
}
}
return m, nil
}
// writeDelegationsByDelegator writes the list of validator addresses to database
func (bc *BlockChainImpl) writeDelegationsByDelegator(
batch rawdb.DatabaseWriter,
delegator common.Address,
indices []staking.DelegationIndex,
) error {
if err := rawdb.WriteDelegationsByDelegator(
batch, delegator, indices,
); err != nil {
return err
}
bytes, err := rlp.EncodeToBytes(indices)
if err == nil {
bc.validatorListByDelegatorCache.Add(string(delegator.Bytes()), bytes)
}
return nil
}
func (bc *BlockChainImpl) UpdateStakingMetaData(
batch rawdb.DatabaseWriter, block *types.Block,
stakeMsgs []staking.StakeMsg,
state *state.DB, epoch, newEpoch *big.Int,
) (newValidators []common.Address, err error) {
newValidators, newDelegations, err := bc.prepareStakingMetaData(block, stakeMsgs, state)
if err != nil {
utils.Logger().Warn().Msgf("oops, prepareStakingMetaData failed, err: %+v", err)
return newValidators, err
}
if len(newValidators) > 0 {
list, err := bc.ReadValidatorList()
if err != nil {
return newValidators, err
}
valMap := map[common.Address]struct{}{}
for _, addr := range list {
valMap[addr] = struct{}{}
}
newAddrs := []common.Address{}
for _, addr := range newValidators {
if _, ok := valMap[addr]; !ok {
newAddrs = append(newAddrs, addr)
}
// Update validator snapshot for the new validator
validator, err := state.ValidatorWrapper(addr, true, false)
if err != nil {
return newValidators, err
}
if err := bc.WriteValidatorSnapshot(batch, &staking.ValidatorSnapshot{Validator: validator, Epoch: epoch}); err != nil {
return newValidators, err
}
// For validator created at exactly the last block of an epoch, we should create the snapshot
// for next epoch too.
if newEpoch.Cmp(epoch) > 0 {
if err := bc.WriteValidatorSnapshot(batch, &staking.ValidatorSnapshot{Validator: validator, Epoch: newEpoch}); err != nil {
return newValidators, err
}
}
}
// Update validator list
list = append(list, newAddrs...)
if err = bc.WriteValidatorList(batch, list); err != nil {
return newValidators, err
}
}
for addr, delegations := range newDelegations {
if err := bc.writeDelegationsByDelegator(batch, addr, delegations); err != nil {
return newValidators, err
}
}
return newValidators, nil
}
// prepareStakingMetaData prepare the updates of validator's
// and the delegator's meta data according to staking transaction.
// The following return values are cached end state to be written to DB.
// The reason for the cached state is to solve the issue that batch DB changes
// won't be reflected immediately so the intermediary state can't be read from DB.
// newValidators - the addresses of the newly created validators
// newDelegations - the map of delegator address and their updated delegation indexes
func (bc *BlockChainImpl) prepareStakingMetaData(
block *types.Block, stakeMsgs []staking.StakeMsg, state *state.DB,
) ([]common.Address,
map[common.Address]staking.DelegationIndexes,
error,
) {
var newValidators []common.Address
newDelegations := map[common.Address]staking.DelegationIndexes{}
blockNum := block.Number()
for _, stakeMsg := range stakeMsgs {
if delegate, ok := stakeMsg.(*staking.Delegate); ok {
if err := processDelegateMetadata(delegate,
newDelegations,
state,
bc,
blockNum); err != nil {
return nil, nil, err
}
} else {
panic("Only *staking.Delegate stakeMsgs are supported at the moment")
}
}
for _, txn := range block.StakingTransactions() {
payload, err := txn.RLPEncodeStakeMsg()
if err != nil {
return nil, nil, err
}
decodePayload, err := staking.RLPDecodeStakeMsg(payload, txn.StakingType())
if err != nil {
return nil, nil, err
}
switch txn.StakingType() {
case staking.DirectiveCreateValidator:
createValidator := decodePayload.(*staking.CreateValidator)
newList, appended := utils.AppendIfMissing(
newValidators, createValidator.ValidatorAddress,
)
if !appended {
return nil, nil, errValidatorExist
}
newValidators = newList
// Add self delegation into the index
selfIndex := staking.DelegationIndex{
ValidatorAddress: createValidator.ValidatorAddress,
Index: uint64(0),
BlockNum: blockNum,
}
delegations, ok := newDelegations[createValidator.ValidatorAddress]
if !ok {
// If the cache doesn't have it, load it from DB for the first time.
delegations, err = bc.ReadDelegationsByDelegator(createValidator.ValidatorAddress)
if err != nil {
return nil, nil, err
}
}
delegations = append(delegations, selfIndex)
newDelegations[createValidator.ValidatorAddress] = delegations
case staking.DirectiveEditValidator:
case staking.DirectiveDelegate:
delegate := decodePayload.(*staking.Delegate)
if err := processDelegateMetadata(delegate,
newDelegations,
state,
bc,
blockNum); err != nil {
return nil, nil, err
}
case staking.DirectiveUndelegate:
case staking.DirectiveCollectRewards:
default:
}
}
return newValidators, newDelegations, nil
}
func processDelegateMetadata(delegate *staking.Delegate,
newDelegations map[common.Address]staking.DelegationIndexes,
state *state.DB, bc *BlockChainImpl, blockNum *big.Int,
) (err error) {
delegations, ok := newDelegations[delegate.DelegatorAddress]
if !ok {
// If the cache doesn't have it, load it from DB for the first time.
delegations, err = bc.ReadDelegationsByDelegator(delegate.DelegatorAddress)
if err != nil {
return err
}
}
if delegations, err = bc.addDelegationIndex(
delegations, delegate.DelegatorAddress, delegate.ValidatorAddress, state, blockNum,
); err != nil {
return err
}
newDelegations[delegate.DelegatorAddress] = delegations
return nil
}
func (bc *BlockChainImpl) ReadBlockRewardAccumulator(number uint64) (*big.Int, error) {
if !bc.chainConfig.IsStaking(shard.Schedule.CalcEpochNumber(number)) {
return big.NewInt(0), nil
}
if cached, ok := bc.blockAccumulatorCache.Get(number); ok {
return cached.(*big.Int), nil
}
return rawdb.ReadBlockRewardAccumulator(bc.db, number)
}
func (bc *BlockChainImpl) WriteBlockRewardAccumulator(
batch rawdb.DatabaseWriter, reward *big.Int, number uint64,
) error {
if err := rawdb.WriteBlockRewardAccumulator(
batch, reward, number,
); err != nil {
return err
}
bc.blockAccumulatorCache.Add(number, reward)
return nil
}
func (bc *BlockChainImpl) UpdateBlockRewardAccumulator(
batch rawdb.DatabaseWriter, diff *big.Int, number uint64,
) error {
current, err := bc.ReadBlockRewardAccumulator(number - 1)
if err != nil {
// one-off fix for pangaea, return after pangaea enter staking.
current = big.NewInt(0)
bc.WriteBlockRewardAccumulator(batch, current, number)
}
return bc.WriteBlockRewardAccumulator(batch, new(big.Int).Add(current, diff), number)
}
// Note this should read from the state of current block in concern (root == newBlock.root)
func (bc *BlockChainImpl) addDelegationIndex(
delegations staking.DelegationIndexes,
delegatorAddress, validatorAddress common.Address, state *state.DB, blockNum *big.Int,
) (staking.DelegationIndexes, error) {
// If there is an existing delegation, just return
validatorAddressBytes := validatorAddress.Bytes()
for _, delegation := range delegations {
if bytes.Equal(delegation.ValidatorAddress[:], validatorAddressBytes[:]) {
return delegations, nil
}
}
// Found the delegation from state and add the delegation index
// Note this should read from the state of current block in concern
wrapper, err := state.ValidatorWrapper(validatorAddress, true, false)
if err != nil {
return delegations, err
}
for i := range wrapper.Delegations {
if bytes.Equal(
wrapper.Delegations[i].DelegatorAddress[:], delegatorAddress[:],
) {
// TODO(audit): change the way of indexing if we allow delegation deletion.
delegations = append(delegations, staking.DelegationIndex{
ValidatorAddress: validatorAddress,
Index: uint64(i),
BlockNum: blockNum,
})
}
}
return delegations, nil
}
func (bc *BlockChainImpl) ValidatorCandidates() []common.Address {
list, err := bc.ReadValidatorList()
if err != nil {
return make([]common.Address, 0)
}
return list
}
func (bc *BlockChainImpl) DelegatorsInformation(addr common.Address) []*staking.Delegation {
return make([]*staking.Delegation, 0)
}
// TODO: optimize this func by adding cache etc.
func (bc *BlockChainImpl) GetECDSAFromCoinbase(header *block.Header) (common.Address, error) {
// backward compatibility: before isStaking epoch, coinbase address is the ecdsa address
coinbase := header.Coinbase()
isStaking := bc.Config().IsStaking(header.Epoch())
if !isStaking {
return coinbase, nil
}
shardState, err := bc.ReadShardState(header.Epoch())
if err != nil {
return common.Address{}, errors.Wrapf(
err, "cannot read shard state",
)
}
committee, err := shardState.FindCommitteeByID(header.ShardID())
if err != nil {
return common.Address{}, errors.Wrapf(
err, "cannot find shard in the shard state",
)
}
for _, member := range committee.Slots {
// After staking the coinbase address will be the address of bls public key
if bytes.Equal(member.EcdsaAddress[:], coinbase[:]) {
return member.EcdsaAddress, nil
}
if utils.GetAddressFromBLSPubKeyBytes(member.BLSPublicKey[:]) == coinbase {
return member.EcdsaAddress, nil
}
}
return common.Address{}, errors.Errorf(
"cannot find corresponding ECDSA Address for coinbase %s",
header.Coinbase().Hash().Hex(),
)
}
func (bc *BlockChainImpl) SuperCommitteeForNextEpoch(
beacon consensus_engine.ChainReader,
header *block.Header,
isVerify bool,
) (*shard.State, error) {
var (
nextCommittee = new(shard.State)
err error
beaconEpoch = new(big.Int)
shardState = shard.State{}
)
switch header.ShardID() {
case shard.BeaconChainShardID:
if shard.Schedule.IsLastBlock(header.Number().Uint64()) {
nextCommittee, err = committee.WithStakingEnabled.Compute(
new(big.Int).Add(header.Epoch(), common.Big1),
beacon,
)
}
default:
// TODO: needs to make sure beacon chain sync works.
if isVerify {
//verify
shardState, err = header.GetShardState()
if err != nil {
return &shard.State{}, err
}
// before staking epoch
if shardState.Epoch == nil {
beaconEpoch = new(big.Int).Add(header.Epoch(), common.Big1)
} else { // after staking epoch
beaconEpoch = shardState.Epoch
}
} else {
//propose
h := beacon.CurrentHeader()
if h.IsLastBlockInEpoch() {
beaconEpoch = beacon.CurrentHeader().Epoch()
beaconEpoch = beaconEpoch.Add(beaconEpoch, common.Big1)
} else {
beaconEpoch = beacon.CurrentHeader().Epoch()
}
}
utils.Logger().Debug().Msgf("[SuperCommitteeCalculation] isVerify: %+v, realBeaconEpoch:%+v, beaconEpoch: %+v, headerEpoch:%+v, shardStateEpoch:%+v",
isVerify, beacon.CurrentHeader().Epoch(), beaconEpoch, header.Epoch(), shardState.Epoch)
nextEpoch := new(big.Int).Add(header.Epoch(), common.Big1)
if bc.Config().IsStaking(nextEpoch) {
// If next epoch is staking epoch, I should wait and listen for beacon chain for epoch changes
switch beaconEpoch.Cmp(header.Epoch()) {
case 1:
// If beacon chain is bigger than shard chain in epoch, it means I should catch up with beacon chain now
nextCommittee, err = committee.WithStakingEnabled.ReadFromDB(
beaconEpoch, beacon,
)
utils.Logger().Debug().
Uint64("blockNum", header.Number().Uint64()).
Uint64("myCurEpoch", header.Epoch().Uint64()).
Uint64("beaconEpoch", beaconEpoch.Uint64()).
Msg("Propose new epoch as beacon chain's epoch")
case 0:
// If it's same epoch, no need to propose new shard state (new epoch change)
case -1:
// If beacon chain is behind, shard chain should wait for the beacon chain by not changing epochs.
}
} else {
if bc.Config().IsStaking(beaconEpoch) {
// If I am not even in the last epoch before staking epoch and beacon chain is already in staking epoch,
// I should just catch up with beacon chain's epoch
nextCommittee, err = committee.WithStakingEnabled.ReadFromDB(
beaconEpoch, beacon,
)
utils.Logger().Debug().
Uint64("blockNum", header.Number().Uint64()).
Uint64("myCurEpoch", header.Epoch().Uint64()).
Uint64("beaconEpoch", beaconEpoch.Uint64()).
Msg("Propose entering staking along with beacon chain's epoch")
} else {
// If I are not in staking nor has beacon chain proposed a staking-based shard state,
// do pre-staking committee calculation
if shard.Schedule.IsLastBlock(header.Number().Uint64()) {
nextCommittee, err = committee.WithStakingEnabled.Compute(
nextEpoch,
bc,
)
}
}
}
}
return nextCommittee, err
}
// GetLeaderPubKeyFromCoinbase retrieve corresponding blsPublicKey from Coinbase Address
func (bc *BlockChainImpl) GetLeaderPubKeyFromCoinbase(h *block.Header) (*bls.PublicKeyWrapper, error) {
if cached, ok := bc.leaderPubKeyFromCoinbase.Get(h.Number().Uint64()); ok {
return cached.(*bls.PublicKeyWrapper), nil
}
rs, err := bc.getLeaderPubKeyFromCoinbase(h)
if err != nil {
return nil, err
}
bc.leaderPubKeyFromCoinbase.Add(h.Number().Uint64(), rs)
return rs, nil
}
// getLeaderPubKeyFromCoinbase retrieve corresponding blsPublicKey from Coinbase Address
func (bc *BlockChainImpl) getLeaderPubKeyFromCoinbase(h *block.Header) (*bls.PublicKeyWrapper, error) {
shardState, err := bc.ReadShardState(h.Epoch())
if err != nil {
return nil, errors.Wrapf(err, "cannot read shard state %v %s",
h.Epoch(),
h.Coinbase().Hash().Hex(),
)
}
committee, err := shardState.FindCommitteeByID(h.ShardID())
if err != nil {
return nil, err
}
committerKey := new(bls2.PublicKey)
isStaking := bc.Config().IsStaking(h.Epoch())
for _, member := range committee.Slots {
if isStaking {
// After staking the coinbase address will be the address of bls public key
if utils.GetAddressFromBLSPubKeyBytes(member.BLSPublicKey[:]) == h.Coinbase() {
if committerKey, err = bls.BytesToBLSPublicKey(member.BLSPublicKey[:]); err != nil {
return nil, err
}
return &bls.PublicKeyWrapper{Object: committerKey, Bytes: member.BLSPublicKey}, nil
}
} else {
if member.EcdsaAddress == h.Coinbase() {
if committerKey, err = bls.BytesToBLSPublicKey(member.BLSPublicKey[:]); err != nil {
return nil, err
}
return &bls.PublicKeyWrapper{Object: committerKey, Bytes: member.BLSPublicKey}, nil
}
}
}
return nil, errors.Errorf(
"cannot find corresponding BLS Public Key coinbase %s",
h.Coinbase().Hex(),
)
}
func (bc *BlockChainImpl) EnablePruneBeaconChainFeature() {
bc.pruneBeaconChainEnable = true
}
func (bc *BlockChainImpl) IsEnablePruneBeaconChainFeature() bool {
return bc.pruneBeaconChainEnable
}
// SyncFromTiKVWriter used for tikv mode, all reader or follower writer used to sync block from master writer
func (bc *BlockChainImpl) SyncFromTiKVWriter(newBlkNum uint64, logs []*types.Log) error {
head := rawdb.ReadHeadBlockHash(bc.db)
dbBlock := bc.GetBlockByHash(head)
currentBlock := bc.CurrentBlock()
if dbBlock == nil || currentBlock == nil {
return nil
}
currentBlockNum := currentBlock.NumberU64()
if currentBlockNum < newBlkNum {
start := time.Now()
for i := currentBlockNum; i <= newBlkNum; i++ {
blk := bc.GetBlockByNumber(i)
if blk == nil {
// cluster synchronization may be in progress
utils.Logger().Warn().
Uint64("currentBlockNum", i).
Msg("[tikv sync] sync from writer got block nil, cluster synchronization may be in progress")
return nil
}
err := bc.tikvFastForward(blk, logs)
if err != nil {
return err
}
}
utils.Logger().Info().
Uint64("currentBlockNum", currentBlockNum).
Dur("usedTime", time.Now().Sub(start)).
Msg("[tikv sync] sync from writer")
}
return nil
}
// tikvCleanCache used for tikv mode, clean block tire data from redis
func (bc *BlockChainImpl) tikvCleanCache() {
var count int
for to := range bc.cleanCacheChan {
for i := bc.latestCleanCacheNum + 1; i <= to; i++ {
// build previous block statedb
fromBlock := bc.GetBlockByNumber(i)
fromTrie, err := state.New(fromBlock.Root(), bc.stateCache, bc.snaps)
if err != nil {
continue
}
// build current block statedb
toBlock := bc.GetBlockByNumber(i + 1)
toTrie, err := state.New(toBlock.Root(), bc.stateCache, bc.snaps)
if err != nil {
continue
}
// diff two statedb and delete redis cache
start := time.Now()
count, err = fromTrie.DiffAndCleanCache(bc.ShardID(), toTrie)
if err != nil {
utils.Logger().Warn().
Err(err).
Msg("[tikv clean cache] error")
break
}
utils.Logger().Info().
Uint64("blockNum", i).
Int("removeCacheEntriesCount", count).
Dur("usedTime", time.Now().Sub(start)).
Msg("[tikv clean cache] success")
bc.latestCleanCacheNum = i
}
}
}
func (bc *BlockChainImpl) isInitTiKV() bool {
return bc.redisPreempt != nil
}
// tikvPreemptMaster used for tikv mode, writer node need preempt master or come be a follower
func (bc *BlockChainImpl) tikvPreemptMaster(fromBlock, toBlock uint64) bool {
for {
// preempt master
lockType, _ := bc.redisPreempt.TryLock(60)
switch lockType {
case redis_helper.LockResultRenewalSuccess:
return true
case redis_helper.LockResultSuccess:
// first to master
bc.validatorListByDelegatorCache.Purge()
return true
}
// follower
if bc.CurrentBlock().NumberU64() >= toBlock {
return false
}
time.Sleep(time.Second)
}
}
// rangeBlock get the block range of blocks
func (bc *BlockChainImpl) rangeBlock(blocks types.Blocks) (uint64, uint64) {
if len(blocks) == 0 {
return 0, 0
}
max := blocks[0].NumberU64()
min := max
for _, tmpBlock := range blocks {
if tmpBlock.NumberU64() > max {
max = tmpBlock.NumberU64()
} else if tmpBlock.NumberU64() < min {
min = tmpBlock.NumberU64()
}
}
return min, max
}
// RedisPreempt used for tikv mode, get the redis preempt instance
func (bc *BlockChainImpl) RedisPreempt() *redis_helper.RedisPreempt {
if bc == nil {
return nil
}
return bc.redisPreempt
}
func (bc *BlockChainImpl) IsTikvWriterMaster() bool {
if bc == nil || bc.redisPreempt == nil {
return false
}
return bc.redisPreempt.LastLockStatus()
}
// InitTiKV used for tikv mode, init the tikv mode
func (bc *BlockChainImpl) InitTiKV(conf *harmonyconfig.TiKVConfig) {
bc.cleanCacheChan = make(chan uint64, 10)
if conf.Role == tikv.RoleWriter {
// only writer need preempt permission
bc.redisPreempt = redis_helper.CreatePreempt(fmt.Sprintf("shard_%d_preempt", bc.ShardID()))
}
if conf.Debug {
// used for init redis cache
// If redis is empty, the hit rate will be too low and the synchronization block speed will be slow
// set LOAD_PRE_FETCH is yes can significantly improve this.
if os.Getenv("LOAD_PRE_FETCH") == "yes" {
if trie, err := state.New(bc.CurrentBlock().Root(), bc.stateCache, bc.snaps); err == nil {
trie.Prefetch(512)
} else {
log.Println("LOAD_PRE_FETCH ERR: ", err)
}
}
// If redis is empty, there is no need to clear the cache of nearly 1000 blocks
// set CLEAN_INIT is the latest block num can skip slow and unneeded cleanup process
if os.Getenv("CLEAN_INIT") != "" {
from, err := strconv.Atoi(os.Getenv("CLEAN_INIT"))
if err == nil {
bc.latestCleanCacheNum = uint64(from)
}
}
}
// start clean block tire data process
go bc.tikvCleanCache()
}
var (
leveldbErrSpec = "leveldb"
tooManyOpenFilesErrStr = "Too many open files"
)
// isUnrecoverableErr check whether the input error is not recoverable.
// When writing db, there could be some possible errors from storage level (leveldb).
// Known possible leveldb errors are:
// 1. Leveldb is already closed. (leveldb.ErrClosed)
// 2. ldb file missing from disk. (leveldb.ErrNotFound)
// 3. Corrupted db data. (leveldb.errors.ErrCorrupted)
// 4. OS error when open file (too many open files, ...)
// 5. OS error when write file (read-only, not enough disk space, ...)
//
// Among all the above leveldb errors, only `too many open files` error is known to be recoverable,
// thus the unrecoverable errors refers to error that is
// 1. The error is from the lower storage level (from module leveldb)
// 2. The error is not too many files error.
func isUnrecoverableErr(err error) bool {
isLeveldbErr := strings.Contains(err.Error(), leveldbErrSpec)
isTooManyOpenFiles := strings.Contains(err.Error(), tooManyOpenFilesErrStr)
return isLeveldbErr && !isTooManyOpenFiles
}