The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/core/tx_pool_test.go

1611 lines
55 KiB

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"crypto/ecdsa"
"fmt"
"math/big"
"math/rand"
"os"
"sync/atomic"
"testing"
"time"
"github.com/woop-chain/woop/core/rawdb"
"github.com/woop-chain/woop/crypto/bls"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/event"
bls_core "github.com/woop-chain/bls/ffi/go/bls"
blockfactory "github.com/woop-chain/woop/block/factory"
"github.com/woop-chain/woop/common/denominations"
"github.com/woop-chain/woop/core/state"
"github.com/woop-chain/woop/core/types"
"github.com/woop-chain/woop/core/vm"
"github.com/woop-chain/woop/crypto/hash"
chain2 "github.com/woop-chain/woop/internal/chain"
"github.com/woop-chain/woop/internal/params"
"github.com/woop-chain/woop/numeric"
staking "github.com/woop-chain/woop/staking/types"
)
var (
// testTxPoolConfig is a transaction pool configuration without stateful disk sideeffects used during testing.
testTxPoolConfig TxPoolConfig
testBLSPubKey = "30b2c38b1316da91e068ac3bd8751c0901ef6c02a1d58bc712104918302c6ed03d5894671d0c816dad2b4d303320f202"
testBLSPrvKey = "c6d7603520311f7a4e6aac0b26701fc433b75b38df504cd416ef2b900cd66205"
gasPrice = big.NewInt(100e9)
gasLimit = big.NewInt(int64(params.TxGasValidatorCreation))
cost = big.NewInt(1).Mul(gasPrice, gasLimit)
dummyErrorSink = types.NewTransactionErrorSink()
)
func init() {
testTxPoolConfig = DefaultTxPoolConfig
testTxPoolConfig.Journal = ""
}
type testBlockChain struct {
statedb *state.DB
gasLimit uint64
chainHeadFeed *event.Feed
}
func (bc *testBlockChain) SetGasLimit(value uint64) {
atomic.StoreUint64(&bc.gasLimit, value)
}
func (bc *testBlockChain) CurrentBlock() *types.Block {
return types.NewBlock(blockfactory.NewTestHeader().With().
GasLimit(atomic.LoadUint64(&bc.gasLimit)).
Header(), nil, nil, nil, nil, nil)
}
func (bc *testBlockChain) GetBlock(hash common.Hash, number uint64) *types.Block {
return bc.CurrentBlock()
}
func (bc *testBlockChain) StateAt(common.Hash) (*state.DB, error) {
return bc.statedb, nil
}
func (bc *testBlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription {
return bc.chainHeadFeed.Subscribe(ch)
}
// TODO: more staking tests in tx pool & testing lib
func stakingCreateValidatorTransaction(key *ecdsa.PrivateKey) (*staking.StakingTransaction, error) {
stakePayloadMaker := func() (staking.Directive, interface{}) {
p := &bls_core.PublicKey{}
p.DeserializeHexStr(testBLSPubKey)
pub := bls.SerializedPublicKey{}
pub.FromLibBLSPublicKey(p)
messageBytes := []byte(staking.BLSVerificationStr)
privateKey := &bls_core.SecretKey{}
privateKey.DeserializeHexStr(testBLSPrvKey)
msgHash := hash.Keccak256(messageBytes)
signature := privateKey.SignHash(msgHash[:])
var sig bls.SerializedSignature
copy(sig[:], signature.Serialize())
ra, _ := numeric.NewDecFromStr("0.7")
maxRate, _ := numeric.NewDecFromStr("1")
maxChangeRate, _ := numeric.NewDecFromStr("0.5")
return staking.DirectiveCreateValidator, staking.CreateValidator{
Description: staking.Description{
Name: "SuperHero",
Identity: "YouWouldNotKnow",
Website: "Secret Website",
SecurityContact: "LicenseToKill",
Details: "blah blah blah",
},
CommissionRates: staking.CommissionRates{
Rate: ra,
MaxRate: maxRate,
MaxChangeRate: maxChangeRate,
},
MinSelfDelegation: tenKOnes,
MaxTotalDelegation: twelveKOnes,
ValidatorAddress: crypto.PubkeyToAddress(key.PublicKey),
SlotPubKeys: []bls.SerializedPublicKey{pub},
SlotKeySigs: []bls.SerializedSignature{sig},
Amount: tenKOnes,
}
}
gasPrice := big.NewInt(100e9)
tx, _ := staking.NewStakingTransaction(0, 1e10, gasPrice, stakePayloadMaker)
return staking.Sign(tx, staking.NewEIP155Signer(tx.ChainID()), key)
}
func transaction(shardID uint32, nonce uint64, gaslimit uint64, key *ecdsa.PrivateKey) types.PoolTransaction {
return pricedTransaction(shardID, nonce, gaslimit, big.NewInt(100e9), key)
}
func pricedTransaction(shardID uint32, nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) types.PoolTransaction {
signedTx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, shardID, big.NewInt(100000000000), gaslimit, gasprice, nil), types.HomesteadSigner{}, key)
return signedTx
}
func createBlockChain() *BlockChainImpl {
key, _ := crypto.GenerateKey()
gspec := Genesis{
Config: params.TestChainConfig,
Factory: blockfactory.ForTest,
Alloc: GenesisAlloc{
crypto.PubkeyToAddress(key.PublicKey): {
Balance: big.NewInt(8e18),
},
},
GasLimit: 1e18,
ShardID: 0,
}
database := rawdb.NewMemoryDatabase()
genesis := gspec.MustCommit(database)
_ = genesis
engine := chain2.NewEngine()
cacheConfig := &CacheConfig{SnapshotLimit: 0}
blockchain, _ := NewBlockChain(database, nil, nil, cacheConfig, gspec.Config, engine, vm.Config{})
return blockchain
}
func setupTxPool(chain blockChain) (*TxPool, *ecdsa.PrivateKey) {
if chain == nil {
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
chain = &testBlockChain{statedb, 1e18, new(event.Feed)}
}
key, _ := crypto.GenerateKey()
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, chain, dummyErrorSink)
return pool, key
}
// validateTxPoolInternals checks various consistency invariants within the pool.
func validateTxPoolInternals(pool *TxPool) error {
pool.mu.RLock()
defer pool.mu.RUnlock()
// Ensure the total transaction set is consistent with pending + queued
pending, queued := pool.stats()
if total := pool.all.Count(); total != pending+queued {
return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued)
}
if priced := pool.priced.items.Len() - pool.priced.stales; priced != pending+queued {
return fmt.Errorf("total priced transaction count %d != %d pending + %d queued", priced, pending, queued)
}
// Ensure the next nonce to assign is the correct one
for addr, txs := range pool.pending {
// Find the last transaction
var last uint64
for nonce := range txs.txs.items {
if last < nonce {
last = nonce
}
}
if nonce := pool.pendingState.GetNonce(addr); nonce != last+1 {
return fmt.Errorf("pending nonce mismatch: have %v, want %v", nonce, last+1)
}
}
return nil
}
func deriveSender(tx types.PoolTransaction) (common.Address, error) {
return tx.SenderAddress()
}
type testChain struct {
*testBlockChain
address common.Address
trigger *bool
}
// testChain.State() is used multiple times to reset the pending state.
// when simulate is true it will create a state that indicates
// that tx0 and tx1 are included in the chain.
func (c *testChain) State() (*state.DB, error) {
// delay "state change" by one. The tx pool fetches the
// state multiple times and by delaying it a bit we simulate
// a state change between those fetches.
stdb := c.statedb
if *c.trigger {
c.statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
// simulate that the new head block included tx0 and tx1
c.statedb.SetNonce(c.address, 2)
c.statedb.SetBalance(c.address, new(big.Int).SetUint64(denominations.One))
*c.trigger = false
}
return stdb, nil
}
// This test simulates a scenario where a new block is imported during a
// state reset and tests whether the pending state is in sync with the
// block head event that initiated the resetState().
func TestStateChangeDuringTransactionPoolReset(t *testing.T) {
t.Parallel()
var (
key, _ = crypto.GenerateKey()
address = crypto.PubkeyToAddress(key.PublicKey)
statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
trigger = false
)
// setup pool with 2 transaction in it
statedb.SetBalance(address, new(big.Int).SetUint64(denominations.One))
blockchain := &testChain{&testBlockChain{statedb, 1000000000, new(event.Feed)}, address, &trigger}
tx0 := transaction(0, 0, 100000, key)
tx1 := transaction(0, 1, 100000, key)
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain, dummyErrorSink)
defer pool.Stop()
nonce := pool.State().GetNonce(address)
if nonce != 0 {
t.Fatalf("Invalid nonce, want 0, got %d", nonce)
}
pool.AddRemotes(types.PoolTransactions{tx0, tx1})
nonce = pool.State().GetNonce(address)
if nonce != 2 {
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
}
// trigger state change in the background
trigger = true
pool.lockedReset(nil, nil)
_, err := pool.Pending()
if err != nil {
t.Fatalf("Could not fetch pending transactions: %v", err)
}
nonce = pool.State().GetNonce(address)
if nonce != 2 {
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
}
}
func TestInvalidTransactions(t *testing.T) {
t.Parallel()
pool, key := setupTxPool(nil)
defer pool.Stop()
tx := transaction(0, 0, 100, key)
from, _ := deriveSender(tx)
pool.currentState.AddBalance(from, big.NewInt(1))
if err := pool.AddRemote(tx); err != ErrInsufficientFunds {
t.Error("expected", ErrInsufficientFunds)
}
balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(new(big.Int).SetUint64(tx.GasLimit()), tx.GasPrice()))
pool.currentState.AddBalance(from, balance)
if err := pool.AddRemote(tx); err != ErrIntrinsicGas {
t.Error("expected", ErrIntrinsicGas, "got", err)
}
pool.currentState.SetNonce(from, 1)
pool.currentState.AddBalance(from, big.NewInt(0xffffffffffffff))
tx = transaction(0, 0, 100000, key)
if err := pool.AddRemote(tx); err != ErrNonceTooLow {
t.Error("expected", ErrNonceTooLow)
}
tx = transaction(0, 1, 100000, key)
pool.gasPrice = big.NewInt(300000000000)
if err := pool.AddRemote(tx); err != ErrUnderpriced {
t.Error("expected", ErrUnderpriced, "got", err)
}
if err := pool.AddLocal(tx); err != nil {
t.Error("expected", nil, "got", err)
}
tx = transaction(1, 0, 100, key)
if err := pool.AddRemote(tx); err != ErrInvalidShard {
t.Error("expected", ErrInvalidShard, "got", err)
}
}
func TestErrorSink(t *testing.T) {
t.Parallel()
pool, key := setupTxPool(createBlockChain())
defer pool.Stop()
testTxErrorSink := types.NewTransactionErrorSink()
pool.txErrorSink = testTxErrorSink
tx := transaction(0, 0, 100, key)
from, _ := deriveSender(tx)
stxKey, _ := crypto.GenerateKey()
stx, err := stakingCreateValidatorTransaction(stxKey)
if err != nil {
t.Errorf("cannot create new staking transaction, %v\n", err)
}
fromStx, _ := stx.SenderAddress()
pool.currentState.SetNonce(from, 1)
pool.currentState.AddBalance(from, big.NewInt(0xffffffffffffff))
tx = transaction(0, 0, 100000, key)
if err := pool.AddRemote(tx); err != ErrNonceTooLow {
t.Error("expected", ErrNonceTooLow)
}
if !testTxErrorSink.Contains(tx.Hash().String()) {
t.Error("expected errored transaction in tx pool")
}
pool.currentState.SetNonce(from, 0)
tx = transaction(0, 0, 100000, key)
if err := pool.AddRemote(tx); err != nil {
t.Error("expected successful transaction got", err)
}
if testTxErrorSink.Contains(tx.Hash().String()) {
t.Error("expected successful transaction to not be in error sink")
}
pool.currentState.SetNonce(from, 2)
tx = transaction(0, 2, 100000, key)
pool.currentState.SetBalance(from, big.NewInt(0x0))
pool.currentState.SetBalance(fromStx, big.NewInt(0x0))
if err := pool.AddRemote(tx); err != ErrInsufficientFunds {
t.Error("expected", ErrInsufficientFunds)
}
if err := pool.AddRemote(stx); err != ErrInsufficientFunds {
t.Error("expected", ErrInsufficientFunds)
}
if !testTxErrorSink.Contains(tx.Hash().String()) {
t.Error("expected errored transaction in tx pool")
}
if !testTxErrorSink.Contains(stx.Hash().String()) {
t.Error("expected errored transaction in tx pool")
}
pool.currentState.SetBalance(from, twelveKOnes)
pool.currentState.SetBalance(fromStx, twelveKOnes)
if err := pool.AddRemote(tx); err != nil {
t.Error("expected successful transaction got", err)
}
if err := pool.AddRemote(stx); err != nil {
t.Error("expected successful transaction got", err)
}
if testTxErrorSink.Contains(tx.Hash().String()) {
t.Error("expected successful transaction to not be in error sink")
}
if testTxErrorSink.Contains(stx.Hash().String()) {
t.Error("expected successful transaction to not be in error sink")
}
}
func TestCreateValidatorTransaction(t *testing.T) {
t.Parallel()
pool, _ := setupTxPool(createBlockChain())
defer pool.Stop()
fromKey, _ := crypto.GenerateKey()
stx, err := stakingCreateValidatorTransaction(fromKey)
if err != nil {
t.Errorf("cannot create new staking transaction, %v\n", err)
}
senderAddr, _ := stx.SenderAddress()
pool.currentState.AddBalance(senderAddr, hundredKOnes)
// Add additional create validator tx cost
pool.currentState.AddBalance(senderAddr, cost)
if err = pool.AddRemote(stx); err != nil {
t.Error(err.Error())
}
if pool.pending[senderAddr] == nil || pool.pending[senderAddr].Len() != 1 {
t.Error("Expected 1 pending transaction")
}
}
func TestMixedTransactions(t *testing.T) {
t.Parallel()
pool, _ := setupTxPool(createBlockChain())
defer pool.Stop()
fromKey, _ := crypto.GenerateKey()
stx, err := stakingCreateValidatorTransaction(fromKey)
if err != nil {
t.Errorf("cannot create new staking transaction, %v\n", err)
}
stxAddr, _ := stx.SenderAddress()
pool.currentState.AddBalance(stxAddr, hundredKOnes)
// Add additional create validator tx cost
pool.currentState.AddBalance(stxAddr, cost)
goodFromKey, _ := crypto.GenerateKey()
tx := transaction(0, 0, 25000, goodFromKey)
txAddr, _ := deriveSender(tx)
pool.currentState.AddBalance(txAddr, big.NewInt(5_010_000e9)) // 50100000000000 original value
errs := pool.AddRemotes(types.PoolTransactions{stx, tx})
for _, err := range errs {
if err != nil {
t.Error(err)
}
}
if pool.pending[stxAddr] == nil || pool.pending[stxAddr].Len() != 1 {
t.Error("Expected 1 pending transaction")
}
}
func TestBlacklistedTransactions(t *testing.T) {
// DO NOT parallelize, test will add accounts to tx pool config.
// Create the pool
pool, _ := setupTxPool(nil)
defer pool.Stop()
// Create testing keys
bannedFromKey, _ := crypto.GenerateKey()
goodFromKey, _ := crypto.GenerateKey()
// Create testing transactions
badTx := transaction(0, 0, 25000, bannedFromKey)
goodTx := transaction(0, 0, 25000, goodFromKey)
bannedFromAcc, _ := deriveSender(badTx)
bannedToAcc := *badTx.To()
goodFromAcc, _ := deriveSender(goodTx)
// Fund from accounts
pool.currentState.AddBalance(bannedFromAcc, big.NewInt(15030000000000000))
pool.currentState.AddBalance(goodFromAcc, big.NewInt(15030000000000000))
DefaultTxPoolConfig.Blacklist[bannedToAcc] = struct{}{}
err := pool.AddRemotes(types.PoolTransactions{badTx})
if err[0] != ErrBlacklistTo {
t.Error("expected", ErrBlacklistTo, "got", err[0])
}
delete(DefaultTxPoolConfig.Blacklist, bannedToAcc)
DefaultTxPoolConfig.Blacklist[bannedFromAcc] = struct{}{}
err = pool.AddRemotes(types.PoolTransactions{badTx})
if err[0] != ErrBlacklistFrom {
t.Error("expected", ErrBlacklistFrom, "got", err[0])
}
// to acc is same for bad and good tx, so keep off blacklist for valid tx check
err = pool.AddRemotes(types.PoolTransactions{goodTx})
if err[0] != nil {
t.Error("expected", nil, "got", err[0])
}
// cleanup blacklist config for other tests
DefaultTxPoolConfig.Blacklist = map[common.Address]struct{}{}
}
func TestTransactionQueue(t *testing.T) {
t.Parallel()
pool, key := setupTxPool(nil)
defer pool.Stop()
tx := transaction(0, 0, 100, key)
from, _ := deriveSender(tx)
pool.currentState.AddBalance(from, big.NewInt(100_000e9))
pool.lockedReset(nil, nil)
pool.enqueueTx(tx)
pool.promoteExecutables([]common.Address{from})
if len(pool.pending) != 1 {
t.Error("expected valid txs to be 1 is", len(pool.pending))
}
tx = transaction(0, 1, 100, key)
from, _ = deriveSender(tx)
pool.currentState.SetNonce(from, 2)
pool.enqueueTx(tx)
pool.promoteExecutables([]common.Address{from})
if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok {
t.Error("expected transaction to be in tx pool")
}
if len(pool.queue) > 0 {
t.Error("expected transaction queue to be empty. is", len(pool.queue))
}
pool, key = setupTxPool(nil)
defer pool.Stop()
tx1 := transaction(0, 0, 100, key)
tx2 := transaction(0, 10, 100, key)
tx3 := transaction(0, 11, 100, key)
from, _ = deriveSender(tx1)
pool.currentState.AddBalance(from, big.NewInt(30000000000000))
pool.lockedReset(nil, nil)
pool.enqueueTx(tx1)
pool.enqueueTx(tx2)
pool.enqueueTx(tx3)
pool.promoteExecutables([]common.Address{from})
if len(pool.pending) != 1 {
t.Error("expected tx pool to be 1, got", len(pool.pending))
}
if pool.queue[from].Len() != 2 {
t.Error("expected len(queue) == 2, got", pool.queue[from].Len())
}
}
func TestTransactionNegativeValue(t *testing.T) {
t.Parallel()
pool, key := setupTxPool(nil)
defer pool.Stop()
tx, _ := types.SignTx(
types.NewTransaction(0, common.Address{}, 0, big.NewInt(-1), 100, big.NewInt(1), nil),
types.HomesteadSigner{}, key)
from, _ := deriveSender(tx)
pool.currentState.AddBalance(from, big.NewInt(1))
if err := pool.AddRemote(tx); err != ErrNegativeValue {
t.Error("expected", ErrNegativeValue, "got", err)
}
}
func TestTransactionChainFork(t *testing.T) {
t.Skip("This test doesn't work with race detector")
t.Parallel()
pool, key := setupTxPool(nil)
defer pool.Stop()
addr := crypto.PubkeyToAddress(key.PublicKey)
resetState := func() {
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
statedb.AddBalance(addr, big.NewInt(9000000000000000000))
pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)}
pool.lockedReset(nil, nil)
}
resetState()
tx := transaction(0, 0, 100000, key)
if _, err := pool.add(tx, false); err != nil {
t.Error("didn't expect error", err)
}
pool.removeTx(tx.Hash(), true)
// reset the pool's internal state
resetState()
if _, err := pool.add(tx, false); err != nil {
t.Error("didn't expect error", err)
}
}
func TestTransactionDoubleNonce(t *testing.T) {
t.Parallel()
key, _ := crypto.GenerateKey()
addr := crypto.PubkeyToAddress(key.PublicKey)
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
statedb.AddBalance(addr, big.NewInt(1000000000000000000))
pool, _ := setupTxPool(&testBlockChain{statedb, 1000000, new(event.Feed)})
defer pool.Stop()
pool.lockedReset(nil, nil)
signer := types.HomesteadSigner{}
tx1, _ := types.SignTx(
types.NewTransaction(0, common.Address{}, 0, big.NewInt(100), 100000, big.NewInt(100e9), nil),
signer, key)
tx2, _ := types.SignTx(
types.NewTransaction(0, common.Address{}, 0, big.NewInt(100), 1000000, big.NewInt(101e9), nil), // related to price bump 1%
signer, key)
tx3, _ := types.SignTx(
types.NewTransaction(0, common.Address{}, 0, big.NewInt(100), 1000000, big.NewInt(100e9), nil),
signer, key)
// Add the first two transaction, ensure higher priced stays only
if replace, err := pool.add(tx1, false); err != nil || replace {
t.Errorf("first transaction insert failed (%v) or reported replacement (%v)", err, replace)
}
if replace, err := pool.add(tx2, false); err != nil || !replace {
t.Errorf("second transaction insert failed (%v) or not reported replacement (%v)", err, replace)
}
pool.promoteExecutables([]common.Address{addr})
if pool.pending[addr].Len() != 1 {
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
}
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != (*tx2).Hash() {
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), (*tx2).Hash())
}
// Add the third transaction and ensure it's not saved (smaller price)
pool.add(tx3, false)
pool.promoteExecutables([]common.Address{addr})
if pool.pending[addr].Len() != 1 {
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
}
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != (*tx2).Hash() {
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), (*tx2).Hash())
}
// Ensure the total transaction count is correct
if pool.all.Count() != 1 {
t.Error("expected 1 total transactions, got", pool.all.Count())
}
}
func TestTransactionMissingNonce(t *testing.T) {
t.Parallel()
pool, key := setupTxPool(nil)
defer pool.Stop()
addr := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.AddBalance(addr, big.NewInt(10010000e9))
tx := transaction(0, 1, 100000, key)
if _, err := pool.add(tx, false); err != nil {
t.Error("didn't expect error", err)
}
if len(pool.pending) != 0 {
t.Error("expected 0 pending transactions, got", len(pool.pending))
}
if pool.queue[addr].Len() != 1 {
t.Error("expected 1 queued transaction, got", pool.queue[addr].Len())
}
if pool.all.Count() != 1 {
t.Error("expected 1 total transactions, got", pool.all.Count())
}
}
func TestTransactionNonceRecovery(t *testing.T) {
t.Parallel()
const n = 10
pool, key := setupTxPool(nil)
defer pool.Stop()
addr := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.SetNonce(addr, n)
pool.currentState.AddBalance(addr, big.NewInt(10010000e9))
pool.lockedReset(nil, nil)
tx := transaction(0, n, 100000, key)
if err := pool.AddRemote(tx); err != nil {
t.Error(err)
}
// simulate some weird re-order of transactions and missing nonce(s)
pool.currentState.SetNonce(addr, n-1)
pool.lockedReset(nil, nil)
if fn := pool.pendingState.GetNonce(addr); fn != n-1 {
t.Errorf("expected nonce to be %d, got %d", n-1, fn)
}
}
// Tests that if an account runs out of funds, any pending and queued transactions
// are dropped.
func TestTransactionDropping(t *testing.T) {
t.Parallel()
// Create a test account and fund it
pool, key := setupTxPool(nil)
defer pool.Stop()
account, _ := deriveSender(transaction(0, 0, 0, key))
pool.currentState.AddBalance(account, big.NewInt(100_000_000_000_000))
// Add some pending and some queued transactions
var (
tx0 = transaction(0, 0, 100, key)
tx1 = transaction(0, 1, 200, key)
tx2 = transaction(0, 2, 300, key)
tx10 = transaction(0, 10, 100, key)
tx11 = transaction(0, 11, 200, key)
tx12 = transaction(0, 12, 300, key)
)
pool.promoteTx(account, tx0)
pool.promoteTx(account, tx1)
pool.promoteTx(account, tx2)
pool.enqueueTx(tx10)
pool.enqueueTx(tx11)
pool.enqueueTx(tx12)
// Check that pre and post validations leave the pool as is
if pool.pending[account].Len() != 3 {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3)
}
if pool.queue[account].Len() != 3 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3)
}
if pool.all.Count() != 6 {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6)
}
pool.lockedReset(nil, nil)
if pool.pending[account].Len() != 3 {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3)
}
if pool.queue[account].Len() != 3 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3)
}
if pool.all.Count() != 6 {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6)
}
// Reduce the balance of the account, and check that invalidated transactions are dropped
pool.currentState.AddBalance(account, big.NewInt(-75_000e9))
pool.lockedReset(nil, nil)
if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
t.Errorf("funded pending transaction missing: %v", tx0)
}
if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; !ok {
t.Errorf("funded pending transaction missing: %v", tx1)
}
if _, ok := pool.pending[account].txs.items[tx2.Nonce()]; ok {
t.Errorf("out-of-fund pending transaction present: %v", tx2)
}
if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
t.Errorf("funded queued transaction missing: %v", tx10)
}
if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; !ok {
t.Errorf("funded queued transaction missing: %v", tx11)
}
if _, ok := pool.queue[account].txs.items[tx12.Nonce()]; ok {
t.Errorf("out-of-fund queued transaction present: %v", tx12)
}
if pool.all.Count() != 4 {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 4)
}
// Reduce the block gas limit, check that invalidated transactions are dropped
pool.chain.(*testBlockChain).SetGasLimit(100)
pool.lockedReset(nil, nil)
if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
t.Errorf("funded pending transaction missing: %v", tx0)
}
if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
t.Errorf("over-gased pending transaction present: %v", tx1)
}
if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
t.Errorf("funded queued transaction missing: %v", tx10)
}
if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
t.Errorf("over-gased queued transaction present: %v", tx11)
}
if pool.all.Count() != 2 {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 2)
}
}
// Tests that if a transaction is dropped from the current pending pool (e.g. out
// of fund), all consecutive (still valid, but not executable) transactions are
// postponed back into the future queue to prevent broadcasting them.
func TestTransactionPostponing(t *testing.T) {
t.Parallel()
// Create the pool to test the postponing with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain, dummyErrorSink)
defer pool.Stop()
// Create two test accounts to produce different gap profiles with
keys := make([]*ecdsa.PrivateKey, 2)
accs := make([]common.Address, len(keys))
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
accs[i] = crypto.PubkeyToAddress(keys[i].PublicKey)
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(5000100000000000))
}
// Add a batch consecutive pending transactions for validation
txs := types.PoolTransactions{}
for i, key := range keys {
for j := 0; j < 100; j++ {
var tx types.PoolTransaction
if (i+j)%2 == 0 {
tx = transaction(0, uint64(j), 25000, key)
} else {
tx = transaction(0, uint64(j), 50000, key)
}
txs = append(txs, tx)
}
}
for i, err := range pool.AddRemotes(txs) {
if err != nil {
t.Fatalf("tx %d: failed to add transactions: %v", i, err)
}
}
// Check that pre and post validations leave the pool as is
if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) {
t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs))
}
if len(pool.queue) != 0 {
t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0)
}
if pool.all.Count() != len(txs) {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs))
}
pool.lockedReset(nil, nil)
if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) {
t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs))
}
if len(pool.queue) != 0 {
t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0)
}
if pool.all.Count() != len(txs) {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs))
}
// Reduce the balance of the account, and check that transactions are reorganised
for _, addr := range accs {
pool.currentState.AddBalance(addr, big.NewInt(-30))
}
pool.lockedReset(nil, nil)
// The first account's first transaction remains valid, check that subsequent
// ones are either filtered out, or queued up for later.
if _, ok := pool.pending[accs[0]].txs.items[txs[0].Nonce()]; !ok {
t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txs[0])
}
if pool.queue[accs[0]] != nil {
if _, ok := pool.queue[accs[0]].txs.items[txs[0].Nonce()]; ok {
t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txs[0])
}
}
for i, tx := range txs[1:100] {
if i%2 == 1 {
if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; !ok {
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
}
} else {
if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
}
if pool.queue[accs[0]] != nil {
if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
}
}
}
}
// The second account's first transaction got invalid, check that all transactions
// are either filtered out, or queued up for later.
if pool.pending[accs[1]] != nil {
t.Errorf("invalidated account still has pending transactions")
}
for i, tx := range txs[100:] {
if i%2 == 1 {
if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; !ok {
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", 100+i, tx)
}
} else {
if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", 100+i, tx)
}
}
}
if pool.all.Count() != len(txs)/2 {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)/2)
}
}
// Tests that if the transaction count belonging to a single account goes above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
func TestTransactionQueueAccountLimiting(t *testing.T) {
t.Parallel()
// Create a test account and fund it
pool, key := setupTxPool(nil)
defer pool.Stop()
account, _ := deriveSender(transaction(0, 0, 0, key))
pool.currentState.AddBalance(account, big.NewInt(9000000000000000000))
// Keep queuing up transactions and make sure all above a limit are dropped
for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ {
if err := pool.AddRemote(transaction(0, i, 100000, key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
if len(pool.pending) != 0 {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
}
if i <= testTxPoolConfig.AccountQueue {
if pool.queue[account].Len() != int(i) {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i)
}
} else {
if pool.queue[account].Len() != int(testTxPoolConfig.AccountQueue) {
t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), testTxPoolConfig.AccountQueue)
}
}
}
if pool.all.Count() != int(testTxPoolConfig.AccountQueue) {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue)
}
}
// Tests that if the transaction count belonging to multiple accounts go above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
//
// This logic should not hold for local transactions, unless the local tracking
// mechanism is disabled.
func TestTransactionQueueGlobalLimiting(t *testing.T) {
testTransactionQueueGlobalLimiting(t, false)
}
func TestTransactionQueueGlobalLimitingNoLocals(t *testing.T) {
testTransactionQueueGlobalLimiting(t, true)
}
func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) {
t.Parallel()
// Create the pool to test the limit enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
config.NoLocals = nolocals
config.GlobalQueue = config.AccountQueue*3 - 1 // reduce the queue limits to shorten test time (-1 to make it non divisible)
pool := NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink)
defer pool.Stop()
// Create a number of test accounts and fund them (last one will be the local)
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(30000000000000000))
}
local := keys[len(keys)-1]
// Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64)
txs := make(types.PoolTransactions, 0, 3*config.GlobalQueue)
for len(txs) < cap(txs) {
key := keys[rand.Intn(len(keys)-1)] // skip adding transactions with the local account
addr := crypto.PubkeyToAddress(key.PublicKey)
txs = append(txs, transaction(0, nonces[addr]+1, 100000, key))
nonces[addr]++
}
// Import the batch and verify that limits have been enforced
pool.AddRemotes(txs)
queued := 0
for addr, list := range pool.queue {
if list.Len() > int(config.AccountQueue) {
t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue)
}
queued += list.Len()
}
if queued > int(config.GlobalQueue) {
t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue)
}
// Generate a batch of transactions from the local account and import them
txs = txs[:0]
for i := uint64(0); i < 3*config.GlobalQueue; i++ {
txs = append(txs, transaction(0, i+1, 100000, local))
}
pool.AddLocals(txs)
// If locals are disabled, the previous eviction algorithm should apply here too
if nolocals {
queued := 0
for addr, list := range pool.queue {
if list.Len() > int(config.AccountQueue) {
t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue)
}
queued += list.Len()
}
if queued > int(config.GlobalQueue) {
t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue)
}
} else {
// Local exemptions are enabled, make sure the local account owned the queue
if len(pool.queue) != 1 {
t.Errorf("multiple accounts in queue: have %v, want %v", len(pool.queue), 1)
}
// Also ensure no local transactions are ever dropped, even if above global limits
if queued := pool.queue[crypto.PubkeyToAddress(local.PublicKey)].Len(); uint64(queued) != 3*config.GlobalQueue {
t.Fatalf("local account queued transaction count mismatch: have %v, want %v", queued, 3*config.GlobalQueue)
}
}
}
// Tests that if an account remains idle for a prolonged amount of time, any
// non-executable transactions queued up are dropped to prevent wasting resources
// on shuffling them around.
//
// This logic should not hold for local transactions, unless the local tracking
// mechanism is disabled.
func TestTransactionQueueTimeLimiting(t *testing.T) { testTransactionQueueTimeLimiting(t, false) }
func TestTransactionQueueTimeLimitingNoLocals(t *testing.T) {
testTransactionQueueTimeLimiting(t, true)
}
func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) {
// Reduce the eviction interval to a testable amount
defer func(old time.Duration) { evictionInterval = old }(evictionInterval)
evictionInterval = time.Second
// Create the pool to test the non-expiration enforcement
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
config.Lifetime = time.Second
config.NoLocals = nolocals
pool := NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink)
defer pool.Stop()
// Create two test accounts to ensure remotes expire but locals do not
local, _ := crypto.GenerateKey()
remote, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(9000000000000000000))
pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(9000000000000000000))
// Add the two transactions and ensure they both are queued up
if err := pool.AddLocal(pricedTransaction(0, 1, 100000, big.NewInt(100000000000), local)); err != nil {
t.Fatalf("failed to add local transaction: %v", err)
}
if err := pool.AddRemote(pricedTransaction(0, 1, 100000, big.NewInt(100000000000), remote)); err != nil {
t.Fatalf("failed to add remote transaction: %v", err)
}
pending, queued := pool.Stats()
if pending != 0 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
}
if queued != 2 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
// Wait a bit for eviction to run and clean up any leftovers, and ensure only the local remains
time.Sleep(4 * config.Lifetime)
pending, queued = pool.Stats()
if pending != 0 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
}
if nolocals {
if queued != 0 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
}
} else {
if queued != 1 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
}
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
}
// Tests that the transaction limits are enforced the same way irrelevant whether
// the transactions are added one by one or in batches.
func TestTransactionQueueLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 1) }
func TestTransactionPendingLimitingEquivalency(t *testing.T) {
testTransactionLimitingEquivalency(t, 0)
}
func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
t.Parallel()
// Add a batch of transactions to a pool one by one
pool1, key1 := setupTxPool(nil)
defer pool1.Stop()
account1, _ := deriveSender(transaction(0, 0, 0, key1))
pool1.currentState.AddBalance(account1, big.NewInt(9000000000000000000))
for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ {
if err := pool1.AddRemote(transaction(0, origin+i, 100000, key1)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
}
// Add a batch of transactions to a pool in one big batch
pool2, key2 := setupTxPool(nil)
defer pool2.Stop()
account2, _ := deriveSender(transaction(0, 0, 0, key2))
pool2.currentState.AddBalance(account2, big.NewInt(9000000000000000000))
txs := types.PoolTransactions{}
for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ {
txs = append(txs, transaction(0, origin+i, 100000, key2))
}
pool2.AddRemotes(txs)
// Ensure the batch optimization honors the same pool mechanics
if len(pool1.pending) != len(pool2.pending) {
t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending))
}
if len(pool1.queue) != len(pool2.queue) {
t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue), len(pool2.queue))
}
if pool1.all.Count() != pool2.all.Count() {
t.Errorf("total transaction count mismatch: one-by-one algo %d, batch algo %d", pool1.all.Count(), pool2.all.Count())
}
if err := validateTxPoolInternals(pool1); err != nil {
t.Errorf("pool 1 internal state corrupted: %v", err)
}
if err := validateTxPoolInternals(pool2); err != nil {
t.Errorf("pool 2 internal state corrupted: %v", err)
}
}
// Tests that if the transaction count belonging to multiple accounts go above
// some hard threshold, the higher transactions are dropped to prevent DOS
// attacks.
func TestTransactionPendingGlobalLimiting(t *testing.T) {
t.Parallel()
// Create the pool to test the limit enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
config.GlobalSlots = config.AccountSlots * 10
pool := NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink)
defer pool.Stop()
// Create a number of test accounts and fund them
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
// Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64)
txs := types.PoolTransactions{}
for _, key := range keys {
addr := crypto.PubkeyToAddress(key.PublicKey)
for j := 0; j < int(config.GlobalSlots)/len(keys)*2; j++ {
txs = append(txs, transaction(0, nonces[addr], 100000, key))
nonces[addr]++
}
}
// Import the batch and verify that limits have been enforced
pool.AddRemotes(txs)
pending := 0
for _, list := range pool.pending {
pending += list.Len()
}
if pending > int(config.GlobalSlots) {
t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, config.GlobalSlots)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
}
// Tests that if transactions start being capped, transactions are also removed from 'all'
func TestTransactionCapClearsFromAll(t *testing.T) {
t.Parallel()
// Create the pool to test the limit enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
config.AccountSlots = 2
config.AccountQueue = 2
config.GlobalSlots = 8
pool := NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink)
defer pool.Stop()
// Create a number of test accounts and fund them
key, _ := crypto.GenerateKey()
addr := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.AddBalance(addr, big.NewInt(1000000))
txs := types.PoolTransactions{}
for j := 0; j < int(config.GlobalSlots)*2; j++ {
txs = append(txs, transaction(0, uint64(j), 100000, key))
}
// Import the batch and verify that limits have been enforced
pool.AddRemotes(txs)
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
}
// Tests that if the transaction count belonging to multiple accounts go above
// some hard threshold, if they are under the minimum guaranteed slot count then
// the transactions are still kept.
func TestTransactionPendingMinimumAllowance(t *testing.T) {
t.Parallel()
// Create the pool to test the limit enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
config.GlobalSlots = 0
pool := NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink)
defer pool.Stop()
// Create a number of test accounts and fund them
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
// Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64)
txs := types.PoolTransactions{}
for _, key := range keys {
addr := crypto.PubkeyToAddress(key.PublicKey)
for j := 0; j < int(config.AccountSlots)*2; j++ {
txs = append(txs, transaction(0, nonces[addr], 100000, key))
nonces[addr]++
}
}
// Import the batch and verify that limits have been enforced
pool.AddRemotes(txs)
for addr, list := range pool.pending {
if list.Len() != int(config.AccountSlots) {
t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), config.AccountSlots)
}
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
}
// Tests that setting the transaction pool gas price to a higher value does not
// remove local transactions.
func TestTransactionPoolRepricingKeepsLocals(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain, dummyErrorSink)
defer pool.Stop()
// Create a number of test accounts and fund them
keys := make([]*ecdsa.PrivateKey, 3)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000*1000000*1000000000))
}
// Create transaction (both pending and queued) with a linearly growing gasprice
for i := uint64(0); i < 500; i++ {
// Add pending
pTx := pricedTransaction(0, i, 100000, big.NewInt(int64(30000000000+i*1000000000)), keys[2])
if err := pool.AddLocal(pTx); err != nil {
t.Fatal(err)
}
// Add queued
qTx := pricedTransaction(0, i+501, 100000, big.NewInt(int64(30000000000+i*1000000000)), keys[2])
if err := pool.AddLocal(qTx); err != nil {
t.Fatal(err)
}
}
pending, queued := pool.Stats()
expPending, expQueued := 500, 500
validate := func() {
pending, queued = pool.Stats()
if pending != expPending {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, expPending)
}
if queued != expQueued {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, expQueued)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
}
validate()
// Reprice the pool and check that nothing is dropped
pool.SetGasPrice(big.NewInt(2000000000))
validate()
pool.SetGasPrice(big.NewInt(2000000000))
pool.SetGasPrice(big.NewInt(4000000000))
pool.SetGasPrice(big.NewInt(8000000000))
pool.SetGasPrice(big.NewInt(100000000000))
validate()
}
// Tests that local transactions are journaled to disk, but remote transactions
// get discarded between restarts.
func TestTransactionJournaling(t *testing.T) { testTransactionJournaling(t, false) }
func TestTransactionJournalingNoLocals(t *testing.T) { testTransactionJournaling(t, true) }
func testTransactionJournaling(t *testing.T, nolocals bool) {
t.Parallel()
// Create a temporary file for the journal
file, err := os.CreateTemp("", "")
if err != nil {
t.Fatalf("failed to create temporary journal: %v", err)
}
journal := file.Name()
defer os.Remove(journal)
// Clean up the temporary file, we only need the path for now
file.Close()
os.Remove(journal)
// Create the original pool to inject transaction into the journal
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
config := testTxPoolConfig
config.NoLocals = nolocals
config.Journal = journal
config.Rejournal = time.Second
pool := NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink)
// Create two test accounts to ensure remotes expire but locals do not
local, _ := crypto.GenerateKey()
remote, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(9_000_000_000e9))
pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(9_000_000_000e9))
// Add three local and a remote transactions and ensure they are queued up
if err := pool.AddLocal(pricedTransaction(0, 0, 100000, big.NewInt(100e9), local)); err != nil {
t.Fatalf("failed to add local transaction: %v", err)
}
if err := pool.AddLocal(pricedTransaction(0, 1, 100000, big.NewInt(100e9), local)); err != nil {
t.Fatalf("failed to add local transaction: %v", err)
}
if err := pool.AddLocal(pricedTransaction(0, 2, 100000, big.NewInt(100e9), local)); err != nil {
t.Fatalf("failed to add local transaction: %v", err)
}
if err := pool.AddRemote(pricedTransaction(0, 0, 100000, big.NewInt(100e9), remote)); err != nil {
t.Fatalf("failed to add remote transaction: %v", err)
}
pending, queued := pool.Stats()
if pending != 4 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 4)
}
if queued != 0 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
// Terminate the old pool, bump the local nonce, create a new pool and ensure relevant transaction survive
pool.Stop()
statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1)
blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)}
pool = NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink)
pending, queued = pool.Stats()
if queued != 0 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
}
if nolocals {
if pending != 0 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
}
} else {
if pending != 2 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
}
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
// Bump the nonce temporarily and ensure the newly invalidated transaction is removed
statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 2)
pool.lockedReset(nil, nil)
time.Sleep(2 * config.Rejournal)
pool.Stop()
statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1)
blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)}
pool = NewTxPool(config, params.TestChainConfig, blockchain, dummyErrorSink)
pending, queued = pool.Stats()
if pending != 0 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
}
if nolocals {
if queued != 0 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
}
} else {
if queued != 1 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
}
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
pool.Stop()
}
// TestTransactionStatusCheck tests that the pool can correctly retrieve the
// pending status of individual transactions.
func TestTransactionStatusCheck(t *testing.T) {
t.Parallel()
// Create the pool to test the status retrievals with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain, dummyErrorSink)
defer pool.Stop()
// Create the test accounts to check various transaction statuses with
keys := make([]*ecdsa.PrivateKey, 3)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(9000000000000000000))
}
// Generate and queue a batch of transactions, both pending and queued
txs := types.PoolTransactions{}
txs = append(txs, pricedTransaction(0, 0, 100000, big.NewInt(100e9), keys[0])) // Pending only
txs = append(txs, pricedTransaction(0, 0, 100000, big.NewInt(100e9), keys[1])) // Pending and queued
txs = append(txs, pricedTransaction(0, 2, 100000, big.NewInt(100e9), keys[1]))
txs = append(txs, pricedTransaction(0, 2, 100000, big.NewInt(100e9), keys[2])) // Queued only
// Import the transaction and ensure they are correctly added
pool.AddRemotes(txs)
pending, queued := pool.Stats()
if pending != 2 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
}
if queued != 2 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
// Retrieve the status of each transaction and validate them
hashes := make([]common.Hash, len(txs))
for i, tx := range txs {
hashes[i] = tx.Hash()
}
hashes = append(hashes, common.Hash{})
statuses := pool.Status(hashes)
expect := []TxStatus{TxStatusPending, TxStatusPending, TxStatusQueued, TxStatusQueued, TxStatusUnknown}
for i := 0; i < len(statuses); i++ {
if statuses[i] != expect[i] {
t.Errorf("transaction %d: status mismatch: have %v, want %v", i, statuses[i], expect[i])
}
}
}
// Benchmarks the speed of validating the contents of the pending queue of the
// transaction pool.
func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) }
func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) }
func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) }
func benchmarkPendingDemotion(b *testing.B, size int) {
// Add a batch of transactions to a pool one by one
pool, key := setupTxPool(nil)
defer pool.Stop()
account, _ := deriveSender(transaction(0, 0, 0, key))
pool.currentState.AddBalance(account, big.NewInt(1000000))
for i := 0; i < size; i++ {
tx := transaction(0, uint64(i), 100000, key)
pool.promoteTx(account, tx)
}
// Benchmark the speed of pool validation
b.ResetTimer()
for i := 0; i < b.N; i++ {
pool.demoteUnexecutables(0)
}
}
// Benchmarks the speed of scheduling the contents of the future queue of the
// transaction pool.
func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) }
func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) }
func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) }
func benchmarkFuturePromotion(b *testing.B, size int) {
// Add a batch of transactions to a pool one by one
pool, key := setupTxPool(nil)
defer pool.Stop()
account, _ := deriveSender(transaction(0, 0, 0, key))
pool.currentState.AddBalance(account, big.NewInt(1000000))
for i := 0; i < size; i++ {
tx := transaction(0, uint64(1+i), 100000, key)
pool.enqueueTx(tx)
}
// Benchmark the speed of pool validation
b.ResetTimer()
for i := 0; i < b.N; i++ {
pool.promoteExecutables(nil)
}
}
// Benchmarks the speed of iterative transaction insertion.
func BenchmarkPoolInsert(b *testing.B) {
// Generate a batch of transactions to enqueue into the pool
pool, key := setupTxPool(nil)
defer pool.Stop()
account, _ := deriveSender(transaction(0, 0, 0, key))
pool.currentState.AddBalance(account, big.NewInt(1000000))
txs := make(types.PoolTransactions, b.N)
for i := 0; i < b.N; i++ {
txs[i] = transaction(0, uint64(i), 100000, key)
}
// Benchmark importing the transactions into the queue
b.ResetTimer()
for _, tx := range txs {
pool.AddRemote(tx)
}
}
// Benchmarks the speed of batched transaction insertion.
func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100) }
func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000) }
func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) }
func benchmarkPoolBatchInsert(b *testing.B, size int) {
// Generate a batch of transactions to enqueue into the pool
pool, key := setupTxPool(nil)
defer pool.Stop()
account, _ := deriveSender(transaction(0, 0, 0, key))
pool.currentState.AddBalance(account, big.NewInt(1000000))
batches := make([]types.PoolTransactions, b.N)
for i := 0; i < b.N; i++ {
batches[i] = make(types.PoolTransactions, size)
for j := 0; j < size; j++ {
batches[i][j] = transaction(0, uint64(size*i+j), 100000, key)
}
}
// Benchmark importing the transactions into the queue
b.ResetTimer()
for _, batch := range batches {
pool.AddRemotes(batch)
}
}