The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/core/state/statedb.go

940 lines
28 KiB

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package state provides a caching layer atop the Ethereum state trie.
package state
import (
"fmt"
"math/big"
"sort"
"time"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
"github.com/harmony-one/harmony/core/types"
common2 "github.com/harmony-one/harmony/internal/common"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/numeric"
"github.com/harmony-one/harmony/staking"
"github.com/harmony-one/harmony/staking/effective"
stk "github.com/harmony-one/harmony/staking/types"
"github.com/pkg/errors"
)
type revision struct {
id int
journalIndex int
}
var (
// emptyRoot is the known root hash of an empty trie.
emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
// emptyCode is the known hash of the empty EVM bytecode.
emptyCode = crypto.Keccak256Hash(nil)
)
type proofList [][]byte
func (n *proofList) Put(key []byte, value []byte) error {
*n = append(*n, value)
return nil
}
func (n *proofList) Delete(key []byte) error {
panic("not supported")
}
// DB within the ethereum protocol are used to store anything
// within the merkle trie. StateDBs take care of caching and storing
// nested states. It's the general query interface to retrieve:
// * Contracts
// * Accounts
type DB struct {
db Database
trie Trie
// This map holds 'live' objects, which will get modified while processing a state transition.
stateObjects map[common.Address]*Object
stateObjectsPending map[common.Address]struct{} // State objects finalized but not yet written to the trie
stateObjectsDirty map[common.Address]struct{}
stateValidators map[common.Address]*stk.ValidatorWrapper
// DB error.
// State objects are used by the consensus core and VM which are
// unable to deal with database-level errors. Any error that occurs
// during a database read is memoized here and will eventually be returned
// by DB.Commit.
dbErr error
// The refund counter, also used by state transitioning.
refund uint64
thash, bhash common.Hash
txIndex int
logs map[common.Hash][]*types.Log
logSize uint
preimages map[common.Hash][]byte
// Journal of state modifications. This is the backbone of
// Snapshot and RevertToSnapshot.
journal *journal
validRevisions []revision
nextRevisionID int
// Measurements gathered during execution for debugging purposes
AccountReads time.Duration
AccountHashes time.Duration
AccountUpdates time.Duration
AccountCommits time.Duration
StorageReads time.Duration
StorageHashes time.Duration
StorageUpdates time.Duration
StorageCommits time.Duration
}
// New creates a new state from a given trie.
func New(root common.Hash, db Database) (*DB, error) {
tr, err := db.OpenTrie(root)
if err != nil {
return nil, err
}
return &DB{
db: db,
trie: tr,
stateObjects: make(map[common.Address]*Object),
stateObjectsPending: make(map[common.Address]struct{}),
stateObjectsDirty: make(map[common.Address]struct{}),
stateValidators: make(map[common.Address]*stk.ValidatorWrapper),
logs: make(map[common.Hash][]*types.Log),
preimages: make(map[common.Hash][]byte),
journal: newJournal(),
}, nil
}
// setError remembers the first non-nil error it is called with.
func (db *DB) setError(err error) {
if db.dbErr == nil {
db.dbErr = err
}
}
func (db *DB) Error() error {
return db.dbErr
}
// Reset clears out all ephemeral state objects from the state db, but keeps
// the underlying state trie to avoid reloading data for the next operations.
func (db *DB) Reset(root common.Hash) error {
tr, err := db.db.OpenTrie(root)
if err != nil {
return err
}
db.trie = tr
db.stateObjects = make(map[common.Address]*Object)
db.stateObjectsPending = make(map[common.Address]struct{})
db.stateObjectsDirty = make(map[common.Address]struct{})
db.stateValidators = make(map[common.Address]*stk.ValidatorWrapper)
db.thash = common.Hash{}
db.bhash = common.Hash{}
db.txIndex = 0
db.logs = make(map[common.Hash][]*types.Log)
db.logSize = 0
db.preimages = make(map[common.Hash][]byte)
db.clearJournalAndRefund()
return nil
}
// AddLog ...
func (db *DB) AddLog(log *types.Log) {
db.journal.append(addLogChange{txhash: db.thash})
log.TxHash = db.thash
log.BlockHash = db.bhash
log.TxIndex = uint(db.txIndex)
log.Index = db.logSize
db.logs[db.thash] = append(db.logs[db.thash], log)
db.logSize++
}
// GetLogs ...
func (db *DB) GetLogs(hash common.Hash) []*types.Log {
return db.logs[hash]
}
// Logs ...
func (db *DB) Logs() []*types.Log {
var logs []*types.Log
for _, lgs := range db.logs {
logs = append(logs, lgs...)
}
return logs
}
// AddPreimage records a SHA3 preimage seen by the VM.
func (db *DB) AddPreimage(hash common.Hash, preimage []byte) {
if _, ok := db.preimages[hash]; !ok {
db.journal.append(addPreimageChange{hash: hash})
pi := make([]byte, len(preimage))
copy(pi, preimage)
db.preimages[hash] = pi
}
}
// Preimages returns a list of SHA3 preimages that have been submitted.
func (db *DB) Preimages() map[common.Hash][]byte {
return db.preimages
}
// AddRefund adds gas to the refund counter
func (db *DB) AddRefund(gas uint64) {
db.journal.append(refundChange{prev: db.refund})
db.refund += gas
}
// SubRefund removes gas from the refund counter.
// This method will panic if the refund counter goes below zero
func (db *DB) SubRefund(gas uint64) {
db.journal.append(refundChange{prev: db.refund})
if gas > db.refund {
panic("Refund counter below zero")
}
db.refund -= gas
}
// Exist reports whether the given account address exists in the state.
// Notably this also returns true for suicided accounts.
func (db *DB) Exist(addr common.Address) bool {
return db.getStateObject(addr) != nil
}
// Empty returns whether the state object is either non-existent
// or empty according to the EIP161 specification (balance = nonce = code = 0)
func (db *DB) Empty(addr common.Address) bool {
so := db.getStateObject(addr)
return so == nil || so.empty()
}
// GetBalance retrieves the balance from the given address or 0 if object not found
func (db *DB) GetBalance(addr common.Address) *big.Int {
stateObject := db.getStateObject(addr)
if stateObject != nil {
return stateObject.Balance()
}
return common.Big0
}
// GetNonce ...
func (db *DB) GetNonce(addr common.Address) uint64 {
stateObject := db.getStateObject(addr)
if stateObject != nil {
return stateObject.Nonce()
}
return 0
}
// TxIndex returns the current transaction index set by Prepare.
func (db *DB) TxIndex() int {
return db.txIndex
}
func (s *DB) TxHash() common.Hash {
return s.thash
}
// BlockHash returns the current block hash set by Prepare.
func (db *DB) BlockHash() common.Hash {
return db.bhash
}
// GetCode ...
func (db *DB) GetCode(addr common.Address) []byte {
stateObject := db.getStateObject(addr)
if stateObject != nil {
return stateObject.Code(db.db)
}
return nil
}
// GetCodeSize ...
func (db *DB) GetCodeSize(addr common.Address) int {
stateObject := db.getStateObject(addr)
if stateObject == nil {
return 0
}
if stateObject.code != nil {
return len(stateObject.code)
}
size, err := db.db.ContractCodeSize(
stateObject.addrHash, common.BytesToHash(stateObject.CodeHash()),
)
if err != nil {
db.setError(err)
}
return size
}
// GetCodeHash ...
func (db *DB) GetCodeHash(addr common.Address) common.Hash {
stateObject := db.getStateObject(addr)
if stateObject == nil {
return common.Hash{}
}
return common.BytesToHash(stateObject.CodeHash())
}
// GetState retrieves a value from the given account's storage trie.
func (db *DB) GetState(addr common.Address, hash common.Hash) common.Hash {
stateObject := db.getStateObject(addr)
if stateObject != nil {
return stateObject.GetState(db.db, hash)
}
return common.Hash{}
}
// GetProof returns the MerkleProof for a given Account
func (db *DB) GetProof(a common.Address) ([][]byte, error) {
var proof proofList
err := db.trie.Prove(crypto.Keccak256(a.Bytes()), 0, &proof)
return [][]byte(proof), err
}
// GetStorageProof returns the StorageProof for given key
func (db *DB) GetStorageProof(a common.Address, key common.Hash) ([][]byte, error) {
var proof proofList
trie := db.StorageTrie(a)
if trie == nil {
return proof, errors.New("storage trie for requested address does not exist")
}
err := trie.Prove(crypto.Keccak256(key.Bytes()), 0, &proof)
return [][]byte(proof), err
}
// GetCommittedState retrieves a value from the given account's committed storage trie.
func (db *DB) GetCommittedState(addr common.Address, hash common.Hash) common.Hash {
stateObject := db.getStateObject(addr)
if stateObject != nil {
return stateObject.GetCommittedState(db.db, hash)
}
return common.Hash{}
}
// Database retrieves the low level database supporting the lower level trie ops.
func (db *DB) Database() Database {
return db.db
}
// StorageTrie returns the storage trie of an account.
// The return value is a copy and is nil for non-existent accounts.
func (db *DB) StorageTrie(addr common.Address) Trie {
stateObject := db.getStateObject(addr)
if stateObject == nil {
return nil
}
cpy := stateObject.deepCopy(db)
return cpy.updateTrie(db.db)
}
// HasSuicided ...
func (db *DB) HasSuicided(addr common.Address) bool {
stateObject := db.getStateObject(addr)
if stateObject != nil {
return stateObject.suicided
}
return false
}
/*
* SETTERS
*/
// AddBalance adds amount to the account associated with addr.
func (db *DB) AddBalance(addr common.Address, amount *big.Int) {
stateObject := db.GetOrNewStateObject(addr)
if stateObject != nil {
stateObject.AddBalance(amount)
}
}
// SubBalance subtracts amount from the account associated with addr.
func (db *DB) SubBalance(addr common.Address, amount *big.Int) {
stateObject := db.GetOrNewStateObject(addr)
if stateObject != nil {
stateObject.SubBalance(amount)
}
}
// SetBalance ...
func (db *DB) SetBalance(addr common.Address, amount *big.Int) {
stateObject := db.GetOrNewStateObject(addr)
if stateObject != nil {
stateObject.SetBalance(amount)
}
}
// SetNonce ...
func (db *DB) SetNonce(addr common.Address, nonce uint64) {
stateObject := db.GetOrNewStateObject(addr)
if stateObject != nil {
stateObject.SetNonce(nonce)
}
}
// SetCode ...
func (db *DB) SetCode(addr common.Address, code []byte) {
stateObject := db.GetOrNewStateObject(addr)
if stateObject != nil {
stateObject.SetCode(crypto.Keccak256Hash(code), code)
}
}
// SetState ...
func (db *DB) SetState(addr common.Address, key, value common.Hash) {
stateObject := db.GetOrNewStateObject(addr)
if stateObject != nil {
stateObject.SetState(db.db, key, value)
}
}
// Suicide marks the given account as suicided.
// This clears the account balance.
//
// The account's state object is still available until the state is committed,
// getStateObject will return a non-nil account after Suicide.
func (db *DB) Suicide(addr common.Address) bool {
stateObject := db.getStateObject(addr)
if stateObject == nil {
return false
}
db.journal.append(suicideChange{
account: &addr,
prev: stateObject.suicided,
prevbalance: new(big.Int).Set(stateObject.Balance()),
})
stateObject.markSuicided()
stateObject.data.Balance = new(big.Int)
return true
}
//
// Setting, updating & deleting state object methods.
//
// updateStateObject writes the given object to the trie.
func (db *DB) updateStateObject(obj *Object) {
// Track the amount of time wasted on updating the account from the trie
if metrics.EnabledExpensive {
defer func(start time.Time) { db.AccountUpdates += time.Since(start) }(time.Now())
}
// Encode the account and update the account trie
addr := obj.Address()
data, err := rlp.EncodeToBytes(obj)
if err != nil {
panic(fmt.Errorf("can't encode object at %x: %v", addr[:], err))
}
db.setError(db.trie.TryUpdate(addr[:], data))
}
// deleteStateObject removes the given object from the state trie.
func (db *DB) deleteStateObject(obj *Object) {
// Track the amount of time wasted on deleting the account from the trie
if metrics.EnabledExpensive {
defer func(start time.Time) { db.AccountUpdates += time.Since(start) }(time.Now())
}
// Delete the account from the trie
addr := obj.Address()
db.setError(db.trie.TryDelete(addr[:]))
}
// getStateObject retrieves a state object given by the address, returning nil if
// the object is not found or was deleted in this execution context. If you need
// to differentiate between non-existent/just-deleted, use getDeletedStateObject.
func (db *DB) getStateObject(addr common.Address) *Object {
if obj := db.getDeletedStateObject(addr); obj != nil && !obj.deleted {
return obj
}
return nil
}
// getDeletedStateObject is similar to getStateObject, but instead of returning
// nil for a deleted state object, it returns the actual object with the deleted
// flag set. This is needed by the state journal to revert to the correct s-
// destructed object instead of wiping all knowledge about the state object.
func (db *DB) getDeletedStateObject(addr common.Address) *Object {
// Prefer live objects if any is available
if obj := db.stateObjects[addr]; obj != nil {
return obj
}
// Track the amount of time wasted on loading the object from the database
if metrics.EnabledExpensive {
defer func(start time.Time) { db.AccountReads += time.Since(start) }(time.Now())
}
// Load the object from the database
enc, err := db.trie.TryGet(addr[:])
if len(enc) == 0 {
db.setError(err)
return nil
}
var data Account
if err := rlp.DecodeBytes(enc, &data); err != nil {
log.Error("Failed to decode state object", "addr", addr, "err", err)
return nil
}
// Insert into the live set
obj := newObject(db, addr, data)
db.setStateObject(obj)
return obj
}
func (db *DB) setStateObject(object *Object) {
db.stateObjects[object.Address()] = object
}
// GetOrNewStateObject retrieves a state object or create a new state object if nil.
func (db *DB) GetOrNewStateObject(addr common.Address) *Object {
stateObject := db.getStateObject(addr)
if stateObject == nil {
stateObject, _ = db.createObject(addr)
}
return stateObject
}
// createObject creates a new state object. If there is an existing account with
// the given address, it is overwritten and returned as the second return value.
func (db *DB) createObject(addr common.Address) (newobj, prev *Object) {
prev = db.getDeletedStateObject(addr) // Note, prev might have been deleted, we need that!
newobj = newObject(db, addr, Account{})
newobj.setNonce(0) // sets the object to dirty
if prev == nil {
db.journal.append(createObjectChange{account: &addr})
} else {
db.journal.append(resetObjectChange{prev: prev})
}
db.setStateObject(newobj)
return newobj, prev
}
// CreateAccount explicitly creates a state object. If a state object with the address
// already exists the balance is carried over to the new account.
//
// CreateAccount is called during the EVM CREATE operation. The situation might arise that
// a contract does the following:
//
// 1. sends funds to sha(account ++ (nonce + 1))
// 2. tx_create(sha(account ++ nonce)) (note that this gets the address of 1)
//
// Carrying over the balance ensures that Ether doesn't disappear.
func (db *DB) CreateAccount(addr common.Address) {
newObj, prev := db.createObject(addr)
if prev != nil {
newObj.setBalance(prev.data.Balance)
}
}
// ForEachStorage ...
func (db *DB) ForEachStorage(addr common.Address, cb func(key, value common.Hash) bool) error {
so := db.getStateObject(addr)
if so == nil {
return nil
}
it := trie.NewIterator(so.getTrie(db.db).NodeIterator(nil))
for it.Next() {
key := common.BytesToHash(db.trie.GetKey(it.Key))
if value, dirty := so.dirtyStorage[key]; dirty {
if !cb(key, value) {
return nil
}
continue
}
if len(it.Value) > 0 {
_, content, _, err := rlp.Split(it.Value)
if err != nil {
return err
}
if !cb(key, common.BytesToHash(content)) {
return nil
}
}
}
return nil
}
// Copy creates a deep, independent copy of the state.
// Snapshots of the copied state cannot be applied to the copy.
func (db *DB) Copy() *DB {
// Copy all the basic fields, initialize the memory ones
state := &DB{
db: db.db,
trie: db.db.CopyTrie(db.trie),
stateObjects: make(map[common.Address]*Object, len(db.journal.dirties)),
stateObjectsPending: make(map[common.Address]struct{}, len(db.stateObjectsPending)),
stateObjectsDirty: make(map[common.Address]struct{}, len(db.journal.dirties)),
stateValidators: make(map[common.Address]*stk.ValidatorWrapper),
refund: db.refund,
logs: make(map[common.Hash][]*types.Log, len(db.logs)),
logSize: db.logSize,
preimages: make(map[common.Hash][]byte),
journal: newJournal(),
}
// Copy the dirty states, logs, and preimages
for addr := range db.journal.dirties {
// As documented [here](https://github.com/ethereum/go-ethereum/pull/16485#issuecomment-380438527),
// and in the Finalise-method, there is a case where an object is in the journal but not
// in the stateObjects: OOG after touch on ripeMD prior to Byzantium. Thus, we need to check for
// nil
if object, exist := db.stateObjects[addr]; exist {
// Even though the original object is dirty, we are not copying the journal,
// so we need to make sure that anyside effect the journal would have caused
// during a commit (or similar op) is already applied to the copy.
state.stateObjects[addr] = object.deepCopy(state)
state.stateObjectsDirty[addr] = struct{}{} // Mark the copy dirty to force internal (code/state) commits
state.stateObjectsPending[addr] = struct{}{} // Mark the copy pending to force external (account) commits
}
}
// Above, we don't copy the actual journal. This means that if the copy is copied, the
// loop above will be a no-op, since the copy's journal is empty.
// Thus, here we iterate over stateObjects, to enable copies of copies
for addr := range db.stateObjectsPending {
if _, exist := state.stateObjects[addr]; !exist {
state.stateObjects[addr] = db.stateObjects[addr].deepCopy(state)
}
state.stateObjectsPending[addr] = struct{}{}
}
for addr := range db.stateObjectsDirty {
if _, exist := state.stateObjects[addr]; !exist {
state.stateObjects[addr] = db.stateObjects[addr].deepCopy(state)
}
state.stateObjectsDirty[addr] = struct{}{}
}
for hash, logs := range db.logs {
cpy := make([]*types.Log, len(logs))
for i, l := range logs {
cpy[i] = new(types.Log)
*cpy[i] = *l
}
state.logs[hash] = cpy
}
for hash, preimage := range db.preimages {
state.preimages[hash] = preimage
}
return state
}
// Snapshot returns an identifier for the current revision of the state.
func (db *DB) Snapshot() int {
id := db.nextRevisionID
db.nextRevisionID++
db.validRevisions = append(db.validRevisions, revision{id, db.journal.length()})
return id
}
// RevertToSnapshot reverts all state changes made since the given revision.
func (db *DB) RevertToSnapshot(revid int) {
// Find the snapshot in the stack of valid snapshots.
idx := sort.Search(len(db.validRevisions), func(i int) bool {
return db.validRevisions[i].id >= revid
})
if idx == len(db.validRevisions) || db.validRevisions[idx].id != revid {
panic(fmt.Errorf("revision id %v cannot be reverted", revid))
}
snapshot := db.validRevisions[idx].journalIndex
// Replay the journal to undo changes and remove invalidated snapshots
db.journal.revert(db, snapshot)
db.validRevisions = db.validRevisions[:idx]
}
// GetRefund returns the current value of the refund counter.
func (db *DB) GetRefund() uint64 {
return db.refund
}
// Finalise finalises the state by removing the db destructed objects
// and clears the journal as well as the refunds.
func (db *DB) Finalise(deleteEmptyObjects bool) {
// Commit validator changes in cache to stateObjects
// TODO: remove validator cache after commit
for addr, val := range db.stateValidators {
db.UpdateValidatorWrapper(addr, val)
}
for addr := range db.journal.dirties {
obj, exist := db.stateObjects[addr]
if !exist {
// ripeMD is 'touched' at block 1714175, in tx 0x1237f737031e40bcde4a8b7e717b2d15e3ecadfe49bb1bbc71ee9deb09c6fcf2
// That tx goes out of gas, and although the notion of 'touched' does not exist there, the
// touch-event will still be recorded in the journal. Since ripeMD is a special snowflake,
// it will persist in the journal even though the journal is reverted. In this special circumstance,
// it may exist in `s.journal.dirties` but not in `s.stateObjects`.
// Thus, we can safely ignore it here
continue
}
if obj.suicided || (deleteEmptyObjects && obj.empty()) {
obj.deleted = true
} else {
obj.finalise()
}
db.stateObjectsPending[addr] = struct{}{}
db.stateObjectsDirty[addr] = struct{}{}
}
// Invalidate journal because reverting across transactions is not allowed.
db.clearJournalAndRefund()
}
// IntermediateRoot computes the current root hash of the state trie.
// It is called in between transactions to get the root hash that
// goes into transaction receipts.
func (db *DB) IntermediateRoot(deleteEmptyObjects bool) common.Hash {
// Finalise all the dirty storage states and write them into the tries
db.Finalise(deleteEmptyObjects)
for addr := range db.stateObjectsPending {
obj := db.stateObjects[addr]
if obj.deleted {
db.deleteStateObject(obj)
} else {
obj.updateRoot(db.db)
db.updateStateObject(obj)
}
}
if len(db.stateObjectsPending) > 0 {
db.stateObjectsPending = make(map[common.Address]struct{})
}
// Track the amount of time wasted on hashing the account trie
if metrics.EnabledExpensive {
defer func(start time.Time) { db.AccountHashes += time.Since(start) }(time.Now())
}
return db.trie.Hash()
}
// Prepare sets the current transaction hash and index and block hash which is
// used when the EVM emits new state logs.
func (db *DB) Prepare(thash, bhash common.Hash, ti int) {
db.thash = thash
db.bhash = bhash
db.txIndex = ti
}
func (db *DB) clearJournalAndRefund() {
if len(db.journal.entries) > 0 {
db.journal = newJournal()
db.refund = 0
}
db.validRevisions = db.validRevisions[:0] // Snapshots can be created without journal entires
}
// Commit writes the state to the underlying in-memory trie database.
func (db *DB) Commit(deleteEmptyObjects bool) (root common.Hash, err error) {
// Finalize any pending changes and merge everything into the tries
db.IntermediateRoot(deleteEmptyObjects)
// Commit objects to the trie, measuring the elapsed time
for addr := range db.stateObjectsDirty {
if obj := db.stateObjects[addr]; !obj.deleted {
// Write any contract code associated with the state object
if obj.code != nil && obj.dirtyCode {
db.db.TrieDB().InsertBlob(common.BytesToHash(obj.CodeHash()), obj.code)
obj.dirtyCode = false
}
// Write any storage changes in the state object to its storage trie
if err := obj.CommitTrie(db.db); err != nil {
return common.Hash{}, err
}
}
}
if len(db.stateObjectsDirty) > 0 {
db.stateObjectsDirty = make(map[common.Address]struct{})
}
// Write the account trie changes, measuing the amount of wasted time
if metrics.EnabledExpensive {
defer func(start time.Time) { db.AccountCommits += time.Since(start) }(time.Now())
}
return db.trie.Commit(func(leaf []byte, parent common.Hash) error {
var account Account
if err := rlp.DecodeBytes(leaf, &account); err != nil {
return nil
}
if account.Root != emptyRoot {
db.db.TrieDB().Reference(account.Root, parent)
}
code := common.BytesToHash(account.CodeHash)
if code != emptyCode {
db.db.TrieDB().Reference(code, parent)
}
return nil
})
}
var (
errAddressNotPresent = errors.New("address not present in state")
)
// ValidatorWrapper retrieves the existing validator in the cache.
// The return value is a reference to the actual validator object in state.
// The modification on it will be committed to the state object when Finalize()
// is called.
func (db *DB) ValidatorWrapper(
addr common.Address,
) (*stk.ValidatorWrapper, error) {
// Read cache first
cached, ok := db.stateValidators[addr]
if ok {
return cached, nil
}
val, err := db.ValidatorWrapperCopy(addr)
if err != nil {
return nil, err
}
// populate cache if the validator is not in it
db.stateValidators[addr] = val
return val, nil
}
// ValidatorWrapperCopy retrieves the existing validator as a copy from state object.
// Changes on the copy has to be explicitly commited with UpdateValidatorWrapper()
// to take effect.
func (db *DB) ValidatorWrapperCopy(
addr common.Address,
) (*stk.ValidatorWrapper, error) {
by := db.GetCode(addr)
if len(by) == 0 {
return nil, errAddressNotPresent
}
val := stk.ValidatorWrapper{}
if err := rlp.DecodeBytes(by, &val); err != nil {
return nil, errors.Wrapf(
err,
"could not decode for %s",
common2.MustAddressToBech32(addr),
)
}
return &val, nil
}
// UpdateValidatorWrapper updates staking information of
// a given validator (including delegation info)
func (db *DB) UpdateValidatorWrapper(
addr common.Address, val *stk.ValidatorWrapper,
) error {
if err := val.SanityCheck(); err != nil {
return err
}
by, err := rlp.EncodeToBytes(val)
if err != nil {
return err
}
db.SetCode(addr, by)
// update cache
db.stateValidators[addr] = val
return nil
}
// SetValidatorFlag checks whether it is a validator object
func (db *DB) SetValidatorFlag(addr common.Address) {
db.SetState(addr, staking.IsValidatorKey, staking.IsValidator)
}
// UnsetValidatorFlag checks whether it is a validator object
func (db *DB) UnsetValidatorFlag(addr common.Address) {
db.SetState(addr, staking.IsValidatorKey, common.Hash{})
}
// IsValidator checks whether it is a validator object
func (db *DB) IsValidator(addr common.Address) bool {
so := db.getStateObject(addr)
if so == nil {
return false
}
return so.IsValidator(db.db)
}
var (
zero = numeric.ZeroDec()
)
// AddReward distributes the reward to all the delegators based on stake percentage.
func (db *DB) AddReward(snapshot *stk.ValidatorWrapper, reward *big.Int, shareLookup map[common.Address]numeric.Dec) error {
if reward.Cmp(common.Big0) == 0 {
utils.Logger().Info().RawJSON("validator", []byte(snapshot.String())).
Msg("0 given as reward")
return nil
}
curValidator, err := db.ValidatorWrapper(snapshot.Address)
if err != nil {
return errors.Wrapf(err, "failed to distribute rewards: validator does not exist")
}
if curValidator.Status == effective.Banned {
utils.Logger().Info().
RawJSON("slashed-validator", []byte(curValidator.String())).
Msg("cannot add reward to banned validator")
return nil
}
rewardPool := big.NewInt(0).Set(reward)
curValidator.BlockReward.Add(curValidator.BlockReward, reward)
// Payout commission
if r := snapshot.Validator.CommissionRates.Rate; r.GT(zero) {
commissionInt := r.MulInt(reward).RoundInt()
curValidator.Delegations[0].Reward.Add(
curValidator.Delegations[0].Reward,
commissionInt,
)
rewardPool.Sub(rewardPool, commissionInt)
}
// Payout each delegator's reward pro-rata
totalRewardForDelegators := big.NewInt(0).Set(rewardPool)
for i := range snapshot.Delegations {
delegation := snapshot.Delegations[i]
percentage, ok := shareLookup[delegation.DelegatorAddress]
if !ok {
return errors.Wrapf(err, "missing delegation shares for reward distribution")
}
rewardInt := percentage.MulInt(totalRewardForDelegators).RoundInt()
curDelegation := curValidator.Delegations[i]
curDelegation.Reward.Add(curDelegation.Reward, rewardInt)
rewardPool.Sub(rewardPool, rewardInt)
}
// The last remaining bit belongs to the validator (remember the validator's self delegation is
// always at index 0)
if rewardPool.Cmp(common.Big0) > 0 {
curValidator.Delegations[0].Reward.Add(curValidator.Delegations[0].Reward, rewardPool)
}
return nil
}