The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/core/state_processor.go

687 lines
23 KiB

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"encoding/binary"
"fmt"
"math/big"
"time"
lru "github.com/hashicorp/golang-lru"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/rlp"
"github.com/harmony-one/harmony/block"
"github.com/harmony-one/harmony/consensus/reward"
"github.com/harmony-one/harmony/core/rawdb"
"github.com/harmony-one/harmony/core/state"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/core/vm"
nodeconfig "github.com/harmony-one/harmony/internal/configs/node"
"github.com/harmony-one/harmony/internal/params"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/shard"
"github.com/harmony-one/harmony/staking/effective"
"github.com/harmony-one/harmony/staking/slash"
staking "github.com/harmony-one/harmony/staking/types"
"github.com/pkg/errors"
)
var (
ErrNoMigrationRequired = errors.New("No balance migration required")
ErrNoMigrationPossible = errors.New("No balance migration possible")
)
const (
resultCacheLimit = 64 // The number of cached results from processing blocks
)
// StateProcessor is a basic Processor, which takes care of transitioning
// state from one point to another.
//
// StateProcessor implements Processor.
type StateProcessor struct {
bc BlockChain // Canonical blockchain
beacon BlockChain // Beacon chain
resultCache *lru.Cache // Cache for result after a certain block is processed
}
// this structure is cached, and each individual element is returned
type ProcessorResult struct {
Receipts types.Receipts
CxReceipts types.CXReceipts
StakeMsgs []staking.StakeMsg
Logs []*types.Log
UsedGas uint64
Reward reward.Reader
State *state.DB
}
// NewStateProcessor initialises a new StateProcessor.
func NewStateProcessor(
bc BlockChain, beacon BlockChain,
) *StateProcessor {
if bc == nil {
panic("bc is nil")
}
if beacon == nil {
panic("beacon is nil")
}
resultCache, _ := lru.New(resultCacheLimit)
return &StateProcessor{
bc: bc,
beacon: beacon,
resultCache: resultCache,
}
}
type UsedGas = uint64
// Process processes the state changes according to the Ethereum rules by running
// the transaction messages using the statedb and applying any rewards to both
// the processor (coinbase) and any included uncles.
//
// Process returns the receipts and logs accumulated during the process and
// returns the amount of gas that was used in the process. If any of the
// transactions failed to execute due to insufficient gas it will return an error.
func (p *StateProcessor) Process(
block *types.Block, statedb *state.DB, cfg vm.Config, readCache bool,
) (
types.Receipts, types.CXReceipts, []staking.StakeMsg,
[]*types.Log, UsedGas, reward.Reader, *state.DB, error,
) {
cacheKey := block.Hash()
if readCache {
if cached, ok := p.resultCache.Get(cacheKey); ok {
// Return the cached result to avoid process the same block again.
// Only the successful results are cached in case for retry.
result := cached.(*ProcessorResult)
utils.Logger().Info().Str("block num", block.Number().String()).Msg("result cache hit.")
return result.Receipts, result.CxReceipts, result.StakeMsgs, result.Logs, result.UsedGas, result.Reward, result.State, nil
}
}
var (
receipts types.Receipts
outcxs types.CXReceipts
incxs = block.IncomingReceipts()
usedGas = new(uint64)
header = block.Header()
allLogs []*types.Log
gp = new(GasPool).AddGas(block.GasLimit())
blockStakeMsgs = make([]staking.StakeMsg, 0)
)
beneficiary, err := p.bc.GetECDSAFromCoinbase(header)
if err != nil {
return nil, nil, nil, nil, 0, nil, statedb, err
}
processTxsAndStxs := true
cxReceipt, err := MayBalanceMigration(gp, header, statedb, p.bc)
if err != nil {
if errors.Is(err, ErrNoMigrationPossible) {
// ran out of accounts
processTxsAndStxs = false
}
if !errors.Is(err, ErrNoMigrationRequired) && !errors.Is(err, ErrNoMigrationPossible) {
return nil, nil, nil, nil, 0, nil, statedb, err
}
} else {
if cxReceipt != nil {
outcxs = append(outcxs, cxReceipt)
// only 1 cx per block
processTxsAndStxs = false
}
}
if processTxsAndStxs {
startTime := time.Now()
// Iterate over and process the individual transactions
for i, tx := range block.Transactions() {
statedb.Prepare(tx.Hash(), block.Hash(), i)
receipt, cxReceipt, stakeMsgs, _, err := ApplyTransaction(
p.bc, &beneficiary, gp, statedb, header, tx, usedGas, cfg,
)
if err != nil {
return nil, nil, nil, nil, 0, nil, statedb, err
}
receipts = append(receipts, receipt)
if cxReceipt != nil {
outcxs = append(outcxs, cxReceipt)
}
if len(stakeMsgs) > 0 {
blockStakeMsgs = append(blockStakeMsgs, stakeMsgs...)
}
allLogs = append(allLogs, receipt.Logs...)
}
utils.Logger().Debug().Int64("elapsed time", time.Now().Sub(startTime).Milliseconds()).Msg("Process Normal Txns")
startTime = time.Now()
// Iterate over and process the staking transactions
L := len(block.Transactions())
for i, tx := range block.StakingTransactions() {
statedb.Prepare(tx.Hash(), block.Hash(), i+L)
receipt, _, err := ApplyStakingTransaction(
p.bc, &beneficiary, gp, statedb, header, tx, usedGas, cfg,
)
if err != nil {
return nil, nil, nil, nil, 0, nil, statedb, err
}
receipts = append(receipts, receipt)
allLogs = append(allLogs, receipt.Logs...)
}
utils.Logger().Debug().Int64("elapsed time", time.Now().Sub(startTime).Milliseconds()).Msg("Process Staking Txns")
}
// incomingReceipts should always be processed
// after transactions (to be consistent with the block proposal)
for _, cx := range block.IncomingReceipts() {
if err := ApplyIncomingReceipt(
p.bc.Config(), statedb, header, cx,
); err != nil {
return nil, nil,
nil, nil, 0, nil, statedb, errors.New("[Process] Cannot apply incoming receipts")
}
}
slashes := slash.Records{}
if s := header.Slashes(); len(s) > 0 {
if err := rlp.DecodeBytes(s, &slashes); err != nil {
return nil, nil, nil, nil, 0, nil, statedb, errors.New(
"[Process] Cannot finalize block",
)
}
}
if err := MayShardReduction(p.bc, statedb, header); err != nil {
return nil, nil, nil, nil, 0, nil, statedb, err
}
// Finalize the block, applying any consensus engine specific extras (e.g. block rewards)
sigsReady := make(chan bool)
go func() {
// Block processing don't need to block on reward computation as in block proposal
sigsReady <- true
}()
_, payout, err := p.bc.Engine().Finalize(
p.bc,
p.beacon,
header, statedb, block.Transactions(),
receipts, outcxs, incxs, block.StakingTransactions(), slashes, sigsReady, func() uint64 { return header.ViewID().Uint64() },
)
if err != nil {
return nil, nil, nil, nil, 0, nil, statedb, errors.WithMessage(err, "[Process] Cannot finalize block")
}
result := &ProcessorResult{
Receipts: receipts,
CxReceipts: outcxs,
StakeMsgs: blockStakeMsgs,
Logs: allLogs,
UsedGas: *usedGas,
Reward: payout,
State: statedb,
}
p.resultCache.Add(cacheKey, result)
return receipts, outcxs, blockStakeMsgs, allLogs, *usedGas, payout, statedb, nil
}
// CacheProcessorResult caches the process result on the cache key.
func (p *StateProcessor) CacheProcessorResult(cacheKey interface{}, result *ProcessorResult) {
p.resultCache.Add(cacheKey, result)
}
// return true if it is valid
func getTransactionType(
config *params.ChainConfig, header *block.Header, tx *types.Transaction,
) types.TransactionType {
if header.ShardID() == tx.ShardID() &&
(!config.AcceptsCrossTx(header.Epoch()) ||
tx.ShardID() == tx.ToShardID()) {
return types.SameShardTx
}
numShards := shard.Schedule.InstanceForEpoch(header.Epoch()).NumShards()
// Assuming here all the shards are consecutive from 0 to n-1, n is total number of shards
if tx.ShardID() != tx.ToShardID() &&
header.ShardID() == tx.ShardID() &&
tx.ToShardID() < numShards {
return types.SubtractionOnly
}
return types.InvalidTx
}
// ApplyTransaction attempts to apply a transaction to the given state database
// and uses the input parameters for its environment. It returns the receipt
// for the transaction, gas used and an error if the transaction failed,
// indicating the block was invalid.
func ApplyTransaction(bc ChainContext, author *common.Address, gp *GasPool, statedb *state.DB, header *block.Header, tx *types.Transaction, usedGas *uint64, cfg vm.Config) (*types.Receipt, *types.CXReceipt, []staking.StakeMsg, uint64, error) {
config := bc.Config()
txType := getTransactionType(bc.Config(), header, tx)
if txType == types.InvalidTx {
return nil, nil, nil, 0, errors.New("Invalid Transaction Type")
}
if txType != types.SameShardTx && !config.AcceptsCrossTx(header.Epoch()) {
return nil, nil, nil, 0, errors.Errorf(
"cannot handle cross-shard transaction until after epoch %v (now %v)",
config.CrossTxEpoch, header.Epoch(),
)
}
var signer types.Signer
if tx.IsEthCompatible() {
if !config.IsEthCompatible(header.Epoch()) {
return nil, nil, nil, 0, errors.New("ethereum compatible transactions not supported at current epoch")
}
signer = types.NewEIP155Signer(config.EthCompatibleChainID)
} else {
signer = types.MakeSigner(config, header.Epoch())
}
msg, err := tx.AsMessage(signer)
// skip signer err for additiononly tx
if err != nil {
return nil, nil, nil, 0, err
}
// Create a new context to be used in the EVM environment
context := NewEVMContext(msg, header, bc, author)
context.TxType = txType
// Create a new environment which holds all relevant information
// about the transaction and calling mechanisms.
vmenv := vm.NewEVM(context, statedb, config, cfg)
// Apply the transaction to the current state (included in the env)
result, err := ApplyMessage(vmenv, msg, gp)
if err != nil {
return nil, nil, nil, 0, fmt.Errorf("apply failed from='%s' balance='%s' type='%s' value='%s': %w", msg.From().Hex(), statedb.GetBalance(msg.From()).String(), txType, tx.Value().String(), err)
}
// Update the state with pending changes
var root []byte
if config.IsS3(header.Epoch()) {
statedb.Finalise(true)
} else {
root = statedb.IntermediateRoot(config.IsS3(header.Epoch())).Bytes()
}
*usedGas += result.UsedGas
failedExe := result.VMErr != nil
// Create a new receipt for the transaction, storing the intermediate root and gas used by the tx
// based on the eip phase, we're passing whether the root touch-delete accounts.
receipt := types.NewReceipt(root, failedExe, *usedGas)
receipt.TxHash = tx.Hash()
receipt.GasUsed = result.UsedGas
// if the transaction created a contract, store the creation address in the receipt.
if msg.To() == nil {
receipt.ContractAddress = crypto.CreateAddress(vmenv.Context.Origin, tx.Nonce())
}
// Set the receipt logs and create a bloom for filtering
if config.IsReceiptLog(header.Epoch()) {
receipt.Logs = statedb.GetLogs(tx.Hash(), header.Number().Uint64(), header.Hash())
}
receipt.Bloom = types.CreateBloom(types.Receipts{receipt})
var cxReceipt *types.CXReceipt
// Do not create cxReceipt if EVM call failed
if txType == types.SubtractionOnly && !failedExe {
if vmenv.CXReceipt != nil {
return nil, nil, nil, 0, errors.New("cannot have cross shard receipt via precompile and directly")
}
cxReceipt = &types.CXReceipt{
TxHash: tx.Hash(),
From: msg.From(),
To: msg.To(),
ShardID: tx.ShardID(),
ToShardID: tx.ToShardID(),
Amount: msg.Value(),
}
} else {
if !failedExe {
if vmenv.CXReceipt != nil {
cxReceipt = vmenv.CXReceipt
// this tx.Hash needs to be the "original" tx.Hash
// since, in effect, we have added
// support for cross shard txs
// to eth txs
cxReceipt.TxHash = tx.HashByType()
}
} else {
cxReceipt = nil
}
}
return receipt, cxReceipt, vmenv.StakeMsgs, result.UsedGas, err
}
// ApplyStakingTransaction attempts to apply a staking transaction to the given state database
// and uses the input parameters for its environment. It returns the receipt
// for the staking transaction, gas used and an error if the transaction failed,
// indicating the block was invalid.
// staking transaction will use the code field in the account to store the staking information
func ApplyStakingTransaction(
bc ChainContext, author *common.Address, gp *GasPool, statedb *state.DB,
header *block.Header, tx *staking.StakingTransaction, usedGas *uint64, cfg vm.Config) (receipt *types.Receipt, gas uint64, err error) {
config := bc.Config()
msg, err := StakingToMessage(tx, header.Number())
if err != nil {
return nil, 0, err
}
// Create a new context to be used in the EVM environment
context := NewEVMContext(msg, header, bc, author)
// Create a new environment which holds all relevant information
// about the transaction and calling mechanisms.
vmenv := vm.NewEVM(context, statedb, config, cfg)
// Apply the transaction to the current state (included in the env)
gas, err = ApplyStakingMessage(vmenv, msg, gp, bc)
if err != nil {
return nil, 0, err
}
// Update the state with pending changes
var root []byte
if config.IsS3(header.Epoch()) {
statedb.Finalise(true)
} else {
root = statedb.IntermediateRoot(config.IsS3(header.Epoch())).Bytes()
}
*usedGas += gas
receipt = types.NewReceipt(root, false, *usedGas)
receipt.TxHash = tx.Hash()
receipt.GasUsed = gas
if config.IsReceiptLog(header.Epoch()) {
receipt.Logs = statedb.GetLogs(tx.Hash(), header.Number().Uint64(), header.Hash())
utils.Logger().Info().Interface("CollectReward", receipt.Logs)
}
return receipt, gas, nil
}
// ApplyIncomingReceipt will add amount into ToAddress in the receipt
func ApplyIncomingReceipt(
config *params.ChainConfig, db *state.DB,
header *block.Header, cxp *types.CXReceiptsProof,
) error {
if cxp == nil {
return nil
}
for _, cx := range cxp.Receipts {
if cx == nil || cx.To == nil { // should not happend
return errors.Errorf(
"ApplyIncomingReceipts: Invalid incomingReceipt! %v", cx,
)
}
utils.Logger().Info().Interface("receipt", cx).
Msgf("ApplyIncomingReceipts: ADDING BALANCE %d", cx.Amount)
if !db.Exist(*cx.To) {
db.CreateAccount(*cx.To)
}
db.AddBalance(*cx.To, cx.Amount)
db.IntermediateRoot(config.IsS3(header.Epoch()))
}
return nil
}
// StakingToMessage returns the staking transaction as a core.Message.
// requires a signer to derive the sender.
// put it here to avoid cyclic import
func StakingToMessage(
tx *staking.StakingTransaction, blockNum *big.Int,
) (types.Message, error) {
payload, err := tx.RLPEncodeStakeMsg()
if err != nil {
return types.Message{}, err
}
from, err := tx.SenderAddress()
if err != nil {
return types.Message{}, err
}
msg := types.NewStakingMessage(from, tx.Nonce(), tx.GasLimit(), tx.GasPrice(), payload, blockNum)
stkType := tx.StakingType()
if _, ok := types.StakingTypeMap[stkType]; !ok {
return types.Message{}, staking.ErrInvalidStakingKind
}
msg.SetType(types.StakingTypeMap[stkType])
return msg, nil
}
// MayShardReduction handles the change in the number of Shards. It will mark the affected validator as inactive.
// This function does not handle all cases, only for ShardNum from 4 to 2.
func MayShardReduction(bc ChainContext, statedb *state.DB, header *block.Header) error {
isBeaconChain := header.ShardID() == shard.BeaconChainShardID
isLastBlock := shard.Schedule.IsLastBlock(header.Number().Uint64())
networkType := nodeconfig.GetDefaultConfig().GetNetworkType()
isTestnet := networkType == nodeconfig.Testnet
isMainnet := networkType == nodeconfig.Mainnet
isReducenet := isMainnet || isTestnet
if !(isReducenet && isBeaconChain && isLastBlock) {
return nil
}
curInstance := shard.Schedule.InstanceForEpoch(header.Epoch())
nextEpoch := big.NewInt(header.Epoch().Int64() + 1)
nextInstance := shard.Schedule.InstanceForEpoch(nextEpoch)
curNumShards := curInstance.NumShards()
nextNumShards := nextInstance.NumShards()
if curNumShards == nextNumShards {
return nil
}
if curNumShards != 4 && nextNumShards != 2 {
return errors.New("can only handle the reduction from 4 to 2")
}
addresses, err := bc.ReadValidatorList()
if err != nil {
return err
}
for _, address := range addresses {
validator, err := statedb.ValidatorWrapper(address, true, false)
if err != nil {
return err
}
if validator.Status == effective.Inactive || validator.Status == effective.Banned {
continue
}
for _, pubKey := range validator.SlotPubKeys {
curShard := new(big.Int).Mod(pubKey.Big(), big.NewInt(int64(curNumShards))).Uint64()
nextShard := new(big.Int).Mod(pubKey.Big(), big.NewInt(int64(nextNumShards))).Uint64()
// background: any editValidator transactions take effect at next epoch.
// assumption: shard reduction happens at epoch X.
// validators who wish to continue validating after the shard reduction occurs
// must have a different node running with a key from shard 0 or 1.
// this key must be added to the validator during epoch X - 1
// and keys belonging to shards 2 and 3 removed at that point in time.
// the different node running will be unelected, but continue syncing in X - 1.
// if elected, it will start validating in epoch X.
// once epoch X begins, they can terminate servers from shards 2 and 3.
if curShard >= uint64(nextNumShards) || curShard != nextShard {
validator.Status = effective.Inactive
break
}
}
}
statedb.IntermediateRoot(bc.Config().IsS3(header.Epoch()))
return nil
}
func MayBalanceMigration(
gasPool *GasPool,
header *block.Header,
db *state.DB,
chain BlockChain,
) (*types.CXReceipt, error) {
config := chain.Config()
isMainnet := nodeconfig.GetDefaultConfig().GetNetworkType() == nodeconfig.Mainnet
if isMainnet {
if config.IsOneEpochBeforeHIP30(header.Epoch()) {
nxtShards := shard.Schedule.InstanceForEpoch(
new(big.Int).Add(header.Epoch(), common.Big1),
).NumShards()
if myShard := chain.ShardID(); myShard >= nxtShards {
// i need to send my balances to the destination shard
// however, i do not know when the next epoch will begin
// because only shard 0 can govern that
// so i will just generate one cross shard transaction
// in each block of the epoch. this epoch is defined by
// nxtShards = 2 and curShards = 4
parentRoot := chain.GetBlockByHash(
header.ParentHash(),
).Root() // for examining MPT at this root, should exist
cx, err := generateOneMigrationMessage(
db, parentRoot,
header.NumberU64(),
myShard, uint32(1), // dstShard is always 1
)
if err != nil {
return nil, err
}
if cx != nil {
gasPool.SubGas(params.TxGasXShard)
return cx, nil
}
// both err and cx are nil, which means we
// ran out of eligible accounts in MPT
return nil, ErrNoMigrationPossible
}
}
}
// for testing balance migration on devnet
isDevnet := nodeconfig.GetDefaultConfig().GetNetworkType() == nodeconfig.Devnet
isLocalnet := nodeconfig.GetDefaultConfig().GetNetworkType() == nodeconfig.Localnet
if isDevnet || isLocalnet {
if config.IsOneEpochBeforeHIP30(header.Epoch()) {
if myShard := chain.ShardID(); myShard != shard.BeaconChainShardID {
parentRoot := chain.GetBlockByHash(
header.ParentHash(),
).Root() // for examining MPT at this root, should exist
// for examining MPT at this root, should exist
cx, err := generateOneMigrationMessage(
db, parentRoot,
header.NumberU64(),
myShard, shard.BeaconChainShardID, // dstShard
)
if err != nil {
return nil, errors.Wrap(err, "generateOneMigrationMessage")
}
if cx != nil {
gasPool.SubGas(params.TxGasXShard)
return cx, nil
}
//return nil, errors.Wrap(ErrNoMigrationPossible, "MayBalanceMigration: cx is nil")
return nil, nil
}
}
}
return nil, ErrNoMigrationRequired
}
func generateOneMigrationMessage(
statedb *state.DB,
parentRoot common.Hash,
number uint64,
myShard uint32,
dstShard uint32,
) (*types.CXReceipt, error) {
// set up txHash prefix
txHash := make([]byte,
// 8 for uint64 block number
// 4 for uint32 shard id
8+4,
)
binary.LittleEndian.PutUint64(txHash[:8], number)
binary.LittleEndian.PutUint32(txHash[8:], myShard)
// open the trie, as of previous block.
// in this block we aren't processing transactions anyway.
trie, err := statedb.Database().OpenTrie(
parentRoot,
)
if err != nil {
return nil, err
}
// disk db, for use by rawdb
// this is same as blockchain.ChainDb
db := statedb.Database().DiskDB()
// start the iteration
accountIterator := trie.NodeIterator(nil)
// TODO: cache this iteration?
for accountIterator.Next(true) {
// leaf means leaf node of the MPT, which is an account
// the leaf key is the address
if accountIterator.Leaf() {
key := accountIterator.LeafKey()
preimage := rawdb.ReadPreimage(db, common.BytesToHash(key))
if len(preimage) == 0 {
return nil, errors.New(
fmt.Sprintf(
"cannot find preimage for %x", key,
),
)
}
address := common.BytesToAddress(preimage)
// skip blank address
if address == (common.Address{}) {
continue
}
// deserialize
var account state.Account
if err = rlp.DecodeBytes(accountIterator.LeafBlob(), &account); err != nil {
return nil, err
}
// skip contracts
if common.BytesToHash(account.CodeHash) != state.EmptyCodeHash {
continue
}
// skip anything with storage
if account.Root != state.EmptyRootHash {
continue
}
// skip no (or negative?) balance
if account.Balance.Cmp(common.Big0) <= 0 {
continue
}
// for safety, fetch the latest balance (again)
balance := statedb.GetBalance(address)
if balance.Cmp(common.Big0) <= 0 {
continue
}
// adds a journal entry (dirtied)
statedb.SubBalance(address, balance)
// create the receipt
res := &types.CXReceipt{
From: address,
To: &address,
ShardID: myShard,
ToShardID: dstShard,
Amount: balance,
TxHash: common.BytesToHash(txHash),
}
// move from dirty to pending, same as b/w 2 txs
statedb.Finalise(true)
return res, nil
}
}
return nil, nil
}