The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/node/node.go

761 lines
25 KiB

package node
import (
"context"
"crypto/ecdsa"
"fmt"
"math/big"
"os"
"strings"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/harmony-one/bls/ffi/go/bls"
"github.com/harmony-one/harmony/api/client"
msg_pb "github.com/harmony-one/harmony/api/proto/message"
proto_node "github.com/harmony-one/harmony/api/proto/node"
"github.com/harmony-one/harmony/api/service"
"github.com/harmony-one/harmony/api/service/syncing"
"github.com/harmony-one/harmony/api/service/syncing/downloader"
"github.com/harmony-one/harmony/consensus"
"github.com/harmony-one/harmony/core"
"github.com/harmony-one/harmony/core/rawdb"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/internal/chain"
common2 "github.com/harmony-one/harmony/internal/common"
nodeconfig "github.com/harmony-one/harmony/internal/configs/node"
"github.com/harmony-one/harmony/internal/params"
"github.com/harmony-one/harmony/internal/shardchain"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/node/worker"
"github.com/harmony-one/harmony/p2p"
"github.com/harmony-one/harmony/shard"
"github.com/harmony-one/harmony/shard/committee"
"github.com/harmony-one/harmony/staking/slash"
staking "github.com/harmony-one/harmony/staking/types"
"github.com/harmony-one/harmony/webhooks"
libp2p_pubsub "github.com/libp2p/go-libp2p-pubsub"
"github.com/pkg/errors"
"golang.org/x/sync/semaphore"
)
// State is a state of a node.
type State byte
// All constants except the NodeLeader below are for validators only.
const (
NodeInit State = iota // Node just started, before contacting BeaconChain
NodeWaitToJoin // Node contacted BeaconChain, wait to join Shard
NodeNotInSync // Node out of sync, might be just joined Shard or offline for a period of time
NodeOffline // Node is offline
NodeReadyForConsensus // Node is ready for doing consensus
NodeDoingConsensus // Node is already doing consensus
NodeLeader // Node is the leader of some shard.
)
const (
// NumTryBroadCast is the number of times trying to broadcast
NumTryBroadCast = 3
// ClientRxQueueSize is the number of client messages to queue before tail-dropping.
ClientRxQueueSize = 16384
// ShardRxQueueSize is the number of shard messages to queue before tail-dropping.
ShardRxQueueSize = 16384
// GlobalRxQueueSize is the number of global messages to queue before tail-dropping.
GlobalRxQueueSize = 16384
// ClientRxWorkers is the number of concurrent client message handlers.
ClientRxWorkers = 8
// ShardRxWorkers is the number of concurrent shard message handlers.
ShardRxWorkers = 32
// GlobalRxWorkers is the number of concurrent global message handlers.
GlobalRxWorkers = 32
)
func (state State) String() string {
switch state {
case NodeInit:
return "NodeInit"
case NodeWaitToJoin:
return "NodeWaitToJoin"
case NodeNotInSync:
return "NodeNotInSync"
case NodeOffline:
return "NodeOffline"
case NodeReadyForConsensus:
return "NodeReadyForConsensus"
case NodeDoingConsensus:
return "NodeDoingConsensus"
case NodeLeader:
return "NodeLeader"
}
return "Unknown"
}
const (
maxBroadcastNodes = 10 // broadcast at most maxBroadcastNodes peers that need in sync
broadcastTimeout int64 = 60 * 1000000000 // 1 mins
//SyncIDLength is the length of bytes for syncID
SyncIDLength = 20
)
// use to push new block to outofsync node
type syncConfig struct {
timestamp int64
client *downloader.Client
}
// Node represents a protocol-participating node in the network
type Node struct {
Consensus *consensus.Consensus // Consensus object containing all Consensus related data (e.g. committee members, signatures, commits)
BlockChannel chan *types.Block // The channel to send newly proposed blocks
ConfirmedBlockChannel chan *types.Block // The channel to send confirmed blocks
BeaconBlockChannel chan *types.Block // The channel to send beacon blocks for non-beaconchain nodes
pendingCXReceipts map[string]*types.CXReceiptsProof // All the receipts received but not yet processed for Consensus
pendingCXMutex sync.Mutex
// Shard databases
shardChains shardchain.Collection
Client *client.Client // The presence of a client object means this node will also act as a client
SelfPeer p2p.Peer
// TODO: Neighbors should store only neighbor nodes in the same shard
Neighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer
State State // State of the Node
stateMutex sync.Mutex // mutex for change node state
// BeaconNeighbors store only neighbor nodes in the beacon chain shard
BeaconNeighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer
TxPool *core.TxPool
CxPool *core.CxPool // pool for missing cross shard receipts resend
Worker, BeaconWorker *worker.Worker
downloaderServer *downloader.Server
// Syncing component.
syncID [SyncIDLength]byte // a unique ID for the node during the state syncing process with peers
stateSync, beaconSync *syncing.StateSync
peerRegistrationRecord map[string]*syncConfig // record registration time (unixtime) of peers begin in syncing
SyncingPeerProvider SyncingPeerProvider
// The p2p host used to send/receive p2p messages
host p2p.Host
// Service manager.
serviceManager *service.Manager
ContractDeployerKey *ecdsa.PrivateKey
ContractDeployerCurrentNonce uint64 // The nonce of the deployer contract at current block
ContractAddresses []common.Address
// Duplicated Ping Message Received
duplicatedPing sync.Map
// Channel to notify consensus service to really start consensus
startConsensus chan struct{}
// node configuration, including group ID, shard ID, etc
NodeConfig *nodeconfig.ConfigType
// Chain configuration.
chainConfig params.ChainConfig
// map of service type to its message channel.
serviceMessageChan map[service.Type]chan *msg_pb.Message
isFirstTime bool // the node was started with a fresh database
unixTimeAtNodeStart int64
// KeysToAddrs holds the addresses of bls keys run by the node
KeysToAddrs map[string]common.Address
keysToAddrsEpoch *big.Int
keysToAddrsMutex sync.Mutex
// TransactionErrorSink contains error messages for any failed transaction, in memory only
TransactionErrorSink *types.TransactionErrorSink
}
// Blockchain returns the blockchain for the node's current shard.
func (node *Node) Blockchain() *core.BlockChain {
shardID := node.NodeConfig.ShardID
bc, err := node.shardChains.ShardChain(shardID)
if err != nil {
utils.Logger().Error().
Uint32("shardID", shardID).
Err(err).
Msg("cannot get shard chain")
}
return bc
}
// Beaconchain returns the beaconchain from node.
func (node *Node) Beaconchain() *core.BlockChain {
bc, err := node.shardChains.ShardChain(shard.BeaconChainShardID)
if err != nil {
utils.Logger().Error().Err(err).Msg("cannot get beaconchain")
}
return bc
}
// TODO: make this batch more transactions
func (node *Node) tryBroadcast(tx *types.Transaction) {
msg := proto_node.ConstructTransactionListMessageAccount(types.Transactions{tx})
shardGroupID := nodeconfig.NewGroupIDByShardID(nodeconfig.ShardID(tx.ShardID()))
utils.Logger().Info().Str("shardGroupID", string(shardGroupID)).Msg("tryBroadcast")
for attempt := 0; attempt < NumTryBroadCast; attempt++ {
if err := node.host.SendMessageToGroups([]nodeconfig.GroupID{shardGroupID},
p2p.ConstructMessage(msg)); err != nil && attempt < NumTryBroadCast {
utils.Logger().Error().Int("attempt", attempt).Msg("Error when trying to broadcast tx")
} else {
break
}
}
}
func (node *Node) tryBroadcastStaking(stakingTx *staking.StakingTransaction) {
msg := proto_node.ConstructStakingTransactionListMessageAccount(staking.StakingTransactions{stakingTx})
shardGroupID := nodeconfig.NewGroupIDByShardID(
nodeconfig.ShardID(shard.BeaconChainShardID),
) // broadcast to beacon chain
utils.Logger().Info().Str("shardGroupID", string(shardGroupID)).Msg("tryBroadcastStaking")
for attempt := 0; attempt < NumTryBroadCast; attempt++ {
if err := node.host.SendMessageToGroups([]nodeconfig.GroupID{shardGroupID},
p2p.ConstructMessage(msg)); err != nil && attempt < NumTryBroadCast {
utils.Logger().Error().Int("attempt", attempt).Msg("Error when trying to broadcast staking tx")
} else {
break
}
}
}
// Add new transactions to the pending transaction list.
func (node *Node) addPendingTransactions(newTxs types.Transactions) []error {
poolTxs := types.PoolTransactions{}
for _, tx := range newTxs {
poolTxs = append(poolTxs, tx)
}
errs := node.TxPool.AddRemotes(poolTxs)
pendingCount, queueCount := node.TxPool.Stats()
utils.Logger().Info().
Int("length of newTxs", len(newTxs)).
Int("totalPending", pendingCount).
Int("totalQueued", queueCount).
Msg("Got more transactions")
return errs
}
// Add new staking transactions to the pending staking transaction list.
func (node *Node) addPendingStakingTransactions(newStakingTxs staking.StakingTransactions) []error {
if node.NodeConfig.ShardID == shard.BeaconChainShardID &&
node.Blockchain().Config().IsPreStaking(node.Blockchain().CurrentHeader().Epoch()) {
poolTxs := types.PoolTransactions{}
for _, tx := range newStakingTxs {
poolTxs = append(poolTxs, tx)
}
errs := node.TxPool.AddRemotes(poolTxs)
pendingCount, queueCount := node.TxPool.Stats()
utils.Logger().Info().
Int("length of newStakingTxs", len(poolTxs)).
Int("totalPending", pendingCount).
Int("totalQueued", queueCount).
Msg("Got more staking transactions")
return errs
}
return make([]error, len(newStakingTxs))
}
// AddPendingStakingTransaction staking transactions
func (node *Node) AddPendingStakingTransaction(
newStakingTx *staking.StakingTransaction,
) error {
if node.NodeConfig.ShardID == shard.BeaconChainShardID {
errs := node.addPendingStakingTransactions(staking.StakingTransactions{newStakingTx})
for i := range errs {
if errs[i] != nil {
return errs[i]
}
}
utils.Logger().Info().Str("Hash", newStakingTx.Hash().Hex()).Msg("Broadcasting Staking Tx")
node.tryBroadcastStaking(newStakingTx)
}
return nil
}
// AddPendingTransaction adds one new transaction to the pending transaction list.
// This is only called from SDK.
func (node *Node) AddPendingTransaction(newTx *types.Transaction) error {
if newTx.ShardID() == node.NodeConfig.ShardID {
errs := node.addPendingTransactions(types.Transactions{newTx})
for i := range errs {
if errs[i] != nil {
return errs[i]
}
}
utils.Logger().Info().Str("Hash", newTx.Hash().Hex()).Msg("Broadcasting Tx")
node.tryBroadcast(newTx)
}
return nil
}
// AddPendingReceipts adds one receipt message to pending list.
func (node *Node) AddPendingReceipts(receipts *types.CXReceiptsProof) {
node.pendingCXMutex.Lock()
defer node.pendingCXMutex.Unlock()
if receipts.ContainsEmptyField() {
utils.Logger().Info().
Int("totalPendingReceipts", len(node.pendingCXReceipts)).
Msg("CXReceiptsProof contains empty field")
return
}
blockNum := receipts.Header.Number().Uint64()
shardID := receipts.Header.ShardID()
// Sanity checks
if err := node.Blockchain().Validator().ValidateCXReceiptsProof(receipts); err != nil {
if !strings.Contains(err.Error(), rawdb.MsgNoShardStateFromDB) {
utils.Logger().Error().Err(err).Msg("[AddPendingReceipts] Invalid CXReceiptsProof")
return
}
}
// cross-shard receipt should not be coming from our shard
if s := node.Consensus.ShardID; s == shardID {
utils.Logger().Info().
Uint32("my-shard", s).
Uint32("receipt-shard", shardID).
Msg("ShardID of incoming receipt was same as mine")
return
}
if e := receipts.Header.Epoch(); blockNum == 0 ||
!node.Blockchain().Config().AcceptsCrossTx(e) {
utils.Logger().Info().
Uint64("incoming-epoch", e.Uint64()).
Msg("Incoming receipt had meaningless epoch")
return
}
key := utils.GetPendingCXKey(shardID, blockNum)
// DDoS protection
const maxCrossTxnSize = 4096
if s := len(node.pendingCXReceipts); s >= maxCrossTxnSize {
utils.Logger().Info().
Int("pending-cx-receipts-size", s).
Int("pending-cx-receipts-limit", maxCrossTxnSize).
Msg("Current pending cx-receipts reached size limit")
return
}
if _, ok := node.pendingCXReceipts[key]; ok {
utils.Logger().Info().
Int("totalPendingReceipts", len(node.pendingCXReceipts)).
Msg("Already Got Same Receipt message")
return
}
node.pendingCXReceipts[key] = receipts
utils.Logger().Info().
Int("totalPendingReceipts", len(node.pendingCXReceipts)).
Msg("Got ONE more receipt message")
}
// Start kicks off the node message handling
func (node *Node) Start() error {
allTopics := node.host.AllTopics()
if len(allTopics) == 0 {
return errors.New("have no topics to listen to")
}
weighted := make([]*semaphore.Weighted, len(allTopics))
const maxMessageHandlers = 200
ctx := context.Background()
ownID := node.host.GetID()
errChan := make(chan error)
for i, topic := range allTopics {
sub, err := topic.Subscribe()
if err != nil {
return err
}
weighted[i] = semaphore.NewWeighted(maxMessageHandlers)
msgChan := make(chan *libp2p_pubsub.Message)
go func(msgChan chan *libp2p_pubsub.Message, sem *semaphore.Weighted) {
for msg := range msgChan {
payload := msg.GetData()
if len(payload) < p2pMsgPrefixSize {
continue
}
if sem.TryAcquire(1) {
go func() {
node.HandleMessage(
payload[p2pMsgPrefixSize:], msg.GetFrom(),
)
sem.Release(1)
}()
} else {
utils.Logger().Info().
Msg("could not acquire semaphore to process incoming message")
}
}
}(msgChan, weighted[i])
go func(msgChan chan *libp2p_pubsub.Message) {
for {
nextMsg, err := sub.Next(ctx)
if err != nil {
errChan <- err
continue
}
if nextMsg.GetFrom() == ownID {
continue
}
msgChan <- nextMsg
}
}(msgChan)
}
for err := range errChan {
utils.Logger().Info().Err(err).Msg("issue while handling incoming p2p message")
}
// NOTE never gets here
return nil
}
// GetSyncID returns the syncID of this node
func (node *Node) GetSyncID() [SyncIDLength]byte {
return node.syncID
}
// New creates a new node.
func New(
host p2p.Host,
consensusObj *consensus.Consensus,
chainDBFactory shardchain.DBFactory,
blacklist map[common.Address]struct{},
isArchival bool,
) *Node {
node := Node{}
node.unixTimeAtNodeStart = time.Now().Unix()
node.TransactionErrorSink = types.NewTransactionErrorSink()
// Get the node config that's created in the harmony.go program.
if consensusObj != nil {
node.NodeConfig = nodeconfig.GetShardConfig(consensusObj.ShardID)
} else {
node.NodeConfig = nodeconfig.GetDefaultConfig()
}
copy(node.syncID[:], GenerateRandomString(SyncIDLength))
if host != nil {
node.host = host
node.SelfPeer = host.GetSelfPeer()
}
networkType := node.NodeConfig.GetNetworkType()
chainConfig := networkType.ChainConfig()
node.chainConfig = chainConfig
collection := shardchain.NewCollection(
chainDBFactory, &genesisInitializer{&node}, chain.Engine, &chainConfig,
)
if isArchival {
collection.DisableCache()
}
node.shardChains = collection
if host != nil && consensusObj != nil {
// Consensus and associated channel to communicate blocks
node.Consensus = consensusObj
// Load the chains.
blockchain := node.Blockchain() // this also sets node.isFirstTime if the DB is fresh
beaconChain := node.Beaconchain()
if b1, b2 := beaconChain == nil, blockchain == nil; b1 || b2 {
shardID := node.NodeConfig.ShardID
// HACK get the real error reason
_, err := node.shardChains.ShardChain(shardID)
fmt.Fprintf(
os.Stderr,
"reason:%s beaconchain-is-nil:%t shardchain-is-nil:%t",
err.Error(), b1, b2,
)
os.Exit(-1)
}
node.BlockChannel = make(chan *types.Block)
node.ConfirmedBlockChannel = make(chan *types.Block)
node.BeaconBlockChannel = make(chan *types.Block)
txPoolConfig := core.DefaultTxPoolConfig
txPoolConfig.Blacklist = blacklist
node.TxPool = core.NewTxPool(txPoolConfig, node.Blockchain().Config(), blockchain, node.TransactionErrorSink)
node.CxPool = core.NewCxPool(core.CxPoolSize)
node.Worker = worker.New(node.Blockchain().Config(), blockchain, chain.Engine)
if node.Blockchain().ShardID() != shard.BeaconChainShardID {
node.BeaconWorker = worker.New(
node.Beaconchain().Config(), beaconChain, chain.Engine,
)
}
node.pendingCXReceipts = map[string]*types.CXReceiptsProof{}
node.Consensus.VerifiedNewBlock = make(chan *types.Block)
chain.Engine.SetBeaconchain(beaconChain)
// the sequence number is the next block number to be added in consensus protocol, which is
// always one more than current chain header block
node.Consensus.SetBlockNum(blockchain.CurrentBlock().NumberU64() + 1)
// Add Faucet contract to all shards, so that on testnet, we can demo wallet in explorer
if networkType != nodeconfig.Mainnet {
if node.isFirstTime {
// Setup one time smart contracts
node.AddFaucetContractToPendingTransactions()
}
}
}
utils.Logger().Info().
Interface("genesis block header", node.Blockchain().GetHeaderByNumber(0)).
Msg("Genesis block hash")
// Setup initial state of syncing.
node.peerRegistrationRecord = map[string]*syncConfig{}
node.startConsensus = make(chan struct{})
go node.bootstrapConsensus()
// Broadcast double-signers reported by consensus
if node.Consensus != nil {
go func() {
for doubleSign := range node.Consensus.SlashChan {
utils.Logger().Info().
RawJSON("double-sign-candidate", []byte(doubleSign.String())).
Msg("double sign notified by consensus leader")
// no point to broadcast the slash if we aren't even in the right epoch yet
if !node.Blockchain().Config().IsStaking(
node.Blockchain().CurrentHeader().Epoch(),
) {
return
}
if hooks := node.NodeConfig.WebHooks.Hooks; hooks != nil {
if s := hooks.Slashing; s != nil {
url := s.OnNoticeDoubleSign
go func() { webhooks.DoPost(url, &doubleSign) }()
}
}
if node.NodeConfig.ShardID != shard.BeaconChainShardID {
go node.BroadcastSlash(&doubleSign)
} else {
records := slash.Records{doubleSign}
if err := node.Blockchain().AddPendingSlashingCandidates(
records,
); err != nil {
utils.Logger().Err(err).Msg("could not add new slash to ending slashes")
}
}
}
}()
}
return &node
}
// InitConsensusWithValidators initialize shard state
// from latest epoch and update committee pub
// keys for consensus
func (node *Node) InitConsensusWithValidators() (err error) {
if node.Consensus == nil {
utils.Logger().Error().
Msg("[InitConsensusWithValidators] consenus is nil; Cannot figure out shardID")
return errors.New(
"[InitConsensusWithValidators] consenus is nil; Cannot figure out shardID",
)
}
shardID := node.Consensus.ShardID
blockNum := node.Blockchain().CurrentBlock().NumberU64()
node.Consensus.SetMode(consensus.Listening)
epoch := shard.Schedule.CalcEpochNumber(blockNum)
utils.Logger().Info().
Uint64("blockNum", blockNum).
Uint32("shardID", shardID).
Uint64("epoch", epoch.Uint64()).
Msg("[InitConsensusWithValidators] Try To Get PublicKeys")
shardState, err := committee.WithStakingEnabled.Compute(
epoch, node.Consensus.ChainReader,
)
if err != nil {
utils.Logger().Err(err).
Uint64("blockNum", blockNum).
Uint32("shardID", shardID).
Uint64("epoch", epoch.Uint64()).
Msg("[InitConsensusWithValidators] Failed getting shard state")
return err
}
subComm, err := shardState.FindCommitteeByID(shardID)
if err != nil {
return err
}
pubKeys, err := subComm.BLSPublicKeys()
if err != nil {
utils.Logger().Error().
Uint32("shardID", shardID).
Uint64("blockNum", blockNum).
Msg("[InitConsensusWithValidators] PublicKeys is Empty, Cannot update public keys")
return errors.Wrapf(
err,
"[InitConsensusWithValidators] PublicKeys is Empty, Cannot update public keys",
)
}
for _, key := range pubKeys {
if node.Consensus.PubKey.Contains(key) {
utils.Logger().Info().
Uint64("blockNum", blockNum).
Int("numPubKeys", len(pubKeys)).
Msg("[InitConsensusWithValidators] Successfully updated public keys")
node.Consensus.UpdatePublicKeys(pubKeys)
node.Consensus.SetMode(consensus.Normal)
return nil
}
}
return nil
}
// AddPeers adds neighbors nodes
func (node *Node) AddPeers(peers []*p2p.Peer) int {
for _, p := range peers {
key := fmt.Sprintf("%s:%s:%s", p.IP, p.Port, p.PeerID)
_, ok := node.Neighbors.LoadOrStore(key, *p)
if !ok {
// !ok means new peer is stored
node.host.AddPeer(p)
continue
}
}
return node.host.GetPeerCount()
}
// AddBeaconPeer adds beacon chain neighbors nodes
// Return false means new neighbor peer was added
// Return true means redundant neighbor peer wasn't added
func (node *Node) AddBeaconPeer(p *p2p.Peer) bool {
key := fmt.Sprintf("%s:%s:%s", p.IP, p.Port, p.PeerID)
_, ok := node.BeaconNeighbors.LoadOrStore(key, *p)
return ok
}
func (node *Node) initNodeConfiguration() (service.NodeConfig, chan p2p.Peer, error) {
chanPeer := make(chan p2p.Peer)
nodeConfig := service.NodeConfig{
IsClient: node.NodeConfig.IsClient(),
Beacon: nodeconfig.NewGroupIDByShardID(shard.BeaconChainShardID),
ShardGroupID: node.NodeConfig.GetShardGroupID(),
Actions: map[nodeconfig.GroupID]nodeconfig.ActionType{},
}
if nodeConfig.IsClient {
nodeConfig.Actions[nodeconfig.NewClientGroupIDByShardID(shard.BeaconChainShardID)] =
nodeconfig.ActionStart
} else {
nodeConfig.Actions[node.NodeConfig.GetShardGroupID()] = nodeconfig.ActionStart
}
groups := []nodeconfig.GroupID{
node.NodeConfig.GetShardGroupID(),
nodeconfig.NewClientGroupIDByShardID(shard.BeaconChainShardID),
node.NodeConfig.GetClientGroupID(),
}
// force the side effect of topic join
if err := node.host.SendMessageToGroups(groups, []byte{}); err != nil {
return nodeConfig, nil, err
}
return nodeConfig, chanPeer, nil
}
// ServiceManager ...
func (node *Node) ServiceManager() *service.Manager {
return node.serviceManager
}
// ShutDown gracefully shut down the node server and dump the in-memory blockchain state into DB.
func (node *Node) ShutDown() {
node.Blockchain().Stop()
node.Beaconchain().Stop()
const msg = "Successfully shut down!\n"
utils.Logger().Print(msg)
fmt.Print(msg)
os.Exit(0)
}
func (node *Node) populateSelfAddresses(epoch *big.Int) {
// reset the self addresses
node.KeysToAddrs = map[string]common.Address{}
node.keysToAddrsEpoch = epoch
shardID := node.Consensus.ShardID
shardState, err := node.Consensus.ChainReader.ReadShardState(epoch)
if err != nil {
utils.Logger().Error().Err(err).
Int64("epoch", epoch.Int64()).
Uint32("shard-id", shardID).
Msg("[PopulateSelfAddresses] failed to read shard")
return
}
committee, err := shardState.FindCommitteeByID(shardID)
if err != nil {
utils.Logger().Error().Err(err).
Int64("epoch", epoch.Int64()).
Uint32("shard-id", shardID).
Msg("[PopulateSelfAddresses] failed to find shard committee")
return
}
for _, blskey := range node.Consensus.PubKey.PublicKey {
blsStr := blskey.SerializeToHexStr()
shardkey := shard.FromLibBLSPublicKeyUnsafe(blskey)
if shardkey == nil {
utils.Logger().Error().
Int64("epoch", epoch.Int64()).
Uint32("shard-id", shardID).
Str("blskey", blsStr).
Msg("[PopulateSelfAddresses] failed to get shard key from bls key")
return
}
addr, err := committee.AddressForBLSKey(*shardkey)
if err != nil {
utils.Logger().Error().Err(err).
Int64("epoch", epoch.Int64()).
Uint32("shard-id", shardID).
Str("blskey", blsStr).
Msg("[PopulateSelfAddresses] could not find address")
return
}
node.KeysToAddrs[blsStr] = *addr
utils.Logger().Debug().
Int64("epoch", epoch.Int64()).
Uint32("shard-id", shardID).
Str("bls-key", blsStr).
Str("address", common2.MustAddressToBech32(*addr)).
Msg("[PopulateSelfAddresses]")
}
}
// GetAddressForBLSKey retrieves the ECDSA address associated with bls key for epoch
func (node *Node) GetAddressForBLSKey(blskey *bls.PublicKey, epoch *big.Int) common.Address {
// populate if first time setting or new epoch
node.keysToAddrsMutex.Lock()
defer node.keysToAddrsMutex.Unlock()
if node.keysToAddrsEpoch == nil || epoch.Cmp(node.keysToAddrsEpoch) != 0 {
node.populateSelfAddresses(epoch)
}
blsStr := blskey.SerializeToHexStr()
addr, ok := node.KeysToAddrs[blsStr]
if !ok {
return common.Address{}
}
return addr
}
// GetAddresses retrieves all ECDSA addresses of the bls keys for epoch
func (node *Node) GetAddresses(epoch *big.Int) map[string]common.Address {
// populate if first time setting or new epoch
node.keysToAddrsMutex.Lock()
defer node.keysToAddrsMutex.Unlock()
if node.keysToAddrsEpoch == nil || epoch.Cmp(node.keysToAddrsEpoch) != 0 {
node.populateSelfAddresses(epoch)
}
// self addresses map can never be nil
return node.KeysToAddrs
}